Stavros Vassos, University of Athens, Greece stavrosv@di.uoa.gr May 2012

INTRODUCTION TO Al
STRIPS PLANNING

Course overview

Lecture 1: Game-inspired competitions for Al research,
Al decision making for non-player characters in games

Lecture 2: STRIPS planning, state-space search

Lecture 3: Planning Domain Definition Language (PDDL),
using an award winning planner to solve Sokoban

Lecture 4: Planning graphs, domain independent
heuristics for STRIPS planning

Lecture 5: Employing STRIPS planning in games:
SimpleFPS, iThinkUnity3D, SmartWorkersRTS

Lecture 6: Planning beyond STRIPS

STRIPS in a real game engine

Amazing tools available for (indie) game developers!

Qunity

Game development with Unity3D
Integrated Game Development Environment
C#, Javascript, Boo programming languages

Asset-centric instead of code-centric, adopting a
look and feel like 3D CAD software

ame development with Unity3D

€ Unity - TheGame.unity - 3DPla

File Edit Assets GameObject Component Terrain Window Help

‘*’ | S | :D: =4 Center| & Local | = | 1| | 2| | Layers X] I Layout ke l
V;FWS?cie’ne e Game > vEﬁ_lréﬂlhspector | o=
Textured + | RGB $| 0 | ind | <) Gizmos | (@ All

= Hierarchy

| 83 Project
Create ™ or All J} Create ~ o All
b Level | |35} EnemyDamage .
b levelGeometry |35} EnemyPoliceGuy B
b Lights |35} EnemyRespawn
b NearCamera lJ_s] LaserTrap
spaceShip » EGUI
» 55 Misc
» EdPlayer
| ¥ &3 Sounds ‘

<) activeFence

<) CopperActiveLoop

<) CopperDies

<) CopperldleLoop

<) CopperNewAttackSFX »
i <) CopperNewBibbleSFX b |

Game development with Unity3D

N
01 Terminology
= Project
o Scene
21 GameObject and Component
o1 Asset and Prefab

o Script

Game development with Unity3D

1 3D platform game tutorial
available online by Unity3D

http://unity3d.com/support/resources/tutorials/3d-platform-game
http://unity3d.com/support/resources/tutorials/3d-platform-game
http://unity3d.com/support/resources/tutorials/3d-platform-game
http://unity3d.com/support/resources/tutorials/3d-platform-game
http://unity3d.com/support/resources/tutorials/3d-platform-game
http://unity3d.com/support/resources/tutorials/3d-platform-game

Game development with Unity3D

8
0 Sections 1,2 of the tutorial

Start with an empty platform
level

Add our player: Lerpz
Add a camera that follows him

Add a 3rd person controller to
control Lerpz

Tweak his movement

1 Section 5
Add NPCsl

Game development with Unity3D

_ 9
7 Quick demo using
Lerpz
SpringFollowCamera
ThirdPersonController
CharacterController

ThirdPersonPlayerAnimation

Game development with Unity3D

Game development with Unity3D

Unity3D

Provides a basic simulated environment to build Al
agents

Can be used as an educational platform to experiment
with Al techniques about knowledge representation,
reasoning, agent languages and systems, robotics, ...

Can be used as a realistic test-bed to try Al techniques
for NPCs in commercial video-games

iThink: STRIPS planning in Unity3D

B.Sc. project at the University of Athens
Vassileios-Marios Anastassiou

Panagiotis Diamantopoulos

SETN-2012 conference paper
iThink: A Library for Classical Planning in Video-games

Code available online

https://code.google.com/p/ithink-unity3d/
https://code.google.com/p/ithink-unity3d/
https://code.google.com/p/ithink-unity3d/

iThink: STRIPS planning in Unity3D

iThink-Unity3D

Provides a basic framework for specifying and solving
STRIPS planning problems inside Unity3D

Can be used as an educational platform to experiment
with STRIPS planning and extensions

Can be used as a realistic test-bed to try STRIPS
planning in commercial games

iThink: STRIPS planning in Unity3D

14|
1 SimpleGame domain
' &)\
/ X
Py

0 turn(¢fromd 2tod)

1 move(2froml ¢tol

edir)
1 pickup(2o 2l)
1 stab(2l 2knife)

11 shoot(¢locn 2¢locp
edir 2gun)

iThink: STRIPS planning in Unity3D
=

// Defining a STRIPS action schema

class ActionSGMove : iThinkAction
{
GameObject From, To, Dir;
public ActionSGMove (string name,
GameObject from,
GameObject to,
GameObject dir)
: base(name)

{
From = from;
To = to;
Dir = dir;

initPreconditions();
initEffects();

iThink: STRIPS planning in Unity3D

public override void initPreconditions()

{
base.initPreconditions();
preconditions.Add(new iThinkFact("npcAt", From));
preconditions.Add(new iThinkFact("npcFacing", Dir));
preconditions.Add(new iThinkFact("adjacent",
From,
To,
Dir));
}
public override void initEffects()
{
base.initEffects();
effects.Add(new iThinkFact("npcAt", To));
effects.Add(new iThinkFact("npcAt", false, From));
}

iThink: STRIPS planning in Unity3D

// Defining the initial state
factList = new List<iThinkFact>();

factList.Add(new iThinkFact("npcAt",
GameObject.Find("LOC1")));

factList.Add(new iThinkFact("npcFacing",
GameObject.Find("UP")));

factList.Add(new iThinkFact("npcEmptyHands"));
factList.Add(new iThinkFact("playerAt",

GameObject.Find("LOC8")));

brain.startState = new iThinkState("Initial",
new List<iThinkFact>(factList));

iThink: STRIPS planning in Unity3D

// Defining the goal state
goalfactlList = new List<iThinkFact>();
goalfactList.Add(new iThinkFact("playerDown"));

brain.goalState = new iThinkState("Goal",
new List<iThinkFact>(goalfactList));

iThink: STRIPS planning in Unity3D
=

// Start planning!

// Specify search method

brain.planner.forwardSearch (brain.startState ,
brain.goalState ,
brain.ActionManager |,

1);

// Get the plan as a sequence of actions

brain.planner.getPlan().debugPrintPlan();

iThink: STRIPS planning in Unity3D

iThink-Unity3D

iThinkBrain uses several classes and components
Fact, State, Action, Plan, Planner
SensorySystem

ActionManager, ActionSchemas

Basic search methods implemented
Depth-First, Breadth-First, Best-First, A*

A modular design allows to easily integrate
different methods

iThink: STRIPS planning in Unity3D

S I —
1 iThink-Unity 3D

1 GUl under development!

iThink: STRIPS planning in Unity3D

iThink: STRIPS planning in Unity3D

1 Preconditions

iThink: STRIPS planning in Unity3D

1 Effects

iThink: STRIPS planning in Unity3D

0 Filtering mechanism that uses Unity 3D tags

iThink: STRIPS planning in Unity3D

public class SimpleGameAgent : MonoBehaviour
{
iThinkBrain brain ;
public string [] schemalist = {
"ActionSGMove-3-Fact::adjacent",
"ActionSGTurn-2-Fact::canTurn",
"ActionSGShoot-4-Fact::adjacent-Tag::gun",
"ActionSGStab-2-Tag: :location-Tag: :knife",
"ActionSGPickUp-2-Tag: :knife-Tag::location",
"ActionSGPickUp-2-Tag::gun-Tag: :location® };

public void Awake() { //executed when NPC is constructed (GameObject
is initialized)
brain = new iThinkBrain() ;

brain.ActionManager = new iThinkActionManager() ;

iThink: STRIPS planning in Unity3D

71 Let’s see a demo of the blocks world implemented in

Unity 3D with iThink!

Unity Web Player | WebPlayer

Initial State
onTable E

onTable D
onTable C
onTable F
AonE
BonD

GonF

Goal State
EonA

DonF
ConB
FonE

holding G

SmartWorkersRTS in Unity3D

B.Sc. project at the University of Athens

loannis Vlachopoulos

Use iThink for STRIPS planning in a real-time
strategy game to guide the actions of a worker unit

In progress!

SmartWorkersRTS in Unity3D

Real time strategy games (RTS) feature worker units
that follow direct commands

Point and click

Get this resource, build this structure, etc

The idea of this project is to allow some upgraded
workers also take more long-term responsibilities
Requires a “rich” game-world where interesting

interactions can take place between available
resources, structures, objects

Experimenting with a commercial game
I

11 Our game-world currently looks like this

Experimenting with a commercial game
N

11 Our game-world currently looks like this

SmartWorkersRTS: Buildings

Forest — Harvest or Hunt

Gold Mine — Extract gold

Armory — Get weapons and tools

Farm — Get rice (ingredient for food-ration)
Shop — Buy useful items

Laboratory — Convert ingredients to other items
(herbs = potions, gold = coins, rice 2 food-ration)

Magic Tower — Provides spell scrolls (weapons)

SmartWorkersRTS: Obijects

Deer, Boar — Hunting

Pick — Harvest tool

Bow, Spear, Spell Scrolls — Hunting Weapons
Food ration

Potions

Coins

Gold — to produce coins

Rice, raw meat — ingredients for food ration

Herbs — Ingredients for potions

SmartWorkersRTS: Actions

Buy an item from a shop
Harvest an ingredient from forest
Get a tool/weapon from armory

Produce a new item in laboratory using some
ingredients

Hunt an animal with a weapon

SmartWorkersRTS: PDDL

Shop ?¢x
Laboratory 2x
Natural-place 2x
Building 2x
Lives-in ¢x 2y

Money 2¢m (coins)

Sells 2x 2y
Is-converted-to ¢x 2y
Holding ¢x

Tool ¢2p

Weapon 2x
Provides ¢x 2y

SmartWorkersRTS: PDDL

(:action get

:parameters (2o ¢from)

:precondition (and (available 2from)
(building 2from)
(provides 2from 20))

:effect (holding 20))

SmartWorkersRTS in Unity3D

As different buildings are available at steps of the
game, the worker can find different ways to
achieve the same goails, e.g., bring food

Interesting results arise when we consider different
evaluation functions and search for the optimal
solution

Use no coins

Prefer faster outcomes

SmartWorkersRTS in Unity3D

Scenario 1
All buildings enabled
Default Cost Function — All actions cost 1

Goal : Holding(food-ration)

We expect that the agent will use only the shop to get
a food-ration object, given that he is holding
“coins”.

SmartWorkersRTS in Unity3D

Scenario 2
All buildings enabled
“money-saving” Cost Function — Buy action costs 7

Goal : holding(food-ration)

We expect that the agent will avoid using the shop,
and either hunt or get resources from farm to
produce a food-ration

SmartWorkersRTS in Unity3D

Scenario 3
Shop and Farm disabled
Default Cost Function

Goal : holding(food-ration)

The agent has only hunting as the only means to
produce a food-ration

SmartWorkersRTS in Unity3D
—

-1 Scenario 4
Shop and Laboratory disabled
Default Cost Function

Goal : holding(food-ration)

The agent will not find any plan

Experimenting with a commercial game
I

11 Let’s try a preliminary demo!

Experimenting with a commercial game
I

Experimenting with a commercial game

Amazing tools available for (indie) game developers!

Experimenting with a commercial game
s

1 Let’s see some code from a commercial game
1 HL2-SDK, npc_BaseZombie.cpp
HARL Fi=L | F Eg2 7 lines 1828-1870

switch (m_NPCState)

{
case NPC_STATE. COMBAT:

case NPC_STATE_ALERT:

ot
[EHGAMER|
CEDITORS’ |

Experimenting with a commercial game
e

1 Let’s see some code from a commercial game

-1 Developers console

HALF-LIFE.? 0 map

[npc_create

11 npc_task_text
npc_route

npc_select

IR GAMER|
| EDITORS' |
|
GHOICE

npc_conditions

O
O
71 npc_tasks
O
O

Artificial Intelligence and Video Games

Source availablel

Artificial Intelligence and Video Games
I

7 Valve Developer Community, tools for Alien Swarm

O https: / /developer.valvesoftware.com /wiki/Authoring T
ools/SDK (Alien Swarm)

1 Programming overview

O https: //developer.valvesoftware.com /wiki/Category:Pr

ogramming

1 Al programming

O https: / /developer.valvesoftware.com /wiki/Al Program

ming

https://developer.valvesoftware.com/wiki/Authoring_Tools/SDK_(Alien_Swarm)
https://developer.valvesoftware.com/wiki/Authoring_Tools/SDK_(Alien_Swarm)
https://developer.valvesoftware.com/wiki/Authoring_Tools/SDK_(Alien_Swarm)
https://developer.valvesoftware.com/wiki/Category:Programming
https://developer.valvesoftware.com/wiki/Category:Programming
https://developer.valvesoftware.com/wiki/Category:Programming
https://developer.valvesoftware.com/wiki/Category:Programming
https://developer.valvesoftware.com/wiki/AI_Programming
https://developer.valvesoftware.com/wiki/AI_Programming

Next lecture

Lecture 1: Game-inspired competitions for Al research,
Al decision making for non-player characters in games

Lecture 2: STRIPS planning, state-space search

Lecture 3: Planning Domain Definition Language (PDDL),
using an award winning planner to solve Sokoban

Lecture 4: Planning graphs, domain independent
heuristics for STRIPS planning

Lecture 5: Employing STRIPS planning in games:
SimpleFPS, iThinkUnity3D, SmartWorkersRTS

Lecture 6: Planning beyond STRIPS

Bibliography

References

iThink: A Library for Classical Planning in Video-games.
Vassileios-Marios Anastassiou, Panagiotis Diamantopoulos, Vassos
Stavros, Manolis Koubarakis. In Proceedings of the 7th Hellenic
Conference on Artificial Intelligence (SETN), 201 2.

Real-time Action Planing with Preconditions and Effects. Stavros
Vassos. Game Coder Magazine, March 201 2.

