
First-Order Logic over Active Domain

We consider First-Order Logic (FOL) exactly as used in relational
database queries. This requires to drop functions except for constants.

In particuar we assume to have a countably infinite set of constants �.

Moreover we assume that the interpretation of constants is the identity
function, that is constants are interpreted as themselves.

This allows us to drop also the interpretation of constants from our
interpretations, which now have the form:
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First-Order Logic over Active Domain

We introduce special interpretations based on the active domain, denoted
adom, which is the subset of � whose constants actually appear in the
relations interpreting the predicate symbols. In particular given I we get
the active domain interpretation:
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We call FOL
adom

the variant of FOL where formulas are to be interpreted
over the active domain only: in particular we denote quantifications in
this case as: 9x 2 adom.' and 8x 2 adom.'



Equivalence of FOL and FOL
adom

Theorem
Every closed FOL formula  with no function symbols except constants,
all of which must be present in the active domain, there is a FOL

adom

formula  , such that
I |=  i↵ I |=  .

We show the theorem constructively by define the corresponding formula
 of  .
We proceed by induction on the subformulas of  :

I P(t1, . . . , tn) = P(t1, . . . , tn)

I (y = z) = (y = z)

I ¬' = ¬'
I '1 ^ '2 = '1 ^ '2

I 9x .' = 9x 2 adom.' _ '
fv

_ '1.
where '

fv

and '1 are defined below and are needed to suitably
treat those values which are not in the active domain.
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The formula '
fv

captures the cases in which x = z for some variable z
occurring free in '. Namely:

'
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where

I FV = {z1, . . . zm} are the variables occurring free in  and

I (')x
z

stands for the formula obtained from  by syntactically
replacing variable x with variable z .
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The formula '1 captures the cases in which x = d for some value
d 62 adom. Namely:

'1 = rem
x

(')

where rem
x

(') is inductively defined over the subformulas of ' as follows
(we assume wlog quantified variables are all distinct and di↵erent from
x):

I rem
x

((x = x)) = true

I rem
x

((x = v)) = false

I rem
x

(P(. . . , x , . . .)) = false

I rem
x

(P(. . . , v , . . .)) = P(. . . , v , . . .), if x does not occur

I rem
x

(¬�) = ¬rem
x

(�)

I rem
x

(�1 ^ �2) = rem
x

(�1) ^ rem
x

(�2)

I rem
x

(9y .�) = 9y .rem
x

(�)
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To prove the theorem, we make use of the following the key Lemma.

Lemma
Let  be a (possibly open) formula with no function symbols except
constants, all of which must be present in the active domain, then for all
assignment ↵ of free variables in  :

I,↵ |=  i↵ I,↵ |=  .

Proof. By induction on the depth of nested quantification in  .
Base case: there are no quantification. Then the result is immediate
considering that the extension of predicate is the same in both databases,
and equality atoms mention only constant from the active domain.
Induction on the formula guarantees that the same holds for all formulas
not introducing variables (not’s and and’s).

Continues
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Continuing

Inductive case: we assume that the thesis holds for formulas with k
nested quantifiers, and we shot it holds for those with k + 1.
Let us consider formulas of the form 9x .'. For them
9x .' = 9x 2 adom.' _ '

fv

_ '1

I Assume that I,↵ |= 9x .' by assigning to x a value d 2 adom.
Then with the same assignment for x the formula
9x 2 adom.' _ '

fv

_ '1 is true.

Continues
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Continuing

I Assume that I,↵ |= 9x .' by assigning to x a value d 62 adom, then
we can concentrate on '

fv

_ '1. Suppose that for some other free
variable z 2 FV we have that ↵(z) = d . Then I ,↵[x  d ] |= ' i↵
I ,↵ |= '

fv

. Suppose that for all free variables z 2 FV we have that
↵(z) 6= d . Then we show by induction of ' that I ,↵[x  d ] |= ' i↵
I ,↵ |= '1.

I
I ,↵[x  d ] |= (x = x) i↵ I ,↵ |= rem

x

((x = x)), since

rem

x

((x = x)) = true.

I
I ,↵[x  d ] |= (x = v) i↵ I ,↵ |= rem

x

((x = v)), since

rem

x

((x = v)) = true, notice that v is either a constant or a (free)

variable di↵erent from x .

I
I ,↵[x  d ] |= P(. . . , x , . . .) i↵ I ,↵ |= rem

x

(P(. . . , x , . . .)),
rem

x

(P(. . . , x , . . .)) = false, notice d 62 adom.

I
I ,↵[x  d ] |= P(. . . , v , . . .) i↵ I ,↵ |= rem

x

(P(. . . , v , . . .)), since
rem

x

(P(. . . , v , . . .)) = P(. . . , v , . . .) (recall x does not occur in

P(. . . , v , . . .)).
I

The inductive cases are straightforward by definition of rem

x

(·).

QED
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Proof of the Main Theorem.
The above lemma shows: I,↵ |=  i↵ I,↵ |=  . If  is closed then we
can drop the initial assignment, thus getting

I |=  i↵ I |=  .

Moreover, since the only quantification appearing in  is bounded to
elements in the active domain we get :

I |=  i↵ I |=  .

Hence, the thesis holds.
QED


