CHAPTER ZERO

Useful Facts about Sets.

We assume that the reader already has some familiarity with normal
everyday set-theoretic apparatus. Nonetheless, we give here a brief sum-
mary of facts from set theory we will need ; this will at least serve to establish
the notation. It is suggested that the reader, instead of poring over this
chapter at the outset, simply refer to it if and when issues of a set-theoretic
nature arise in later chapters.

A set is a collection of things, called its members or elements. As usual,
we write “t € 4™ to say that ¢ is a member of A4, and “t ¢ 4 to say that
t is not a member of 4. We write “x = y” to mean that x and y are the
same object. That is, the expression “x” on the left of the equals sign is a
name for the same object as is named by the other expression “y.” If 4 = B,
then for any object ¢ it is automatically true that z e A4 iff t € B. (The
word “iff”” means “if and only if.”’) This is simply because 4 and B are
the same thing. The converse is the principle of extensionality: If 4 and B
are sets such that for every object ¢,

teA iff te B,

then 4 = B.
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A useful operation is that of adjoining one extra object to a set. For a
set A, let A ;t be the set whose members are (i) the members of A, plus
(ii) the (possibly new) member ¢. Here t may or may not already belong
to A, and we have

te A iff A;t=A.

One special set is the empty set (J, which has no members at all. For
any object x there is the singleton set {x} whose only member is x. More
generally, for any finite number x,, ..., x, of objects there is the set
{x1, ..., x,} whose members are exactly those objects. Observe that
{x, y} = {», x}, as both sets have exactly the same members. We have
only used different expressions to denote the set.

This notation will be stretched to cover some simple infinite cases. For
example, {0, 1,2, ...} is the set N of natural numbers, and {..., =2,
—1,0,1,2, ...} is the set Z of all integers.

We write “{x : _x__}” for the set of all objects x such that _x__.
We will take considerable liberty with this notation. For example, {<m, n)
:m < n in N} is the set of all ordered pairs of natural numbers for which
the first component is smaller than the second. And {x € 4 o x__} is
the set of all elements in A such that _x__.

If A is a set all of whose members are also members of B, then 4 is a
subset of B, abbreviated “4 < B.” Note that any set is a subset of itself.
Also, (7 is a subset of every set. (“(J < 4" is “vacuously true,” since the task
of verifying, for every member of (J, that it also belongs to A, requires
doing nothing at all. Or from another point of view, “4 < B” can be false
only if some member of 4 fails to belong to B. If 4 =, this is impossible.)
From the set 4 we can form a new set, the power set P4 of A, whose
members are the subsets of A. Thus

PA={x:x < A}.
For example,
P ={},
F{o) = {2, {2D}}.
The union of A and B, A U B, is the set of all things which are members
of A or B (or both). For example, 4 ; t = A U {t}. Similarly, the inter-
section of A and B, A N B, is the set of all things which are members of

both 4 and B. A and B are disjoint iff their intersection is empty. A collection
of sets is pairwise disjoint iff any two members of the collection are disjoint.
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More generally, consider a set 4 whose members are themselves sets.
The union of 4, {JA4, is the set obtained by dumping all the members of
A into a single set:

U4 = {x : x belongs to some member of A4}.
Similarly,

N4 = {x : x belongs to all members of A}.

For example, if

4 = {0, 1,5}, {1, 6}, {1, 5}},
then
U4 ={0, 1,5, 6},
N4 = {1}.
Two other examples are
A U B = {4, B},
U24 = 4.

In cases where we have a set 4, for each natural number »n, the union of
all these sets, {J{A4, : n € N}, is usually denoted “{),.y4,” or just “{),4,.”

The ordered pair {(x, y) of objects x and y must be defined in such a
way that

x> = {u, v) iff x=u and y=v.
Any definition which has this property will do; the standard one is
<x, 3> = {{x}h {x »})
For ordered triples we define
$x, 9, 2> = X, 7, 2).
More generally we define n-tuples inductively by
{Xyy s Xpgr) = Xy v o5 XDy Xpg1)

for n > 1. It is convenient to define also (x> = x; the above equation then
holds also for n = 1. S is a finite sequence of members of A iff for some
positive integer n, we have S == (x,, ..., x,», where each x; € 4. (Finite
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sequences are often defined to be certain finite functions, but the above
definition is slightly more convenient for us.)
A segment of the finite sequence S = (X, ..., X, is a finite sequence

{Xps Xpg1s - -+ Xme1> Xm)s where 1 <k<m<n

This segment is an initial segment iff k = 1 and it is proper iff it is different
from S.

If <x1, ..., %> = P15 ---,Vur, then it is easy to see that x; = y; for
1 < i < n. (The proof uses induction on n and the basic property of ordered
pairs.) But if <{x;, ..., X,> = {1, ..., Yn), then it does not in general
follow that m = n. After all, every ordered triple is also an ordered pair.
But we claim that m and n can be unequal only if some x; is itself a finite
sequence of y;’s, or the other way around:

Lemma 0A Assume that (X, ..., Xp> = P1s --+> VYms s Vmtt) -
Then x; = ¥y, - -+ Vs

Proof We use induction on m. If m = 1, the conclusion is immediate.
For the inductive step, assume that {x;, ..., Xm, Xpm41) = V15> - - > Vmsks
Vmr4ky- Then the first components of this ordered pair must be equal:
{Xyy ooy Xm> =15 - - - » Vmsry- Now apply the inductive hypothesis. |

For example, suppose that 4 is a set such that no member of A is a finite
sequence of other members. Then if {x;, ..., Xp> = P15 - -5 y,» and each
x; and y; is in A, then by the above lemma m = n. Whereupon we have
x; = y; as well.

From sets A and B we can form the set 4 x B of all pairs {x, y) for
which x € 4 and y € B. A" is the set of all n-tuples of members of 4. For
example, A3 = (4 X A4) X A.

A relation R is a set of ordered pairs. The domain of R, dom R, is the set
of all objects x such that {x, y> € R for some y. The range of R, ran R,
is the set of all objects y such that {x, y> € R for some x. The union of
dom R and ran R is the field of R, fid R.

An n-ary relation on A4 is a subset of A*. If n > 1, it is a relation. But
a l-ary (unary) relation on A is just a subset of 4. A particularly simple
binary relation on A is the equality relation {{x, x> :x € A} on A. For
an n-ary relation R on A4 and subset B of 4, the restriction of R to B is the
intersection R N B™.

A function is a relation F with the property that for each x in dom F
there is only one y such that {x, y> € F. As usual, this unique y is said to be
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the value F(x) which F assumes at x. We say that F maps A4 into B and write

F:A—B

to mean that F is a function, dom F = 4, and ran F < B. If in addition
ran F = B, then F maps A onto B. F is one-to-one iff for each y in ran F
there is only one x such that {x, y) € F. If the pair {x, y> is in dom F,
then we let F(x, y) = F({x, y>). This notation is extended to n-tuples;
F(xy, ..., x) = F({x3, - .., X,D).

An n-ary operation on A is a function mapping A" into 4. For example,
addition is a binary operation on N, whereas the successor operation S
(where S(n) = n + 1) is a unary operation on N. If fis an n-ary operation
on 4, then the restriction of fto a subset B of A is the function g with domain
B™ which agrees with f at each point of B*. Thus

g=/fnN(B" X A).

This g will be an n-ary operation on B iff B is closed under f, in the sense
that f(b,, ..., b,) € B whenever each b, is in B. In this case, g = f n B!,
in agreement with our definition of the restriction of a relation.

A particularly simple unary operation on 4 is the identity function i
on A, given by the equation

ix)=x for xe A.

For a relation R, we define the following:

R is reflexive on A iff {(x, x> € R for every x in A.

R is symmetric iff whenever {x, y)> € R, then also {y, x> € R.

R is transitive iff whenever both <{x, y> € R and <y, z) € R, then also
{x,2z) € R.

R satisfies trichotomy on A iff for every x and y in A, exactly one of the
three possibilities, <x, > € R, x = y, or {y, x> € R, holds.

R is an equivalence relation on A iff R is a binary relation on A which
is reflexive on A4, symmetric, and transitive.

R is an ordering relation on A iff R is transitive and satisfies trichotomy
on A.

For an equivalence relation R on 4 we define, for x € A4, the equivalence
class [x] of x to be {y : (x, y> € R}. The equivalence classes then partition
A. That is, the equivalence classes are subsets of 4 such that each member
of A4 belongs to exactly one equivalence class. For x and y in 4,

[x] =Dl iff <x,y> e R
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At a few points in the book we will use the axiom of choice. But usually
these uses can be eliminated if the theorems in question are restricted to
countable languages. Of the many equivalent statements of the axiom of
choice, Zorn’s lemma is especially useful.

Say that a collection C of sets is a chain iff for any elements x and y of
C,eitherx S yory < x.

Zomm’s Lemma Let 4 be a nonempty set such that for any chain C € 4,
the set {JC is in 4. Then there is some element m € A which is maximal
in the sense that it is not a subset of any other element of A.

The set N of natural numbers is the set {0,1,2, ...}. (It can also be
defined set-theoretically, but we will not do so here.) A set A4 is finite iff
there is some one-to-one function f mapping (for some natural number n)
the set 4 onto {0, 1,...,n — 1}. (We can think of f as “counting” the
members of A4.)

A set A is countable iff there is some function mapping A one-to-one into
N. For example, any finite set is obviously countable. Now consider an in-
finite countable set 4. Then from the given function f mapping A one-to-one
into N, we can extract a function f’ mapping 4 one-to-one onto N. For
some a, € A, f(a,) is the least member of ran f; let f'(a,) = 0. In general
there is a unique a, € 4 such that f(a,) is the (n + 1)st member of ran f;
let f'(a,) = n. Note that A = {ay, a,, ...}. (We can also think of /' as
“counting” the members of A, only now the counting process is infinite.)

Theorem OB Let A4 be a countable set. Then the set of all finite sequences
of members of A is also countable.

Proof The set S of all such finite sequences can be characterized by
the equation

§= ()4,

neN

Since 4 is countable, we have a function f mapping 4 one-to-one into N.

The basic idea is to map S one-to-one into N by assigning to<a,, a,, - - .,
a,)> the number 2/@n+13f@+l . . plam)+l’ where p,, is the (m + 1)st
prime. This suffers from the defect that this assignment might not be well-
defined. For conceivably there could be {ay, @y, - - . , @np =<bo, b1, ..., by,
with a; and b; in A but with m 5 n. But this is not serious; just assign to
each member of S the smallest number obtainable in the above fashion.
This gives us a well-defined map; it is easy to see that it is one-to-one. [ |
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At times we will speak of trees, which can be useful in providing intuitive
pictures of some situations. But our comments on trees will always be in-
formal, as we exclude this concept from the theorems and their proofs,
Accordingly, our discussion here of trees will be informal.

For each tree there is an underlying finite partial ordering. We can draw
a picture of this partial ordering R; if <a, b> € R, then we put @ lower than
b and connect the points by a line. Two typical pictures of tree orderings

are
°

AN N
N

: ../ \.

(Perhaps the word “tree” should be replaced by “root” since our branching
is downward, not upward.) There is always a highest point in the picture,
Furthermore, while branching is permitted below some vertex, the points
above any given vertex must lie along a line.

In addition to this underlying finite partial ordering, a tree also has a
labeling function whose domain is the set of vertices. For example, one
tree, in which the labels are natural numbers, is

4
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5
Cardinal numbers

All infinite sets are big, but some are bigger than others. (For example,
the set of real numbers is bigger than the set of integers.) Cardinal numbers
provide a convenient, although not indispensable, way of talking about
the size of sets.

It is natural to say that two sets 4 and B have the same size iff there is a
function which maps 4 one-to-one onto B. If 4 and B are finite, then this
concept is equivalent to the usual one: If you count the members of A
and the members of B, then you get the same number both times. But it
is applicable even to infinite sets 4 and B, where counting is difficult.
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Formally, then, say that 4 and B are equinumerous (A ~ B) iff there is a
one-to-one function mapping 4 onto B. For example, the set N of natural
numbers and the set Z of integers are equinumerous. It is easy to see that
equinumerosity is reflexive, symmetric, and transitive.

For finite sets we can use natural numbers as measures of size. The
same natural number would be assigned to two finite sets (as measures
of their size) iff the sets were equinumerous. Cardinal numbers are intro-
duced to enable us to generalize this situation to infinite sets.

To each set A we can assign a certain object, the cardinal number (or car-
dinality) of A (card A4), in such a way that two sets are assigned the same
cardinality iff they are equinumerous:

(K) card A = card B iff A~ B.

There are several ways of accomplishing this; the standard one these days
takes card A to be the least ordinal equinumerous with A. (The success of
this definition relies on the axiom of choice.) We will not discuss ordinals
here, since for our purposes it matters very little what card A actually is,
any more than it matters what the number 2 actually is. What matters
most is that (K) holds. It is helpful, however, if for a finite set 4, card A
is the natural number telling how many elements 4 has. Something is a
cardinal number, or simply a cardinal, iff it is card A for some set 4.

(Georg Cantor, who first introduced the concept of cardinal number,
characterized in 1895 the cardinal number of a set M as *“the general concept
which, with the help of our active intelligence, comes from the set M upon
abstraction from the nature of its various elements and from the order of
their being given.”)

Say that A is dominated by B (A < B)iff A is equinumerous with a subset
of B. In other words, 4 < B iff there is a one-to-one function mapping 4
into B. The companion concept for cardinals is

card A < card B iff 4 <B.

(It is easy to see that << is well defined; that is, whether or not » < 1 de-
pends only on the cardinals » and A themselves, and not the choice of sets
having these cardinalities.) Dominance is reflexive and transitive. A set 4
is dominated by N iff 4 is countable. The following is a standard result
in this subject.

Schrider-Bernstein Theorem (a) For any sets A and B, if 4 < B
and B < A4, then A~ B.
(b) For any cardinal numbers » and 4, if »’' << 1 and 1 < %, then x = 4.
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Part (b) is a simple restatement of part (a) in terms of cardinal numbers,
The following theorem, which happens to be equivalent to the axiom of
choice, is stated in the same dual manner.

Theorem 0C (a) For any sets 4 and B, cither A < B or B< 4.
(b) For any cardinal numbers » and A, either % << 1 or A < x.

Thus of any two cardinals, one is smaller than the other. (In fact, any
nonempty set of cardinal numbers contains a smallest member.) The small-
est cardinals are those of finite sets: 0 » 1,2, ... . There is next the small-
est infinite cardinal, card N, which is given the name 8,. Thus we have

0,1,2, ..., 8,8, .. .

where 8, is the smallest cardinal larger than 8,. The cardinality of the
real numbers, card R, is called “2%0. Since R is uncountable, we have
Ny < 2%,

The operations of addition and multiplication, long familiar for finite
cardinals, can be extended to all cardinals. To compute » + 4 we choose
disjoint sets 4 and B of cardinality » and 2, respectively. Then

% + A = card (4 U B).

This is well defined; ie., » + A depends only on % and 2, and not on the
choice of the disjoint sets 4 and B. For multiplication we use

%+ A = card(4 x B).

Clearly these definitions are correct for finite cardinals. The arithmetic of
infinite cardinals is surprisingly simple. The sum or product of two infinite
cardinals is just the larger of them:

Cardinal Arithmetic Theorem For cardinal numbers » and A, if x <A
and A is infinite, then » + 1 = . Furthermore, if % £ 0, then » - 1 = A

In particular, for infinite cardinals »x,
Ry =x.

Theorem 0D For an infinite set A, the set (), 4™+ of all finite sequences
of elements of 4 has cardinality equal to card A.

We already proved this for the case of a countable 4 (see Theorem 0B).
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Proof Each A7+ has cardinality equal to card 4, by the cardinal arith-

metic theorem. So we have the union of R, sets of this size, yielding 8, - card
A = card A points altogether. |

ExAMPLE It follows that the set of algebraic numbers has cardinality &,.
First, we can identify each polynomial (in one variable) over the integers
with the sequence of its coefficients. Then by the theorem there are N,
polynomials. Each polynomial has a finite number of roots. To give an
extravagant upper bound, note that even if each polynomial had N, 1oots,
we would then have N, - 8, — 8, algebraic numbers altogether. Since
there are at least this many, we are done.

Since there are uncountably many (in fact, 2%) real numbers, it follows
that there are uncountably many (in fact, 2%) transcendental numbers.

Throughout the book we will utilize an assortment of standard math-
ematical abbreviations. We have already used “m” to signify the end
of a proof. A sentence “If . .. » then ...” will sometimes be abbreviated
“...=....” We also have “<" for the converse implication. For “if
and only if” we use, in addition to the word «iff,” the symbol “<.”
For the word “therefore” we have the abbreviation “ctr

The notational device that extracts “x#y” as the denial of “x — y
and “x ¢ yp” as the denial of “x ¢ »” will be extended to other cases.
For example, on page 33 we define % F7”; then “Z " is its denial.

s




