TRANSITION SYSTEMS

Slides by Alessandro Artale
http://www.inf.unibz.it/~artale/

Some material (text, figures) displayed in these slides is courtesy of:
M. Benerecetti, A. Cimatti, M. Fisher, F. Giunchiglia, M. Pistore, M. Roveri, R.Sebastiani.

—D. l!

» Types of Systems.

o Modeling Systems as Kripke Models.

o Languages for Describing Kripke Models.
» Properties of Systems.

|
S



We describe here Concurrent Reactive systems.

o Reactive Systems: Systems that interact with their
environment and usually do not terminate (e.g.
communication protocols, hardware circuits).

o Concurrent Systems consist of a set of components that
execute together.
o We distinguish two types of Concurrent Systems:

1. Asynchronous or Interleaved Systems. Only one
component makes a step at a time;

2. Synchronous Systems. All components make a step at
the same time.

o We need to construct a Formal Specification of the
system which abstract from irrelevant details.

 State: Snapshot of the system that captures the
values of the variables at a particular point in time.

* System Transition: How the state of the system
evolves as the result of some action.

* Computation: Infinite sequence of states along the
different transitions.

|
I



» Types of Systems.

» Modeling Systems as Kripke Models.

o Languages for Describing Kripke Models.
o Properties of Systems.

—D. !!!

o Kripke Structures are transition diagrams that represent
the dynamic behavior of a reactive system.

» Kripke Structures consist of a set of states, a set of
transitions between states, and a set of properties
labeling each state.

o A path in a Kripke structure represents a computation of
the system.

|
S



> Formally, a Kripke model (S,7.R, AP, L) consists of

)

p
a set of states S; \
a set of initial states I C §; q

a set of transitions R C § x S; ° @
a set of atomic propositions AP;
« a labeling function L : S — 247, D

> A path in a Kripke model M from a state s, is an infinite
sequence of states

TT=50,51,82,...

such that (s;,s;,11) € R, for all i > 0.

o We model two concurrent asynchronous processes
sharing a resource ensuring they do not access it at the
same time.

o Each process has critical sections in its code and only
one process can be in its critical section at a time.

o We want to find a protocol for mutual exclusion which,
for example, guarantee the following properties:

Safety: Only one process is in its critical section at a
time.

Liveness: Whenever any process requests to enter its
critical section it will eventually be permitted to do so.

Non-Blocking: A process can always request to enter
its critical section.



Each process can be in its non-critical state (N), or trying to
enter its critical state (T), or in its critical state (C). The
variable turn considers the first process that went into its

trying state.

N = noncritical, T =trying, C = critical User1 User2

o Complex Kripke Models are tipically obtained by
composition of smaller ones

o Components can be combined via

¢ synchronous composition
° asynchronous composition.

|
S



> Components evolve in parallel.
> At each time instant, every component performs a
transition.

\ composmon

> Typical example: sequential hardware circuits.

> Interleaving of evolution of components.
> At each time instant, one component is selected to
perform a transition.
asynchronous

-®
—>
composition @ @

>~ _ -

y

y

> Typical example: communication protocols.

—D.



» Types of Systems.

o Modeling Systems as Kripke Models.

» Languages for Describing Kripke Models.
o Properties of Systems.

—D. I!!!

Tipically a Kripke model is not given explicitly, rather it is
usually presented in a structured language

(e.g., NuSMV, SDL, PROMELA, StateCharts, VHDL, ...)
Each component is presented by specifying:

» A set of system variables
» Initial values for state variables
» Instructions

|
S



The correspondence between a description language and
the Kripke Model is the following:
o States: all possible assignments for system variables;
o Initial States: Initial values for system variables;
o [ransitions: Instructions;

o Atomic Propositions: Propositions associated to the
values of the system variables;

o Labeling: Set of atomic propositions true at a state.

—D. | !!!

o The NuSMV (New Symbolic Model Verifier)
model-checking system is an Open Source product
(nusmuv.irst.itc.it).

o An SMV program consists of:
* Type declarations of the system variables;
* Assignments that define the valid initial states
(e.g., init(b0) := 0).
* Assignments that define the transition relation
(e.g., next(b0) := 1!Db0).

|
S



MODULE main
VAR

b0 : boolean; '
bl : boolean;
reset : boolean;

out : 0..3;

ASSIGN
init(b0) := 0; a e
next(b0) := case

reset

reset
esac;

0;
case

reset: 0;

1 : ((!b0 & bl)| (b0 & !bl));
esac;
out := b0 + 2xbl;

i
=

o0 oo
o
-

init(bl)
next(bl)

o Types of Systems.

o Modeling Systems as Kripke Models.

o Languages for Describing Kripke Models.
» Properties of Systems.

|
S



» Nothing Bad Ever Happens.

* Deadlock: two processes waiting for input from each
other, the system is unable to perform a transition.

* No reachable state satisfies a “bad” condition,
e.g. never two processes in critical section at the
same time

o Itis expressed by a temporal formula saying that
“it’s never the case that p”.
o<.

o

~ O

—D. II!!

» Something Desirable Will Eventually Happen.

* Whenever a subroutine takes control, it will always
return it (sooner or later).

o Itis expressed by a temporal formula saying that
“at each state it will be the case that p”.

» Can be refuted by infinite behaviour (represented as a

loop)
<. e p.\ ﬁp.\
e_-®




» Types of Systems.

o Modeling Systems as Kripke Models.

o Languages for Describing Kripke Models.
o Properties of Systems.



