© JPK

CTL, LTLand CTL *
Lecture #19 of Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r wt h- aachen. de

January 7, 2009

#19: CTL, LTL and CTL * Model checking

Overview Lecture #19

= Repetition: CTL syntax and semantics
e CTL equivalence
e EXxpressiveness of LTL versus CTL

e CTL™: extended CTL

© JPK

#19: CTL, LTL and CTL * Model checking

Computation tree logic

modal logic over infinite trees [Clarke & Emerson 1981]

e Statements over states

— a € AP atomic proposition
— adand P AT negation and conjunction
— do there exists a path fulfilling ¢
— Vo all paths fulfill

e Statements over paths

- O the next state fulfills ®
— dUWT & holds until a W-state is reached

= note that () and U alternate with V and 4

© JPK 2

#19: CTL, LTL and CTL *

Model checking

Derived operators

potentially &: FOP
iInevitably o: VoD

potentially always ¢: dJO®

iInvariantly &: YO
weak until: (P W)
V(OW W)

J(true U ¢)
V(true U @)

VO
=3O

V(@ A=T)U (=D A-T))
—J((@A=T)U (=D A -T))

the boolean connectives are derived as usual

© JPK

#19: CTL, LTL and CTL * Model checking

Semantics of CTL state -formulas

Defined by a relation |= such that

s = @ if and only if formula ® holds in state s

s E=a iff ae L(s)
skE d iff —(s = ®)
sEPAY ff (sEP)A(s =)

s = dp Iff m = o for some path 7 that starts in s

s E Vo Iff 7 = ¢ for all paths 7 that start in s

© JPK

#19: CTL, LTL and CTL * Model checking

Semantics of CTL path-formulas

Define a relation = such that

7 = @ if and only if path 7 satisfies ¢

tEQ® iffx[l] =
rEOUY iff(3j>07[jlEY AN VOLEk<jrwlklE D)

where 7[¢] denotes the state s, in the path =

© JPK 5

#19: CTL, LTL and CTL * Model checking

Transition system semantics

e For CTL-state-formula ®, the satisfaction set Sat(®) is defined by:

Sat(®) = {seS|sE=?}

e TS satisfies CTL-formula ® iff & holds in all its initial states:
TS=® ifandonlyif Vsygel.sqg=®

— thisis equivalentto I C Sat(®)

e Point of attention: TS = ® and TS (£~ —® is possible!

— because of several initial states, e.g. so = 30 ® and s, = 30 ®

© JPK

#19: CTL, LTL and CTL * Model checking

Overview Lecture #19

e Repetition: CTL syntax and semantics
= CTL equivalence
e EXxpressiveness of LTL versus CTL

e CTL™: extended CTL

© JPK

#19: CTL, LTL and CTL * Model checking

CTL equivalence

CTL-formulas ¢ and ¥ (over AP) are equivalent, denoted & = V¥

If and only if Sat(®) = Sat(W) for all transition systems TS over AP

o =v iff (TSE® ifandonlyif TS | V)

© JPK

#19: CTL, LTL and CTL *

Model checking

VO @
30 @
VOD

FOP

V(U D)

Duality laws

30 -
V() =
~30-d
YO

—3((DA=T)W (=D A —T))

© JPK

#19: CTL, LTL and CTL *

Model checking

Expansion laws

Recallin LTL: pUv = ¥ V (oA O (eU))
In CTL:

VieUd) = TV (& AVO V(PUVT))
VOd = & v V() VOdb
voe = ¢ A V(O VO

HPUY) = TV (P AJOIPUYD))
400 = & v 40 IO
406 = & A J0O JOP

© JPK

10

#19: CTL, LTL and CTL * Model checking

Distributive laws (1)

RecallinLTL: O(p A %) = Op A Oyand<O(p Vo) = Cp vV O

In CTL:

VO(P A VD) vod A VO

IO(@VY) = 30 v IOU

notethat30 (& A ¥) Z FJ0P A IOV andVO (& VvV U) Z VO D Vv VO U

© JPK 11

#19: CTL, LTL and CTL * Model checking

Distributive laws (2)

!
4

s = V<O (a Vv ob) since for all m € Paths(s). 7w =< (a V b)
But: s (s")* =< abuts(s") £ <ObThus: s £ VODb
A similar reasoning applied to path s (s')“ yields s [£ V<O a
Thus, s £ VO a Vv VODb

© JPK 12

#19: CTL, LTL and CTL *

Model checking

Overview Lecture #19

e Repetition: CTL syntax and semantics
e CTL equivalence
= EXxpressiveness of LTL versus CTL

e CTL™: extended CTL

© JPK

13

#19: CTL, LTL and CTL * Model checking

Equivalence of LTL and CTL formulas

e CTL-formula & and LTL-formula ¢ (both over AP) are equivalent,
denoted ® = o, if for any transition system TS (over AP):

TSE® ifandonlyif TS E ¢

e Let & be a CTL-formula, and ¢ the LTL-formula obtained by
eliminating all path quantifiers in ®. Then: [Clarke & Draghicescu]

d = ¢ orthere does not exist any LTL-formula that is equivalent to ¢

© JPK 14

#19: CTL, LTL and CTL * Model checking

LTL and CTL are incomparable

e Some LTL-formulas cannot be expressed in CTL, e.g.,
— O 0Oa
- O(a AN O a)

e Some CTL-formulas cannot be expressed in LTL, e.g.,

— VYO VOa
— VO (aAVOa)
— YO 3¢ a

= Cannot be expressed = there does not exist an equivalent formula

© JPK 15

#19: CTL, LTLand CTL * Model checking

Comparing LTL and CTL (1)

S(a AN (O a)isnotequivalentto VO (a A VO a)

%)
S2 S1 \L

or
GO R &

- {a) {a}\‘

ta}

© JPK

16

#19: CTL, LTLand CTL * Model checking

Comparing LTL and CTL (1)

S(a AN (O a)isnotequivalentto VO (a A VO a)

%)
S2 S1 \L

or
GO R &

. {a) {a}\‘

ta}

so=<C(a AN Oa) but sgEVO(a A VOa)

path sg s1 (3501 violates it

© JPK 17

#19: CTL, LTLand CTL * Model checking

Comparing LTL and CTL (2)

YO VOa Is not equivalentto ¢ Oa

© JPK 18

#19: CTL, LTL and CTL *

Model checking

Comparing LTL and CTL (2)

VYO VOa Is not equivalentto ¢ Oa

e |

59

S0 \:<>Da but S0 I#VOVD@

path s violates it

© JPK

19

#19: CTL, LTL and CTL * Model checking

Comparing LTL and CTL (3)

The CTL-formula VO 3¢ a cannot be expressed in LTL

e This is shown by contradiction: assume ¢ = VO3 a; let:

\S

TS @@ é{a} TS’\S@@

e TS = VO3<$ a, and thus—by assumption—TS = ¢

e Paths(TS') C Paths(TS), thus TS' = ¢

e But TS [£ VO 3O a as path s = 030 a

© JPK 20

#19: CTL, LTL and CTL * Model checking

Comparing LTL and CTL (4)

The LTL-formula <O a cannot be expressed in CTL

e Provide two series of transition systems TS,, and fén
e SuchthatTS,, ~ ¢Oa and fén = <0a (%), and

e for any VCTL-formula ® with |®| < n: TS, = ® iff 'I/'§n = & (**)

— proof is by induction on n (omitted here)

e Assume there is a CTL-formula ® = ¢0Oa with |®| =n

— by (*), it follows TS,, = ® and 'I/'§n = &
— but this contradicts (**): TS,, = ® ifand only if TS,, = &

© JPK 21

#19: CTL, LTL and CTL * Model checking

The transition systems TS,, and 'Fén (n=1)

o {a} %) {a}
9
o {a} %) {a}

(nﬂydﬁkwence:TSnindudestn-—>sn,mNMe:ﬁ§ndoesnot

© JPK 22

#19: CTL, LTL and CTL *

Model checking

Overview Lecture #19

e Repetition: CTL syntax and semantics
e CTL equivalence
e EXxpressiveness of LTL versus CTL

= CTL*: extended CTL

© JPK

23

#19: CTL, LTL and CTL * Model checking

Syntax of CTL *

CTL" state-formulas are formed according to:
® ::=true ‘ a ‘ D N Dy | P | dp

where a € AP and ¢ is a path-formula

CTL" path-formulas are formed according to the grammar:

= ‘ ©1 N P2 | P ‘ O | ©1 U o

where & is a state-formula, and ¢, ¢, and ¢, are path-formulas

in CTL": Vo = —3—¢. This does not hold in CTL!

© JPK 24

#19: CTL, LTL and CTL *

Model checking

Example CTL * formulas

© JPK

25

#19: CTL, LTL and CTL *

Model checking

T = P

T = 1 A p2
T = e
TEOe
™ = @1 U2

skE=a

CTL* semantics

iff a €& L(s)

skE @ iff nots =&
sEPAVY iff (skE=®)and (s = V)

s = o

Iff
lii
Iff
Iff
Iff

iff 7 |= ¢ forsome w € Paths(s)

r[0] E @

T = prand = o

T e

m[l.] =

35 >0. (r[j..] = w2 A (VO<LEk < j.wk..] = ¢1))

© JPK

26

#19: CTL, LTL and CTL * Model checking

Transition system semantics

e For CTL*-state-formula ®, the satisfaction set Sat(®) is defined by:

Sat(®) = {seS|sE=?}

e TS satisfies CTL*-formula & iff & holds in all its initial states:

TS=® ifandonlyif Vsygel.sqg=®

this is exactly as for CTL

© JPK 27

#19: CTL, LTL and CTL * Model checking

Embedding of LTL in CTL ~

For LTL formula ¢ and TS without terminal states (both over AP) and for
each s € S

= If and only if s =V
= 2 y = Vo
LTL semantics CTL™ semantics

In particular:

TS =1 e ifandonlyif TS Eerpe Vo

© JPK 28

#19: CTL, LTL and CTL * Model checking

CTL™ is more expressive than LTL and CTL

For the CTL"-formula over AP = {a,b }:
¢ = (VOOa) v (VOIS D)

there does not exist any equivalent LTL- or CTL formula

© JPK 29

#19: CTL, LTL and CTL * Model checking

This logic is as expressive as CTL

CTL™ state-formulas are formed according to:
® ::=true ‘ a | ORIAN D | P ‘ =07 ‘ Vo
where a € AP and ¢ is a path-formula

CTL™ path-formulas are formed according to the grammar:

p = 1 AP ‘ g ‘ OR" ‘ P; U @

where &, &, ¢, are state-formulas, and ¢, 1 and ¢, are path-formulas

© JPK 30

#19: CTL, LTL and CTL * Model checking

CTL™ is as expressive as CTL

For example: I(Ca A Ob) =30(aATOb) A FO(b A FOa)
CTL""\f:erula CTL formula

Some rules for transforming CTL™ formulae into equivalent CTL ones:

El(ﬂ(<1>1 U cbg)) = 3((B1 A =Bo) U (=B A ~s)) vV 30-d,
EI(Q<I>1/\Q<I>2 30 (31 A By)
EI(QCI)/\(<1>1U<I>2) (<I>2/\EIQ <I>> v (@1/\30(@/\3(c1>1uq>2)))
= 3((@1 A W)U (By A (W, U %))) v

SN— —
|l

3 ((c1>1 Uds) A (T, U D)
3((@1 AW U (W A 3(B, U <1>2)))

adding boolean combinations of path formulae to CTL does not change its expressiveness

but CTL™ formulae can be much shorter than shortest equivalent CTL formulae

© JPK 31

#19: CTL, LTLand CTL * Model checking

Relationship between LTL, CTLand CTL *

m Slan O a)
- v

— | > Y030 a

O a YO 345 a

© JPK 32

