
INTRODUCTION TO AI

STRIPS PLANNING

.. and Applications to Video-games!

May 2012Stavros Vassos, University of Athens, Greece stavrosv@di.uoa.gr

2

 Lecture 1: Game-inspired competitions for AI research,

AI decision making for non-player characters in games

 Lecture 2: STRIPS planning, state-space search

 Lecture 3: Planning Domain Definition Language (PDDL),

using an award winning planner to solve Sokoban

 Lecture 4: Planning graphs, domain independent

heuristics for STRIPS planning

 Lecture 5: Employing STRIPS planning in games:

SimpleFPS, iThinkUnity3D, SmartWorkersRTS

 Lecture 6: Planning beyond STRIPS

Course overview

STRIPS in a real game engine
3

 Amazing tools available for (indie) game developers!

Game development with Unity3D
4

 Integrated Game Development Environment

 C#, Javascript, Boo programming languages

 Asset-centric instead of code-centric, adopting a

look and feel like 3D CAD software

Game development with Unity3D
5

Game development with Unity3D
6

 Terminology

 Project

 Scene

GameObject and Component

 Asset and Prefab

 Script

Game development with Unity3D
7

 3D platform game tutorial

available online by Unity3D

 http://unity3d.com/support/res

ources/tutorials/3d-platform-

game

http://unity3d.com/support/resources/tutorials/3d-platform-game
http://unity3d.com/support/resources/tutorials/3d-platform-game
http://unity3d.com/support/resources/tutorials/3d-platform-game
http://unity3d.com/support/resources/tutorials/3d-platform-game
http://unity3d.com/support/resources/tutorials/3d-platform-game
http://unity3d.com/support/resources/tutorials/3d-platform-game

Game development with Unity3D
8

 Sections 1,2 of the tutorial

 Start with an empty platform

level

 Add our player: Lerpz

 Add a camera that follows him

 Add a 3rd person controller to

control Lerpz

 Tweak his movement

 Section 5

 Add NPCs!

Game development with Unity3D
9

 Quick demo using

 Lerpz

 SpringFollowCamera

 ThirdPersonController

 CharacterController

 ThirdPersonPlayerAnimation

Game development with Unity3D
10

Game development with Unity3D

 Unity3D

 Provides a basic simulated environment to build AI

agents

 Can be used as an educational platform to experiment

with AI techniques about knowledge representation,

reasoning, agent languages and systems, robotics, …

 Can be used as a realistic test-bed to try AI techniques

for NPCs in commercial video-games

iThink: STRIPS planning in Unity3D
12

 B.Sc. project at the University of Athens

 Vassileios-Marios Anastassiou

 Panagiotis Diamantopoulos

 SETN-2012 conference paper

 iThink: A Library for Classical Planning in Video-games

 Code available online

 https://code.google.com/p/ithink-unity3d/

https://code.google.com/p/ithink-unity3d/
https://code.google.com/p/ithink-unity3d/
https://code.google.com/p/ithink-unity3d/

iThink: STRIPS planning in Unity3D

 iThink-Unity3D

 Provides a basic framework for specifying and solving

STRIPS planning problems inside Unity3D

 Can be used as an educational platform to experiment

with STRIPS planning and extensions

 Can be used as a realistic test-bed to try STRIPS

planning in commercial games

iThink: STRIPS planning in Unity3D
14

 SimpleGame domain

 turn(?fromd ?tod)

 move(?froml ?tol

?dir)

 pickup(?o ?l)

 stab(?l ?knife)

 shoot(?locn ?locp

?dir ?gun)

// Defining a STRIPS action schema

class ActionSGMove : iThinkAction
{

GameObject From, To, Dir;
public ActionSGMove(string name,

GameObject from,
GameObject to,
GameObject dir)

: base(name)
{

From = from;
To = to;
Dir = dir;

initPreconditions();
initEffects();

}

iThink: STRIPS planning in Unity3D

public override void initPreconditions()
{

base.initPreconditions();
preconditions.Add(new iThinkFact("npcAt", From));
preconditions.Add(new iThinkFact("npcFacing", Dir));
preconditions.Add(new iThinkFact("adjacent",

From,
To,
Dir));

}

public override void initEffects()
{

base.initEffects();
effects.Add(new iThinkFact("npcAt", To));
effects.Add(new iThinkFact("npcAt", false, From));

}
}

iThink: STRIPS planning in Unity3D

// Defining the initial state

factList = new List<iThinkFact>();

factList.Add(new iThinkFact("npcAt",
GameObject.Find("LOC1")));

factList.Add(new iThinkFact("npcFacing",
GameObject.Find("UP")));

factList.Add(new iThinkFact("npcEmptyHands"));

factList.Add(new iThinkFact("playerAt",
GameObject.Find("LOC8")));

...

brain.startState = new iThinkState("Initial",
new List<iThinkFact>(factList));

iThink: STRIPS planning in Unity3D

// Defining the goal state

goalfactList = new List<iThinkFact>();

goalfactList.Add(new iThinkFact("playerDown"));

brain.goalState = new iThinkState("Goal",
new List<iThinkFact>(goalfactList));

iThink: STRIPS planning in Unity3D

// Start planning!

// Specify search method

brain.planner.forwardSearch (brain.startState ,
brain.goalState ,
brain.ActionManager ,

1);

// Get the plan as a sequence of actions

brain.planner.getPlan().debugPrintPlan();

iThink: STRIPS planning in Unity3D

 iThink-Unity3D

 iThinkBrain uses several classes and components

 Fact, State, Action, Plan, Planner

 SensorySystem

 ActionManager, ActionSchemas

 Basic search methods implemented

Depth-First, Breadth-First, Best-First, A*

A modular design allows to easily integrate

different methods

iThink: STRIPS planning in Unity3D

 iThink-Unity3D

 GUI under development!

iThink: STRIPS planning in Unity3D

iThink: STRIPS planning in Unity3D

 Preconditions

iThink: STRIPS planning in Unity3D

 Effects

iThink: STRIPS planning in Unity3D

 Filtering mechanism that uses Unity3D tags

iThink: STRIPS planning in Unity3D

public class SimpleGameAgent : MonoBehaviour

{

iThinkBrain brain ;

public string [] schemaList = {

"ActionSGMove-3-Fact::adjacent",

"ActionSGTurn-2-Fact::canTurn",

"ActionSGShoot-4-Fact::adjacent-Tag::gun",

"ActionSGStab-2-Tag::location-Tag::knife",

"ActionSGPickUp-2-Tag::knife-Tag::location",

"ActionSGPickUp-2-Tag::gun-Tag::location“ };

public void Awake() { //executed when NPC is constructed (GameObject
is initialized)

brain = new iThinkBrain() ;

brain.ActionManager = new iThinkActionManager() ;

...

iThink: STRIPS planning in Unity3D

 Let’s see a demo of the blocks world implemented in

Unity3D with iThink!

iThink: STRIPS planning in Unity3D

SmartWorkersRTS in Unity3D
28

 B.Sc. project at the University of Athens

 Ioannis Vlachopoulos

 Use iThink for STRIPS planning in a real-time

strategy game to guide the actions of a worker unit

 In progress!

SmartWorkersRTS in Unity3D
29

 Real time strategy games (RTS) feature worker units

that follow direct commands

 Point and click

Get this resource, build this structure, etc

 The idea of this project is to allow some upgraded

workers also take more long-term responsibilities

 Requires a “rich” game-world where interesting

interactions can take place between available

resources, structures, objects

Experimenting with a commercial game
30

 Our game-world currently looks like this

Experimenting with a commercial game
31

 Our game-world currently looks like this

SmartWorkersRTS: Buildings

 Forest – Harvest or Hunt

 Gold Mine – Extract gold

 Armory – Get weapons and tools

 Farm – Get rice (ingredient for food-ration)

 Shop – Buy useful items

 Laboratory – Convert ingredients to other items

(herbs  potions, gold  coins, rice  food-ration)

 Magic Tower – Provides spell scrolls (weapons)

SmartWorkersRTS: Objects

 Deer, Boar – Hunting

 Pick – Harvest tool

 Bow, Spear, Spell Scrolls – Hunting Weapons

 Food ration

 Potions

 Coins

 Gold – to produce coins

 Rice, raw meat – ingredients for food ration

 Herbs – Ingredients for potions

SmartWorkersRTS: Actions

 Buy an item from a shop

 Harvest an ingredient from forest

 Get a tool/weapon from armory

 Produce a new item in laboratory using some

ingredients

 Hunt an animal with a weapon

SmartWorkersRTS: PDDL

 Shop ?x

 Laboratory ?x

 Natural-place ?x

 Building ?x

 Lives-in ?x ?y

 Money ?m (coins)

 Sells ?x ?y

 Is-converted-to ?x ?y

 Holding ?x

 Tool ?p

 Weapon ?x

 Provides ?x ?y

SmartWorkersRTS: PDDL

(:action get

:parameters (?o ?from)

:precondition (and (available ?from)

(building ?from)

(provides ?from ?o))

:effect (holding ?o))

SmartWorkersRTS in Unity3D

 As different buildings are available at steps of the

game, the worker can find different ways to

achieve the same goals, e.g., bring food

 Interesting results arise when we consider different

evaluation functions and search for the optimal

solution

 Use no coins

 Prefer faster outcomes

…

SmartWorkersRTS in Unity3D

 Scenario 1

 All buildings enabled

 Default Cost Function – All actions cost 1

Goal : Holding(food-ration)

We expect that the agent will use only the shop to get

a food-ration object, given that he is holding

“coins”.

SmartWorkersRTS in Unity3D

 Scenario 2

 All buildings enabled

 “money-saving” Cost Function – Buy action costs 7

Goal : holding(food-ration)

We expect that the agent will avoid using the shop,

and either hunt or get resources from farm to

produce a food-ration

SmartWorkersRTS in Unity3D

 Scenario 3

 Shop and Farm disabled

 Default Cost Function

Goal : holding(food-ration)

The agent has only hunting as the only means to

produce a food-ration

SmartWorkersRTS in Unity3D

 Scenario 4

 Shop and Laboratory disabled

 Default Cost Function

Goal : holding(food-ration)

The agent will not find any plan

Experimenting with a commercial game
42

 Let’s try a preliminary demo!

Experimenting with a commercial game
43

Experimenting with a commercial game
44

 Amazing tools available for (indie) game developers!

Experimenting with a commercial game
45

 Let’s see some code from a commercial game

 HL2-SDK, npc_BaseZombie.cpp

 lines 1828-1870

switch (m_NPCState)

{

case NPC_STATE_COMBAT:

…

case NPC_STATE_ALERT:

…

}

Experimenting with a commercial game
46

 Let’s see some code from a commercial game

 Developers console

 map

 npc_create

 npc_task_text

 npc_route

 npc_select

 npc_tasks

 npc_conditions

 …

Artificial Intelligence and Video Games
47

 Source available!

Artificial Intelligence and Video Games
48

 Valve Developer Community, tools for Alien Swarm

 https://developer.valvesoftware.com/wiki/Authoring_T

ools/SDK_(Alien_Swarm)

 Programming overview

 https://developer.valvesoftware.com/wiki/Category:Pr

ogramming

 AI programming

 https://developer.valvesoftware.com/wiki/AI_Program

ming

https://developer.valvesoftware.com/wiki/Authoring_Tools/SDK_(Alien_Swarm)
https://developer.valvesoftware.com/wiki/Authoring_Tools/SDK_(Alien_Swarm)
https://developer.valvesoftware.com/wiki/Authoring_Tools/SDK_(Alien_Swarm)
https://developer.valvesoftware.com/wiki/Category:Programming
https://developer.valvesoftware.com/wiki/Category:Programming
https://developer.valvesoftware.com/wiki/Category:Programming
https://developer.valvesoftware.com/wiki/Category:Programming
https://developer.valvesoftware.com/wiki/AI_Programming
https://developer.valvesoftware.com/wiki/AI_Programming

49

 Lecture 1: Game-inspired competitions for AI research,

AI decision making for non-player characters in games

 Lecture 2: STRIPS planning, state-space search

 Lecture 3: Planning Domain Definition Language (PDDL),

using an award winning planner to solve Sokoban

 Lecture 4: Planning graphs, domain independent

heuristics for STRIPS planning

 Lecture 5: Employing STRIPS planning in games:

SimpleFPS, iThinkUnity3D, SmartWorkersRTS

 Lecture 6: Planning beyond STRIPS

Next lecture

Bibliography
50

 References

 iThink: A Library for Classical Planning in Video-games.

Vassileios-Marios Anastassiou, Panagiotis Diamantopoulos, Vassos

Stavros, Manolis Koubarakis. In Proceedings of the 7th Hellenic

Conference on Artificial Intelligence (SETN), 2012.

 Real-time Action Planing with Preconditions and Effects. Stavros

Vassos. Game Coder Magazine, March 2012.

