Stavros Vassos, University of Athens, Greece stavrosv@di.uoa.gr May 2012

INTRODUCTION TO Al
STRIPS PLANNING

Course overview

Lecture 1: STRIPS planning, state-space search

Lecture 2: Planning graphs, domain independent
heuristics

Lecture 3: Game-inspired competitions for Al research,
Al decision making for non-player characters in games

Lecture 4: Planning Domain Definition Language (PDDL),
examples with planners and Prolog code

Lecture 5: Employing STRIPS planning in games:
SimpleFPS, iThinkUnity3D, SmartWorkersRTS

Lecture 6: Planning beyond STRIPS

STRIPS planning

What we have seen so far

The STRIPS formalism for specifying planning problems
Solving planning problems using state-based search

Progression planning

Effective heuristics for progression planning (based on
relaxed problems, planning graphs)

PDDL tools for expressing and solving STRIPS problems

STRIPS planning

What we have seen so far [Classical planning }

There is complete knowledge about the initial state
Actions are deterministic with exactly one outcome

The solution is a linear plan (a sequence of actions)

STRIPS planning

What we have seen so far [Classical planning }

There is complete knowledge about the initial state
Actions are deterministic with exactly one outcome

The solution is a linear plan (a sequence of actions)

Search “off-line”, then execute with “eyes closed”

STRIPS planning

4) 4 B)
\mj \l .

On(A,Table)
On(B,Table)
On(C,Table)
Clear(A) \ J
Clear(B)
Clear(Q)

(&)

9

STRIPS planning

a4)

\
K On(A,Table) \

On(B,Table)
On(C,Table)
Clear(A)
Clear(B)

4)

k Clear(C) J

Move(B,Table,C)

\u_n)

K On(A,Table) \

On(B,C)
On(C,Table)
Clear(A)
Clear(B)

\ Clear(Table) J

K On(A,B) \

On(B,Q)
On(C,Table)
Clear(A)
Clear(Table)

&)

Move(A,Table,B)

ok!

STRIPS planning: Search

s
\
-

On(ATable) OnlATable) -

On(B,Table) On(B,C)

On(C,Table) On(C,Table) On(C,Table)
Clear(A) Clear(A) Clear(A)
Clear(B) Clear(B) Clear(Table)

\ Clear(Q) / \Clear(TabIe)j \ /
Move(B,Table,C) Move(A,Table,B)

ok!

STRIPS planning: Execute

I I ——
4 N

Move(B,Table,C) Move(A,Table,B)

STRIPS planning: Execute
o

11 blackbox —o sokoban-domain.txt —f sokoban-problem.txt

Begin plan
-

1 (push c4-4 c4-3 c4-2 down box1) r-r-F__"'r__ r r-
2 (push c4-3 c3-3 c2-3 left box2) [_ r"r,. r—-—r -' r— r- F—rr
3 (move ¢3-3 c3-2 down) S rr r.-- fﬁ\
4 (move c3-2 c2-2 left) - g '

[.-
5 (move c2-2 c1-2 left) T

=

27 (move c2-2 c1-2 left)

28 (move c1-2 c1-3 up)

29 (push c1-3 c2-3 ¢3-3 right box1)
30 (push ¢2-3 ¢3-3 c4-3 right box1)

S =G rr’('"r

- e« r
[‘ r’rl"r'r-

l" T 1

-
.r-'—

End plan

STRIPS planning: Execute

blackbox —o sokoban-domain.txt —f sokoban-problem.txt

Begin plan /

1 (push c4-4 c4-3 c4-2 down box1)
2 (push c4-3 ¢3-3 c2-3 left box2)

3 (move ¢3-3 c3-2 down)

4 (move c3-2 c2-2 left)

5 (move c2-2 c1-2 left)

27 (move c2-2 c1-2 left)

28 (move c1-2 c1-3 up)

29 (push c1-3 c2-3 ¢3-3 right box1)
30 (push c2-3 ¢3-3 c4-3 right box1)

End plan \

Planning beyond STRIPS

1 What we have not seen so far

Planning beyond STRIPS

1 What we have not seen so far

o Initial state with incomplete information

Planning beyond STRIPS

What we have not seen so far

Initial state with incomplete information

Open world assumption, e.g., | don’t know anything about
block D, could be sitting anywhere

Disjunctive information, e.g., On(A,B) v On(B,A)

Existential information, e.g., | know there is a block on top of
A but | don’t know which one: dx On(x,A)

Planning beyond STRIPS

What we have not seen so far

Initial state with incomplete information

Open world assumption, e.g., | don’t know anything about
block D, could be sitting anywhere

Disjunctive information, e.g., On(A,B) v On(B,A)

Existential information, e.g., | know there is a block on top of
A but | don’t know which one: dx On(x,A)

Game-world: | know there is treasure hidden in some chest
but | don’t know which one

Planning beyond STRIPS

1 What we have not seen so far

1 Nondeterministic actions with more than one outcome

Planning beyond STRIPS

What we have not seen so far

Nondeterministic actions with more than one outcome

An action succeeds with a degree of probability, e.g.,
move(x,b,y) action succeeds with a 90% probability

An action may have more than one outcomes, e.g., moving a
block may lead to moving the intended block or a
neighbouring one

Planning beyond STRIPS

What we have not seen so far

Nondeterministic actions with more than one outcome

An action succeeds with a degree of probability, e.g.,
move(x,b,y) action succeeds with a 90% probability

An action may have more than one outcomes, e.g., moving a
block may lead to moving the intended block or a
neighbouring one

Game-world: Picking a lock may result in the door opening or
the tool breaking

Planning beyond STRIPS

1 What we have not seen so far

o1 Representation of the duration of actions

Planning beyond STRIPS

What we have not seen so far

Representation of the duration of actions

How can we say that an action takes more time than another
one?

How can we say that the goal should be reached within a
time limit¢

Planning beyond STRIPS

1 What we have not seen so far

1 Exogenous events

Planning beyond STRIPS

What we have not seen so far

Exogenous events

What if in the blocks world we decided to push one of the
blocks from time to time and change its location?

What if in the blocks world there was another gripper that
could move blocks in order to achieve their goal?

Planning beyond STRIPS

What we have not seen so far

Exogenous events

What if in the blocks world we decided to push one of the
blocks from time to time and change its location?

What if in the blocks world there was another gripper that
could move blocks in order to achieve their goal?

Game-world: the state of the game is altered not only by the
moves of our agent/NPC but also by the human player and
other agents

Planning beyond STRIPS

1 What we have not seen so far

71 Sensing actions

Planning beyond STRIPS

What we have not seen so far

Sensing actions

These actions do not affect the world but instead the
knowledge of the agent about the world is updated

E.g., sense which is the block that is on top of block A

Planning beyond STRIPS

What we have not seen so far

Sensing actions

These actions do not affect the world but instead the
knowledge of the agent about the world is updated

E.g., sense which is the block that is on top of block A

Game-world: look-inside(chest1) could update the information
that the agent has about what is lying inside the chest

Planning beyond STRIPS

What we have not seen so far

A more expressive solution

Looking for a linear plan is the simplest case (and works well
only in classical planning problems)

Planning beyond STRIPS

What we have not seen so far

A more expressive solution

Looking for a linear plan is the simplest case (and works well
only in classical planning problems)

A solution can be
a tree of nested if-then-else statements, e.g.,
[if open(chest) then ... else ...]
a more expressive program that specifies how the agent

should behave, e.g.,
[while —open(chest) do ... end while]

Planning beyond STRIPS

1 Let’s see some scenarios that combine such features

Planning beyond STRIPS
o

1 Three versions of the Vacuum Cleaner domain

=)

Planning beyond STRIPS

Version 1 of the Vacuum Cleaner domain

=) =)

O'O OQ

Incomplete information about the initial state

The cleaning bot does not know its position

Deterministic actions

Actions moveleft, moveRight, clean always succeed with the
intuitive effects

The bot does not get any other information about the state

Planning beyond STRIPS

Version 1 of the Vacuum Cleaner domain

= =)

Conformant planning

Find a sequence of actions that achieves the goal in
all possible cases

Planning beyond STRIPS

Version 1 of the Vacuum Cleaner domain

= =)

Conformant planning

Find a sequence of actions that achieves the goal in
all possible cases

Plan: [moveleft, clean, moveRight, clean]

Planning beyond STRIPS

Version 2 of the Vacuum Cleaner domain

=) =)

O'O OQ

Incomplete information about the initial state

The cleaning bot does not know its position

Deterministic actions

Actions moveleft, moveRight, clean always succeed with the
intuitive effects

At run-time the cleaning bot can see which state it is in

Planning beyond STRIPS

Version 2 of the Vacuum Cleaner domain

= =)

Conditional planning

Find a plan that also uses if-then-else statements, such
that it achieves the goal assuming that conditions can be
evaluated at run-time

Plan: [if isRight then clean else moveRight, clean]

Planning beyond STRIPS

Version 3 of the Vacuum Cleaner domain

=)

Complete information about the initial state

O'O OQ

The cleaning bot is on the left, there is dirt on the right

Nondeterministic actions

Actions moveleft, moveRight my fail without affecting the state

At run-time the cleaning bot can see which state it is in

Planning beyond STRIPS

Version 3 of the Vacuum Cleaner domain

=)

Planning for more expressive plans

O'O OQ

Find a a plan that also uses while statements, such that it
eventually achieves the goal assuming that conditions can
be evaluated at run-time

Plan: [while isLeft do moveRight end while, clean]

Planning beyond STRIPS

We see that the resulting plan need not be a linear
sequence of actions

How do we search for such plans?

AIMA Section 12.3: Planning and acting in
nondeterministic domains

AIMA Section 12.4: Conditional planning

Planning beyond STRIPS

We see that the resulting plan need not be a linear
sequence of actions

How do we search for such plans?

AIMA Section 12.3: Planning and acting in
nondeterministic domains

AIMA Section 12.4: Conditional planning

Let’s see an interesting extension of STRIPS that aims to
account for some of the problems we identified

Planning beyond STRIPS

Planning with Knowledge and Sensing (PKS)
[Petrick, Bacchus 2002]

Extension of STRIPS that takes into account that
some information will be available at run-time
K; is like the normal STRIPS database but with open world
K, holds literals whose truth value will be known at run-time
K, holds literals with terms that will be known at run-time

K, holds exclusive or information about literals

Works with conditional plans that take cases

http://homepages.inf.ed.ac.uk/rpetrick/software/pks/

Planning beyond STRIPS

We see that the resulting plan need not be a linear
sequence of actions

How do we search for such plans?

AIMA Section 12.3: Planning and acting in
nondeterministic domains

AIMA Section 12.4: Conditional planning

Are these enough for building a real NPC?

Planning beyond STRIPS
=

1 What happens when an exogenous event changes
something in the state while a plan is executed?

Planning beyond STRIPS

43
1 MiniGame domain
7 o
/)_¢
J)
@

Planning beyond STRIPS

1 MiniGame domain

0 up
0 up
// %f%’% 0 up
0 pickup
m 0 right
0 right
N 0 right
® 0 stab

Planning beyond STRIPS

1 MiniGame domain

4 N

up

up

up
pickup
right
right
right

O o o o o O 0o O

stab

Planning beyond STRIPS

-1 MiniGame domain
2 N\ oup

0 up

1 up

0 pickup
0 right
0 right
0 right

. - stab

Planning beyond STRIPS

1 MiniGame domain

Planning beyond STRIPS

What happens when an exogenous event changes
something in the state while a plan is executed?

The human player picks up the weapon that was part of
the plan for the NPC

The player pushes the NPC out of the position it thinks its
located

Planning beyond STRIPS

What happens when an exogenous event changes
something in the state while a plan is executed?

Before executing the next action check that the
preconditions of the actions are satisfied

Before executing the next action check that the
preconditions of all remaining actions will be satisfied

Specify some special conditions that should hold at each
step of the plan in order to continue executing it

Planning beyond STRIPS

What happens when an exogenous event changes
something in the state while a plan is executed?

Before executing the next action check that the
preconditions of the actions are satisfied

Before executing the next action check that the
preconditions of all remaining actions will be satisfied

Specify some special conditions that should hold at each
step of the plan in order to continue executing it

AIMA Section 12.5: Execution monitoring and replanning

Planning beyond STRIPS
Em

-1 The approaches we have seen so far look for a plan
that features simple programming constructs

Planning beyond STRIPS

The approaches we have seen so far look for a plan
that features simple programming constructs

What if we could also provide the planner with a
“sketch” of how the plan should look like?

Note that this makes sense only for a particular
application, i.e., it is domain dependant

Planning beyond STRIPS

The approaches we have seen so far look for a plan
that features simple programming constructs

What if we could also provide the planner with a
“sketch” of how the plan should look like?

Note that this makes sense only for a particular
application, i.e., it is domain dependant

In this way we can also specify a behavior for an
agent that works in an ““on-line” manner

First, find a way to get a weapon. Execute the plan.

Then, find a way to get to the player. ...

Planning beyond STRIPS

54
1 MiniGame domain
7 o
/)_¢
J)
@

Planning beyond STRIPS

Golog: High-level agent programming language

search (
(turn; T x. move(x))*;
T X. pick-up(x);
2(m x. gun(x) and npc-holding(x));
)i
search (
(turn; TT x. move(x))*;
2(npc-at(x) and player-at(y) and adjacent (x,y));
)i

shoot-player

Planning beyond STRIPS

Golog: High-level agent programming language

a, primitive action
o?, wait or test for a condition
01 02, sequence
01 | 02, nondeterministic branch
Tx.o(x), nondeterministic choice of argument
0", nondeterministic iteration
if © then 0, else J> endlIf, conditional
while ¢ do 0 endWhile, while loop
01 || da2, concurrency with equal priority
01)) 02, concurrency with ¢, at a higher priority
L , concurrent iteration
(T :o(T) — 4(T)), interrupt

p(6). procedure call

Planning beyond STRIPS

Golog: High-level agent programming language
Based on situation calculus, a first-order logic formalism

Much more expressive than STRIPS for specifying a
domain and an initial situation

Many extensions in the literature, and a few working
systems available, e.g.,

http://www.cs.toronto.edu/cogrobo/main/systems/index.html

Course overview

Lecture 1: STRIPS planning, state-space search

Lecture 2: Planning graphs, domain independent
heuristics

Lecture 3: Game-inspired competitions for Al research,
Al decision making for non-player characters in games

Lecture 4: Planning Domain Definition Language (PDDL),
examples with planners and Prolog code

Lecture 5: Employing STRIPS planning in games:
SimpleFPS, iThinkUnity3D, SmartWorkersRTS

Lecture 6: Planning beyond STRIPS

Bibliography

Material

Artificial Intelligence: A Modern Approach 2nd Ed. Stuart Russell,
Peter Norvig. Prentice Hall, 2003 Sections 11.2, 12.3, 12.4, 12.5

References

A knowledge-based approach to planning with incomplete
information and sensing. Ronald P. A. Petrick, Fahiem Bacchus. In
Proceedings of the International Conference on Al Planning and
Scheduling Systems (AIPS), 2002

Golog: A Logic Programming Language for Dynamic Domains.
Hector J. Levesque, Raymond Reiter, Yves Lesperance, Fangzhen
Lin, Richard B. Scherl. Logic Programming, Vol. 31, No. 1-3. 1997

