COMPUTATION TREE LogGIc (CTL)

Slides by Alessandro Artale
http://www.inf.unibz.it/~artale/

Some material (text, figures) displayed in these slides is courtesy of:
M. Benerecetti, A. Cimatti, M. Fisher, F. Giunchiglia, M. Pistore, M. Roveri, R.Sebastiani.

—D. l!ll

o Computation Tree Logic: Intuitions.

o CTL: Syntax and Semantics.

o CTL in Computer Science.

o CTL and Model Checking: Examples.
s CTL Vs. LTL.

s CTL".

|
I

o LTL implicitly quantifies universally over paths.
(KM ,s) = ¢ iff for every path 7 starting at s (XM ,7) = ¢

» Properties that assert the existence of a path cannot be
expressed. In particular, properties which mix existential
and universal path quantifiers cannot be expressed.

o The Computation Tree Logic, CTL, solves these
problems!
e CTL explicitly introduces path quantifiers!

* CTL is the natural temporal logic interpreted over
Branching Time Structures.

o CTL is evaluated over branching-time structures
(Trees).
o CTL explicitly introduces path quantifiers:
All Paths: A
Exists a Path: E.

s Every temporal operator —[_(G), > (F), O(X), u (U)-
preceded by a path quantifier (A or E).

o Universal modalities: AF,AG,AX AU
The temporal formula is true in all the paths starting in
the current state.

s Existential modalities: EF,EG,EX , EU
The temporal formula is true in some path starting in
the current state.

—D. !!!I!

o Computation Tree Logic: Intuitions.

s CTL: Syntax and Semantics.

o CTL in Computer Science.

o CTL and Model Checking: Examples.
s CTL Vs. LTL.

s CTL".

—D. !l!"

Countable set X of atomic propositions: p,q,... the set FORM
of formulas is:

o9 — plT[L][=@loAy|eVy]
AXg | AGy | AFg | pAUY)

EX¢ | EGy | EFg | gEUy)
Intuition:

E there Exists a path
A in All paths
F sometime in the Future

o We interpret our CTL temporal formulas over Kripke
Models linearized as trees (e.g. AFdone).

s
@ '@ \ \ \

» Universal modalities (AF,AG, AX,AU): the temporal
formula is true in all the paths starting in the current
state.

s Existential modalities (EF,EG,EX,EU): the temporal
formula is true in some path starting in the current state.

Let X be a set of atomic propositions. We interpret our CTL
temporal formulas over Kripke Models:

XM = (S,[,R,Z,L)

The semantics of a temporal formula is provided by the
satisfaction relation:

=: (XM xS x FORM) — {true, false}

|
I

We start by defining when an atomic proposition is true at a

state/time “s;

KM ,si=p

iff pelL(s)

(for p €)

The semantics for the classical operators is as expected:

KM, s; =@
KM ,s; = @AY
KM ,s; =@V
KM, si =@ =1
KM,si=T

iff
iff
iff
iff

Kngii;écp

KM, 5; = @and KM, 5; =
KM ,si=@or KM ,s; =9
if KM ,s; = @then KM, s; =Y

ﬁﬁMisiﬁJ_

Temporal operators have the following semantics where
n=(s;,Sit1,-..) IS @ generic path outgoing from state s;inx M .

KM ,s;i = AXop
KM ,s; = EXo
KM ,s; = AGo
KM ,s; = EGo
KM ,s; = AFgp
KM ,s; =EFog
KM ,s; = (QAUY)

KM ,s; = oEUy)

iff
iff
iff
iff
iff
iff
iff

iff

Vn = (Si,SH_l,.
dt = (Si,SH_l, ce
V= (Siasi-i-l? cos
dn = (Si7si+17 ..
Vn = (Si,SH_l, cen
drt = (Si,SH_l, ce
V= (Si7si+17 ce

dt = (si,s,-+1,. ..

)
)
)
)
)
)
)

KM ,si1 = ¢

KM ,sit1 =@
Vi>i. XM ,sj=¢@
Vi>iKM,s; =@
dj>i KM ,s;j =@
dj>i KM ,sj =
dj>ixM ,s; =y and
Vi<k<j:MsplE=o
3j>i.xM ,s; =y and
Vi<k<j:&KXM, sp =@

\Y4

\%

\%

\%

CTL is given by the standard boolean logic enhanced with
temporal operators.

“Necessarily Next”. AXg is true in s, iff ¢ is true in every
successor state s,

“Possibly Next”. EXg is true in s; iff ¢ is true in one successor
State S[_|_1

“Necessarily in the future” (or “Inevitably”). AFg is true in s, iff
@ is inevitably true in some s, with ¢ > ¢

“Possibly in the future” (or “Possibly”). EFg is true in s, iff @
may be true in some s, with ¢/ > ¢

—D. | !!I!

\4

\4

\4

>

“Globally” (or “always”). AGg is true in s, iff @ is true in all s,/
with ¢’ >t

“Possibly henceforth”. EGo is true in s, iff @ is possibly true
henceforth

“Necessarily Until”. (pAUw) is true in s, iff necessarily ¢
holds until 1 holds.

“Possibly Until”. (¢EUv) is true in s, iff possibly ¢ holds until
1y holds.

|
I

finally p globally p next p P until g

é A D A

A[pUaq]

& B A A

E[pUq]

All CTL operators can be expressed via: EX, EG,EU

s AXgp=-EX—gp

s AFp=-EG—op

s EFp=(TEUp)

s AGy=-EF—-¢=—~(TEU—g)

s (9AUY) = “EG—yY A =(—yEU(-@ A —))

|
I

o Computation Tree Logic: Intuitions.

o CTL: Syntax and Semantics.

o CTL in Computer Science.

o CTL and Model Checking: Examples.
s CTL Vs. LTL.

s CTL".

Safety:
“something bad will not happen”

Typical examples:
AG—(reactor_temp > 1000)
AG—(one_way N AXother_way)
AG—((x=0) N AXAXAX(y =z/x))
and so on.....

Usually: AG—....

Liveness:
“something good will happen”

Typical examples:
AFrich
AF(x > 5)
AG(start = AFterminate)
and so on.....

Usually: AF...

Often only really useful when scheduling processes,
responding to messages, etc.

Fairness:
“something is successful/allocated infinitely often”

Typical example:
AG(AFenabled)

Usually: AGAF...

|
I

o Computation Tree Logic: Intuitions.

o CTL: Syntax and Semantics.

o CTL in Computer Science.

o CTL and Model Checking: Examples.
s CTL Vs. LTL.

s CTL".

The CTL Model Checking Problem is formulated as:
KM = ¢

Check if x1 ,s¢ = ¢, for every initial state, sy, of the Kripke
structure xa .

|
I

N=

KM): AG_l(Cl /\Cz) ?

YES: There is no reachable state in which (C; AC;) holds!
(Same as the [_|-(C; AG,) in LTL.)

ritic IT trying, C = critical User1 User2

tITtngtI User1 User2

YES: every path starting from each state where T; holds
passes through a state where C; holds.

Same as T = <C;)in LTL

N=

KM = AGAFC, ?

NO: e.g., in the initial state, there is the blue cyclic path in
which C; never holds! (Same as [J<{>C; in LTL)

S

N = noncritical, T =trying, C = critical

N/

ym — AG(N, = EFT}) ?

YES: from each state where N; holds there is a path leading
to a state where T; holds. (No corresponding LTL formulas)

o Computation Tree Logic: Intuitions.

o CTL: Syntax and Semantics.

o CTL in Computer Science.

o CTL and Model Checking: Examples.
s CTL Vs. LTL.

s CTL™

> Many CTL formulas cannot be expressed in LTL
(e.g., those containing paths quantified existentially)
E.g., AG(N, = EFT)

> Many LTL formulas cannot be expressed in CTL

E.g., | |OT = [1 (Strong Fairness in LTL)
i.e, formulas that select a range of paths with a property

(Op= g Vs. AG(p = AFg))

> Some formluas can be expressed both in LTL and in CTL
(typically LTL formulas with operators of nesting depth 1)

E.g., D_l(cl/\CQ), <>C1, D(Tl = <>C1), D<>C1

|
S

CTL and LTL have incomparable expressive power.

The choice between LTL and CTL depends on the
application and the personal preferences.

o Computation Tree Logic: Intuitions.

o CTL: Syntax and Semantics.

o CTL in Computer Science.

o CTL and Model Checking: Examples.
s CTL Vs. LTL.

s CTL".

|
I

o CTL" is a logic that combines the expressive power of
LTL and CTL.

o Temporal operators can be applied without any
constraints.

c A(XpVXX0p).
Along all paths, @ is true in the next state or the next two
steps.

* E(GFo).
There is a path along which g is infinitely often true.

Countable set X of atomic propositions: p,q,... we
distinguish between States Formulas (evaluated on states):

oY — p|T|[L|-9|oAyY|pVy|
Aa | Ea

and Path Formulas (evaluated on paths):

ap — ¢
—o | aAB|aVP]
Xo | Ga | Fa | (aUp)

The set of CTL* formulas FORM is the set of state formulas.

We start by defining when an atomic proposition is true at a

state “sg

KM ,so=p iff peL(sy) (for p € X)

The semantics for State Formulas is the following where
= (s0,51,-..) IS @ generic path outgoing from state sy:

KM , 5o = @ iff
KM 5o =AY iff
KM ,s0 =EoVy iff
K, 50 =B iff
KM, 50 =Aa iff

KM , 8o = @

KM ,s0 =@and KM , 5o =Y

KM ,s0 =@or KM ,so =y

At = (s0,51,...)Such that x M ,m =«
vVt = (s0,51,-..)then KM ,nt =«

—D. ! !!I!

The semantics for Path Formulas is the following where
nt = (so,51,...) iS @ generic path outgoing from state s, and =’
denotes the suffix path (s;,s::1,...):

KM, 7= iff
KM, nE=-a iff
KM, tE=oAp iff
KM, w=oVp iff
KM ,n=Fo iff
KM, nE=Go iff
KM, n=Xo iff
KM, n=alUp iff

KM, 80 =@

KM, 7~ o

KM, n=aoand XM, =
KM, tE=oor KM, k= p
Ji > Osuch that ka7 7' = «
Vi > 0then K , ' = a
XM, =«

Ji > Osuch that x4/ ,n' = and
Vj.(0 < j<i)then xv v/ = o

CTL* subsumes both CTL and LTL

> @in CTL = ¢ in CTL* (e.g., AG(N, = EFT)))
> @inLTL = A¢@ in CTL* (e.g., A(GFT, = GFC()))
> LTLUCTL c CTL* (e.g., E(GFp = GFgq))

CTL*

2

The following Table shows the Computational Complexity of
checking Satisbiability

Logic Complexity

LTL PSpace-Complete
CTL ExpTime-Complete
CTL” 2ExpTime-Complete

|
I

The following Table shows the Computational Complexity of
Model Checking (M.C.)

* Since M.C. has 2 inputs — the model, a7, and the
formula, ¢ — we give two complexity measures.

Logic Complexity w.r.t. |¢| Complexity w.r.t. | o |

LTL PSpace-Complete P (linear)
CTL P-Complete P (linear)
CTL” PSpace-Complete P (linear)

