Operational semantics of programs

Giuseppe De Giacomo

Programs

We will consider a very simple programming language:

a atomic action
skip empty action
d1; 0o sequence

if then §,else 5 if-then-else

while ¢ do § while-loop

As atomic action we will typically consider assignments:
T .=
As test any boolean condition on the current state of the memory.

Notice that our consideration extend to full-fledged programming lan-
guage (as Java).

Program semantics

Programs are syntactic objects.

How do we assign a formal semantics to them?

Any idea of what the semantics should talk about?

Evaluation semantics

Idea: describe the overall result of the evaluation of the program.

Given a program § and a memory state s compute the memory state s’ obtained
by executing ¢ in s.

More formally: Define the relation:

(8,s) —— &'

where § is a program, s is the memory state in which the program is evaluated, and
s’ is the memory state obtained by the evaluation.

Such a relation can be defined inductively in a standard way using the so called
evaluation (structural) rules

Evaluation semantics: references

The general approach we follows is is the structural operational semantics approach[Plotkin81,
Nielson&Nielson99].

This whole-computation semantics is often call: evaluation semantics or natural se-
mantics or computation semantic.

Evaluation rules for our programming constructs

Act :

Skip :

Seq :

if

while :

a,s) —s'
b

true

special case: assignment

(z:=v,8) — &

if s = Pre(a) and s’ = Post(a, s)

(skip,s) —— s

true

(61; 02, 8) —— &'

(61,8) —— 8" A (62,8") —— &

(if ¢ then §;else 65,5) —— &'

(61,8) — &'

(while ¢ do §,5) —— s

true

if ' = s[x = v]
true

if ¢ then §;else & /
its = ¢ (if ¢ then 1else 62,5) —— s it s = —o

(62,8) — &

(while ¢ do §,5) —— &’

if s = ¢ ifs = ¢

(6,8) ——s" A (while ¢ do §,5") —— s

Structural rules

The structural rules have the following schema:

CONSEQUENT .
if SIDE-CONDITION

ANTECEDENT
which is to be interpreted logically as:

V(ANTECEDENT A SIDE-CONDITION D CONSEQUENT)

where V@ stands for the universal closure of all free variables occurring in @, and,
typically, ANTECEDENT, SIDE-CONDITION and CONSEQUENT share free variables.

The structural rules define inductively a relation, namely: the smallest relation sat-
isfying the rules.

Examples

Compute s in the following cases, assuming that in the memory state
So we have r = 10 and y = O:

e (z:=xz+1,z:=x%2,8) — sy

o (x :=x+ 1;
if (x <10)thenz :=0elsez :=1;
r.=xz+1,
Sg) —— sy

e (y:=0;while (y <4)do{z :=zx2;y:=y+1},S9) — sy

Transition semantics

Idea: describe the result of executing a single step of the program.

e Given a program § and a memory state s compute the memory state s’ and
the program ¢’ that remains to be executed obtained by executing a single
step of § in s.

e Assert when a program 6 can be considered successfully terminated in a
memory state s.

Transition semantics (cont.)
More formally:
e Define the relation, named T'rans and denoted by “——"):
(8,8) —(&,8")
where ¢ is a program, s is the memory state in which the program is executed,

and s’ is the memory state obtained by executing a single step of § and ¢’ is
what remains to be executed of § after such a single step.

¢ Define a predicate. named Final and denoted by “ v

(8, s)Y

where § is a program that can be considered (successfully) terminated in the
memory state s.

Such a relation and predicate can be defined inductively in a standard way, using the
so called transition (structural) rules

10

Transition semantics: references

The general approach we follows is is the structural operational semantics approach[Plotkin81,
Nielson&Nielson99].

This single-step semantics is often call: fransition semantics or computation seman-
tics.

11

Transition rules for our programming constructs

(aa S) —>(E7 S/)

Act : if s = Pre(a) and s’ = Post(a, s)
true
— /
special case: assignment (z:=v,9) GLY) if ' = s[x =]
true
Skzp . (Sk’lp7 S) A—%(eu S)
true
01; 02, 8) ——(84; 82, 8 01; 02, 8) —— (85, ¢ .
Seq : (91; 92, 5) (6: 92, ') (41; 02, 5) (%, 5) if (61,8)V
(01,8) —— (67, 8") (02, 8) —— (85, 8")
if (if ¢ then 51else 62, s) —— (8], 8') its = o (if ¢ then §,else 42, s) —— (5,) it s = —g
(61,8) — (8%, ") (62,8) —— (8%, 8)
hil ——(4’; whil
while - (while ¢ do 4, s) (¢'; while ¢ do 4, s) its = o

(6,5) —(8',5")

e is the empty program.

12

Termination rules for our programming constructs

, (e,8)v

€ .

true

(61v 627 5)\/

Seq :

(61,8)V A (82 8)V

if ¢ th | v if ¢ th | v
it (if ¢ then 51else 65, s) its = o (if ¢ then §;ielse 65, s) it s = =g

(01,5)Y (82,5)
hil v hil v
while - (while ¢ do 4, s) it 5 = (while ¢ do 6, s) its = o
true (8,s)V

13

Structural rules

The structural rules have the following schema:

CONSEQUENT

if SIDE-CONDITION
ANTECEDENT

which is to be interpreted logically as:

V(ANTECEDENT A SIDE-CONDITION D CONSEQUENT)

where V(Q stands for the universal closure of all free variables occurring in @, and,
typically, ANTECEDENT, SIDE-CONDITION and CONSEQUENT share free variables.

The structural rules define inductively a relation, namely: the smallest relation sat-
isfying the rules.

14

Examples

Compute &', s’ in the following cases, assuming that in the memory
state So we have x = 10 and y = O:

o (x:=x+1,z:=x%2,5y) ——(,5)

e (if (r < 10)then {x :=0;y := 50} else {x :=1;y := 100};
r.:=x+1,
So) —— (8",)

e (while (y <4)do{z :=z*2;y:=y+1},Sg) —(,s")

15

Evaluation vs. transition semantics
How do we characterize a whole computation using single steps?

First we define the relation, named Trans*, denoted by ——* by the
following rules:

(53 S)Vﬁ*(év S)

true

0 step :

(6,5)—"(8",s")

(for some §', s')
(6,8) ——(&",8') A (&',8)——="(8",5")

n step :

Notice that such relation is the reflexive-transitive closure of (single step) ——.

Then it can be shown that:

(6,80) ———sp =
(6, so)—>*(5f,8f) A (5f,8f)\/ for some ¢

16

Examples

Compute Sfy using the definition based on ——*, in the following
cases, assuming that in the memory state Sy we have x = 10 and
y = 0

° (x:=x+1;m:=x*2,50)———>sf

o (r:=x+41;
if (x < 10) then {z :=0;y := 50} else {zr := 1,y := 100};
r:=x+1,
Sg) —— sy

e (y:=0;while (y <4)do {z:=x%2;y :=y+1},5) —— sy

17

Concurrency

The transition semantics extends immediately to constructs for concur-
rency: The evaluation semantics can still be defined but only in terms
of the transition semantics (as above).

We model concurrent processes by interleaving: A concurrent ex-
ecution of two processes is one where the primitive actions in both
processes occur, interleaved in some fashion.

It is OK for a process to remain blocked for a while, the other pro-

cesses will continue and eventually unblock it.

18

Constructs for concurrency

if ¢ then 64 else 6o, synchronized conditional
while ¢ do 9, synchronized loop
(61 || 62), concurrent execution

The constructs if ¢ then §; else j> and while ¢ do § are the synchronized: testing
the condition ¢ does not involve a transition per se, the evaluation of the condition
and the first action of the branch chosen are executed as an atomic unit.

Similar to test-and-set atomic instructions used to build semaphores in concurrent
programming.

19

Transition and termination rules for concurrency

ransition . _OLl82,) =@ 1102,8) (61 2, 8) =81]| 8.)
(5175) —’(6,175/) (6275) —’(6,275/)
L (61 82,)V
termination :

(61,8)Y A (62,8)Y

20

