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Abstract

UML is the de-facto standard formalism for software design and analysis. To sup-
port the design of large-scale industrial applications, sophisticated CASE tools are
available on the market, that provide a user-friendly environment for editing, stor-
ing, and accessing multiple UML diagrams. It would be highly desirable to equip
such CASE tools with automated reasoning capabilities, such as those studied in Ar-
tificial Intelligence and, in particular, in Knowledge Representation and Reasoning.
Such capabilities would allow to automatically detect relevant formal properties of
UML diagrams, such as inconsistencies or redundancies. With regard to this issue,
we consider UML class diagrams, which are one of the most important components
of UML, and we address the problem of reasoning on such diagrams. We resort
to several results developed in the field of Knowledge Representation and Reason-
ing, regarding Description Logics (DLs), a family of logics that admit decidable
reasoning procedures. Our first contribution is to show that reasoning on UML
class diagrams is EXPTIME-hard, even under restrictive assumptions; we prove
this result by showing a polynomial reduction from reasoning in DLs. The second
contribution consists in establishing EXPTIME-membership of reasoning on UML
class diagrams, provided that the use of arbitrary OCL (first-order) constraints
is disallowed. We get this result by using DLRifd , a very expressive EXPTIME-
decidable DL that has been developed to capture typical features of conceptual and
object-oriented data models. The last contribution has a more practical flavor, and
consists in a polynomial encoding of UML class diagrams in the DL ALCQI, which
essentially is the most expressive DL supported by current state-of-the-art DL-based
reasoning systems. Though less expressive than DLRifd , the DL ALCQI preserves
enough semantics to keep reasoning about UML class diagrams sound and complete.
Exploiting such an encoding, one can use current DL-based reasoning systems as
core reasoning engines for a next generation of CASE tools, that are equipped with
reasoning capabilities on UML class diagrams.
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1 Introduction

UML (Unified Modeling Language) is the de-facto standard formalism for
the analysis and design of software. One of the most important components
of UML are class diagrams, which model the information on the domain of
interest in terms of objects organized in classes and relationships between
them. 1 The use of UML in industrial-scale software applications brings about
class diagrams that are large and complex to design, analyze, and maintain.
To simplify these tasks, sophisticated CASE tools are commonly adopted,
e.g., Rational Rose 2 , Together 3 , Poseidon 4 , ArgoUML 5 (see also the OMG
home page 6 ). Such tools support the designer with a user-friendly graphical
environment for editing, storing, and accessing multiple UML class diagrams.
However, the expressiveness of the UML constructs may lead to implicit con-
sequences that can go undetected by the designer in complex diagrams, and
cause various forms of inconsistencies or redundancies in the diagram itself.
This may result in a degradation of the quality of the design and/or increased
development times and costs. If the diagrams were used simply for documen-
tation purposes, then the problem could not be that severe; if, on the other
hand, they are used as part of a model-driven approach to development (see,
e.g., OMG’s Model-Driven Architecture 7 ), then the quality of the models can
influence the quality of the implemented system (especially, when a code gen-
erator is involved, or when one uses models to generate test cases). Hence, it
would be highly desirable to equip CASE tools with capabilities to automat-
ically detect relevant formal properties of UML class diagrams, such as the
mentioned inconsistencies and redundancies.

Several works propose to describe UML class diagrams using various kinds of
formal systems [2–6]. Using such formal systems, one could potentially reason
on UML class diagrams, and formally prove properties of interest through in-
ference, and hence help the designer in understanding the hidden implications
of his choices when building a class diagram. However, in spite of these works,
foundational questions remain open: how hard is it to reason on UML class
diagrams from the computational complexity point of view? Is there a formal-

1 In this paper we deal with UML class diagrams for the conceptual perspective, as
opposed to the implementation perspective, see, e.g., [1].
2 http://www.rational.com/products/rose/
3 http://www.togethersoft.com/
4 http://www.gentleware.com/
5 http://argouml.tigris.org/
6 http://www.omg.org/
7 http://www.omg.org/mda/
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ism equipped with sound and complete reasoning services that captures UML
class diagrams and matches their intrinsic complexity?

In this paper we address such questions by resorting to results developed
through the years in the Knowledge Representation and Reasoning community
on Description Logics (DLs) [7]. These are logics specifically designed for the
conceptual representation of an application domain in terms of classes and
relationships between classes that admit decidable reasoning.

Our first contribution in this paper is to show that reasoning on UML class di-
agrams is EXPTIME-hard even under fairly restrictive assumptions, namely:
only binary associations, only minimal multiplicity constraints, generaliza-
tions (between classes and associations) with disjointness and completeness
constraints. We get this result by exhibiting a polynomial reduction from rea-
soning in the basic DL ALC 8 [7], which is EXPTIME-complete. In particular
we show that every ALC knowledge base can be expressed as a UML class di-
agram preserving soundness and completeness of reasoning. This possibility is
quite surprising, since UML class diagrams apparently have very limited means
to express negative and disjunctive information, namely disjointness and cov-
ering constraints in generalization hierarchies. Instead ALC is equipped with
unrestricted negation and disjunction; that is, it is able to treat negative in-
formation in the same way as positive one, and to reason by cases to fully take
into account disjunctive information.

Our second contribution is to establish EXPTIME-membership of reasoning
on UML class diagrams, allowing for covering and disjointness constraints
on generalization hierarchies but disallowing the use of arbitrary constraints
expressed in the Object Constraint Language (OCL) [8]. OCL constraints
are essentially full first order logic formulas, hence they would make reasoning
undecidable. We get this result by using one of the most expressive EXPTIME-
decidable DLs studied so far, namely DLRifd [9,10]. This DL is equipped
with means to represent n-ary relations, identification constraints (i.e., keys),
and functional dependency constraints on components of n-ary relations. This
logic was developed with the aim of capturing conceptual and object-oriented
data models, and it is the final result of a series of studies on DLs with such
capabilities [11–17]. The maturity of these studies is testified in the present
paper by the fact that we are able to fully capture every UML class diagram as
a DLRifd knowledge base: the DLRifd knowledge base is such that its models
are exactly the possible instantiations of the UML class diagram (i.e., object
configurations that “conform” to the class diagram).

Our third contribution is more practically oriented. Indeed the ability of be-
ing able to capture UML class diagrams using a DL suggests that we can use

8 In this paper when we mention reasoning in a DL, we always intend reasoning
over a knowledge base expressed in that DL.
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DL-based systems to reason on UML class diagrams. However current state-of-
the-art DL-based reasoning systems [18,19] are not able to deal with n-ary re-
lations, identification constraints, or functional dependency constraints. These
constructs are needed to fully capture in DLRifd the semantics of UML class
diagrams. However, due to a specific property of DLRifd models, namely the
tree model property, we can get rid of such constructs while preserving sound
and complete reasoning [9]. Exploiting this property, we propose a (polyno-
mial) encoding of UML class diagrams in a simpler DL, called ALCQI [7],
which is still EXPTIME-complete, but lacks the features above that are prob-
lematic from an implementation point of view. Such a logic is essentially the
most expressive DL that the current DL-based systems can support. The en-
coding in ALCQI, while not preserving entirely the semantics of UML class
diagrams, preserves enough of it to keep reasoning sound and complete. Using
this encoding we were able to validate, on industrial scale examples (namely
the UML class diagrams of the Common Information Model 9 , the feasibility
of the idea of using DL-based systems as core inference engines for reasoning
on UML class diagrams.

Our work shows that DLs are a very promising technology for implementing
core reasoning engines for next generation CASE tools that are equipped with
advanced reasoning capabilities. This is a very interesting example of results
and technology developed within Artificial Intelligence that can have a wide
spread approach in main stream industrial software.

The rest of the paper is organized as follows. In Section 2, we briefly dis-
cuss UML class diagrams giving a natural formalization in first-order logic.
In Section 3 we discuss various forms of reasoning on UML class diagrams
and show examples of how they can be usefully exploited in order to detect
interesting properties of the diagram. In Section 4 we give the basic notions
on DLs that we use later on. In Section 5 we present our EXPTIME-hardness
result for reasoning on UML class diagrams, by showing a polynomial reduc-
tion from reasoning in the EXPTIME-complete DL ALC. In Section 6 we show
how UML class diagrams not including general OCL constraints, but including
covering and disjointness constraints on generalization hierarchies, can be fully
captured in the EXPTIME-complete DL DLRifd , thus giving an EXPTIME
upper bound for reasoning on UML class diagrams. In Section 7 we show how
UML class diagrams can be expressed in the simpler DL ALCQI, preserving
enough semantics to keep reasoning on them sound and complete. In Section 8
we discuss our experience in using state-of-the art DL-based reasoning systems
for reasoning on the UML class diagrams of the Common Information Model.
In Section 9 we briefly discuss related work. Finally, in Section 10, we draw
some conclusions.

9 http://www.dmtf.org/standards/standard_cim.php/
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Phone

number[1..*]: String

brand: String

lastDialed(): String

callLength(String): Int

class name

attributes

operations

Fig. 1. Class of Example 2.1

2 UML class diagrams

UML class diagrams allow for modeling, in a declarative way, the static struc-
ture of an application domain, in terms of concepts and relations between
them. We concentrate on UML class diagrams for the conceptual perspec-
tive [8,1]. In particular, we do not deal with those features that are relevant
for the implementation perspective, such as public, protected, and private quali-
fiers for operations and attributes. We describe the semantics of each construct
of UML class diagrams in terms of first order logic (FOL). In the following,
we call a model of the set of FOL formulas corresponding to the constructs in
an UML class diagram an instantiation of the diagram.

2.1 Classes

A class in a UML class diagram denotes a set of objects with common features.
A class is graphically rendered as a rectangle divided into three parts (see
e.g., Figure 1). The first part contains the name of the class, which has to
be unique in the whole diagram. The second part contains the attributes of
the class, each denoted by a name, possibly followed by the multiplicity, and
with an associated type 10 , for the attribute values. The third part contains
the operations of the class, i.e., the operations associated to the objects of the
class. Note that both the second and the third part are optional. Formally, a
class C corresponds to a FOL unary predicate C.

Example 2.1 Figure 1 models the class phone, characterized by the attributes
number and brand, both of type String, and by the operations lastDialed(),
which returns the last number called, and lengthCall(String), which returns
the duration time of the call given as input. ¤

An attribute a of type T for a class C associates to each instance of C a set of
instances of T . Attributes are unique within a class, but two classes may have
two attributes with the same name, possibly of different types. An optional
multiplicity [i..j] for a specifies that a associates to each instance of C at least

10 For simplicity, we do not distinguish between classes, i.e., collection of objects,
and types, i.e., collections of values, such as integers, reals, . . . .
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i and most j instances of T . When there is no upper bound on the multiplicity,
the symbol ∗ is used for j. When the multiplicity is missing, [1..1] is assumed,
i.e., the attribute is mandatory and single-valued. For example, the attribute
number[1..*]: String in Figure 1 means that each instance of the class has at
least one phone number, and possibly more, and that each phone number is an
instance of String. Formally, an attribute a of type T for class C corresponds
to a binary predicate a for which the following FOL assertion holds:

∀x, y. (C(x) ∧ a(x, y)) ⊃ T (y)

i.e., for each instance x of class C, an object y related to x by a is an instance
of T . The multiplicity [i..j] associated to the attribute a can be expressed by

∀x. C(x) ⊃ (i ≤ ]{y | a(x, y)} ≤ j)

where (i ≤ ]{y | a(x, y)} ≤ j) is an abbreviation for the FOL formula with
free variable x expressing that there are at least i and at most j different y’s
such that a(x, y) holds.

An operation of a class is a function from the objects of the class to which
the operation is associated, and possibly additional parameters, to objects or
values. An operation definition for a class C has the form

f(P1, . . . , Pm) : R

where f is the name of the operation, P1, . . . , Pm are the types of the m
parameters, and R is the type of the result. 11 Observe that class diagrams do
not focus on the actual definition of the function, and what is represented is
the signature (i.e., the name of the function and the number and the types of
parameters, where the object of invocation is an implicit parameter) and the
return type of the function. Preconditions and postconditions, invariants and
more generally the behavior of the function can then be expressed using OCL
constraints as annotations (see Section 2.4).

Formally, such an operation corresponds to an (1 + m + 1)-ary predicate
fP1,...,Pm , in which the first argument represents the object of invocation, the
next m arguments represent the additional parameters, and the last argument
represents the result. Observe that the name of the predicate depends on the
whole signature, i.e., it includes the types of the parameters.

11 Observe that a function returning multiple results can be represented by a func-
tion returning a single tuple of results, i.e., a complex value.
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C1

ml..mu

A

nl..nu
C2

Fig. 2. Binary association in UML

C1

A

· · ·

C2

Cn

Fig. 3. n-ary association in UML

The predicate fP1,...,Pm (in the following referred to simply as f , to improve
readability) has to satisfy the following FOL assertions:

∀x, p1, . . . , pm, r. f(x, p1, . . . , pm, r) ⊃ ∧m
i=1 Pi(pi)

∀x, p1, . . . , pm, r, r′. f(x, p1, . . . , pm, r) ∧ f(x, p1, . . . , pm, r′) ⊃ r = r′

∀x, p1, . . . , pm, r. C(x) ∧ f(x, p1, . . . , pm, r) ⊃ R(r)

The first assertion imposes the correct typing for the parameters, which, ob-
serve, depends only on the name of the operation, and not on the class to which
the operation belongs (in fact, an operation may belong to several classes).
The next assertion imposes that invoking the operation on a given object with
given parameters determines in a unique way the return value (i.e., the rela-
tion corresponding to the operation is in fact a function from the invocation
object and the parameters to the result). The last assertion imposes the cor-
rect type of the result, depending on the class (and the parameters) to which
the operation is applied.

UML allows for the overloading of operations, i.e., it allows for two or more
functions, possibly in the same class, that have the same name but different
signatures. Overriding occurs when two operations have the same signature,
but behave in different ways. In UML class diagrams for the conceptual per-
spective, where the bodies of operations are not specified in the diagram, over-
riding may only show up as a restriction on the type of the result. Observe that
the above formalization allows one to have operations with the same name or
even with the same name and the same signature in two different classes, and
correctly captures overloading and overriding.

2.2 Associations and aggregations

An association in UML is a relation between the instances of two or more
classes. Names of associations (as names of classes) are unique in a UML class
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C1

ml..mu

r1

A

r2

nl..nu
C2

Fig. 4. Binary association with association class in UML

C1

r1

r2

C2

A

rn

. . .

Cn

Fig. 5. n-ary association with association class in UML

diagram. A binary association A between two classes C1 and C2 is graphically
rendered as in Figure 2. The multiplicity n`..nu on the binary association
specifies that each instance of the class C1 can participate at least n` times
and at most nu times to relation A; m`..mu has an analogous meaning for the
class C2. When the multiplicity is omitted, it is intended to be 0..∗. Observe
that an association can also relate several classes C1, C2, . . . , Cn, as depicted in
Figure 3. In UML, different from other conceptual modeling formalisms, such
as Entity-Relationship diagrams [20], multiplicities are look-across cardinality
constraints [21]. While for binary relations such constraints appear natural,
for non-binary associations they do not correspond to a property that can be
referred to one of the classes participating in the association. On the one hand,
this makes their presence in non-binary associations awkward from a designer
point of view, and on the other hand they express a constraint that is typically
too weak in practice. Hence, they are seldom used in actual schemas, and we
will not consider them in our formalization.

Often, an association has a related association class that describes properties
of the association, such as attributes, operations, etc. A binary association
A between two classes C1 and C2 with an association class is graphically
rendered as in Figure 4, where the class A is the association class related to
the association, and r1 and r2 are the role names of C1 and C2 respectively,
which specify the role that each class plays within the association A. An
association class can also be added to an n-ary association, as in Figure 5.

Example 2.2 The association in Figure 6 models phone calls originating from
phones: a PhoneCall originates from exactly one Phone, whereas from a Phone
0 or more phone calls can originate. Note that the association Origin is char-
acterized by an attribute place of type String. ¤
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PhoneCall 0..∗
call

Origin

place: String

from

1..1 Phone

Fig. 6. Association of Example 2.2

When the association class is not present, an association A between the in-
stances of classes C1, . . . , Cn, can be formalized as an n-ary predicate A that
satisfies the following FOL assertion:

∀x1, . . . , xn. A(x1, . . . , xn) ⊃ C1(x1) ∧ . . . ∧ Cn(xn)

An association A between n classes C1, . . . , Cn that has a related association
class is represented by a unary predicate A and n binary predicates r1, . . . , rn,
one for each role name 12 , for which the following FOL assertions hold:

∀x, y. A(x) ∧ ri(x, y) ⊃ Ci(y), for i = 1, . . . , n

∀x. A(x) ⊃ ∃y. ri(x, y), for i = 1, . . . , n

∀x, y, y′. A(x) ∧ ri(x, y) ∧ ri(x, y′) ⊃ y = y′, for i = 1, . . . , n

∀y1, . . . , yn, x, x′. A(x) ∧ A(x′) ∧ ∧n
i=1(ri(x, yi) ∧ ri(x

′, yi)) ⊃ x = x′

The first assertion types the association; the second and the third ones specify,
respectively, that there exists at least one and at most one element playing
role ri for each component of A; the fourth one imposes that there are no
two instances of A that represent the same tuple, which is required for the
association class to faithfully represent the relation.

Observe that the formalization for associations differs from the one for at-
tributes, since associations are unique in the diagram, while attributes, being
local to classes, are not.

For binary associations without association class (see Figure 2), multiplicities
are formalized by the FOL assertions

∀x. C1(x) ⊃ (n` ≤ ]{y | A(x, y)} ≤ nu)

∀y. C2(y) ⊃ (m` ≤ ]{x | A(x, y)} ≤ mu)

where we have abbreviated FOL formulas expressing cardinality restrictions
as before. For binary associations with association class (see Figure 4) the

12 These binary relations may have the name of the roles of the association, if avail-
able in the UML diagram, or an arbitrary name if role names are not available. In
any case, we allow for using the same role name in different associations.
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C1

ml..mu nl..nu

G
C2

Fig. 7. Aggregation in UML

1..1

reference

1..∗PhoneBill PhoneCall

Fig. 8. Aggregation of Example 2.3

C1 C2 . . . Cn

C

Fig. 9. A class hierarchy in UML

formalization of multiplicities is analogous:

∀y1. C1(y1) ⊃ (n` ≤ ]{x | A(x) ∧ r1(x, y1)} ≤ nu)

∀y2. C2(y2) ⊃ (m` ≤ ]{x | A(x) ∧ r2(x, y2)} ≤ mu)

A particular kind of binary associations are aggregations, which play an impor-
tant role in UML class diagrams. An aggregation is a binary relation between
the instances of two classes, denoting a part-whole relationship, i.e., a relation-
ship that specifies that each instance of a class (the containing class) contains
a set of instances of another class (the contained class). Aggregations have no
associated class. An aggregation is graphically rendered as shown in Figure 7,
where the diamond indicates the containing class. The aggregation of Figure 7
is represented by a binary predicate G for which the following FOL assertion
holds:

∀x, y. G(x, y) ⊃ C1(x) ∧ C2(y)

where we use the convention that the first argument of the predicate is the
containing class. Multiplicities are treated as for binary associations.

Example 2.3 The aggregation in Figure 8 models phone bills containing
phone calls: a PhoneCall is contained in one and only one PhoneBill, while
a PhoneBill contains at least one PhoneCall. ¤

2.3 Generalization and hierarchies

In UML one can use a generalization between a parent class and a child class
to specify that each instance of the child class is also an instance of the parent
class. Hence, the instances of the child class inherit the properties of the parent
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Phone

CellPhone FixedPhone

{complete, disjoint}

Fig. 10. Class hierarchy of Example 2.4

class, but typically they satisfy additional properties that in general do not
hold for the parent class. Several generalizations can be grouped together
to form a class hierarchy, as shown in Figure 9. Disjointness and covering
constraints can also be enforced on a class hierarchy (graphically, by adding
suitable labels).

Example 2.4 Figure 10 shows a class hierarchy among the parent class Phone
and the child classes CellPhone and FixedPhone. In particular, it models the
facts that both cell and fixed phones are phones, that no other kind of phones
exist and that no phone is at the same time both fixed and cell. Note that, as
shown in Figure 12, MobileCalls originate only from CellPhones. ¤

Observe that UML allows for inheritance among association classes, which
are treated exactly as all other classes, and for multiple inheritance between
classes (including association classes, see Figure 12).

An UML class C generalizing a class C1 can be formally captured by means
of the FOL assertion

∀x. C1(x) ⊃ C(x)

Note that each attribute or operation of C, and each association involving C
is correctly inherited by C1.

A class hierarchy as the one in Figure 9 is formally captured by means of the
FOL assertions

∀x. Ci(x) ⊃ C(x), for i = 1, . . . , n

Disjointness among C1, . . . , Cn is expressed by the FOL assertions

∀x. Ci(x) ⊃ ∧n
j=i+1 ¬Cj(x), for i = 1, . . . , n− 1

Observe that disjointness of classes is a form of negative information.

The covering constraint expressing that each instance of C is an instance of
at least one of C1, . . . , Cn is expressed by

∀x. C(x) ⊃ ∨n
i=1 Ci(x)

11



C1

C

C2 C3

C12

Fig. 11. A class hierarchy with most-specific-class assumption

Sometimes, in UML class diagrams, it is assumed that all classes not in the
same hierarchy are a priori disjoint. Here we do not force this assumption; in-
stead we allow two classes to have common instances. When needed, disjoint-
ness can be enforced by means of explicit disjointness constraints. Similarly,
we do not assume that objects in a hierarchy must belong to a single most
specific class. Hence, two classes in a hierarchy may have common instances,
even when they do not have a common subclass. Again, when needed, suit-
able covering and disjointness assertions that express the most specific class
assumption can be added to a class diagram.

For example, referring to Figure 11, besides the assertions representing the
hierarchy, the most-specific-class assumption is captured by means of the FOL
assertions

∀x. C1(x) ∧ C2(x) ⊃ C12(x)

∀x. C3(x) ⊃ ¬C1(x)

∀x. C3(x) ⊃ ¬C2(x)

2.4 General constraints

Disjointness and covering constraints are in practice the most commonly used
constraints in UML class diagrams. However, UML allows for other forms of
constraints, specifying class identifiers, functional dependencies for associa-
tions, and, more generally through the use of OCL [8], any form of constraint
expressible in FOL. Note that, due to their expressive power, OCL constraints
could in fact be used to express the semantics of the standard UML class di-
agram constructs. This is an indication that a liberal use of OCL constraints
can actually compromise the understandability of the diagram. Hence, the use
of constraints is typically limited. Also, unrestricted use of OCL constraints
makes reasoning on a class diagram undecidable, since it amounts to full FOL
reasoning. In the following, we will not consider general constraints.

12



1..1

reference

1..* call

0..*

call

0..*

place: String

from

1..1

from

0..*

Phone

CellPhone FixedPhone

Origin

MobileOrigin

MobileCall

PhoneCallPhoneBill

{complete, disjoint}

Fig. 12. UML class diagram of Example 2.5

We conclude the section with an example of a full UML class diagram.

Example 2.5 Figure 12 shows a complete UML class diagram that models
phone calls originating from different kinds of phones, and phone bills they
belong to. 13 The diagram shows that a MobileCall is a particular kind of
PhoneCall and that the Origin of each PhoneCall is one and only one Phone.
Additionally, a Phone can be only of two different kinds: a FixedPhone or a
CellPhone. Mobile calls originate (through the association MobileOrigin) from
cell phones. The association MobileOrigin is contained in the binary association
Origin: hence MobileOrigin inherits the attribute place of association class Ori-
gin. Finally, a PhoneCall is referenced in one and only one PhoneBill, whereas a
PhoneBill contains at least one PhoneCall. In FOL, the diagram is represented
as shown in Figure 13.

Notice that, in the above diagram, one would like to express that each Mo-
bileCall is related via the association Origin only to instances of CellPhone.
Similarly for the other direction of the association. This can be expressed in
FOL as follows:

∀y1, y2, x. MobileCall(y1) ∧ Origin(x) ∧ call(x, y1) ∧ from(x, y2) ⊃ CellPhone(y2)

∀y1, y2, x. CellPhone(y2) ∧ Origin(x) ∧ call(x, y1) ∧ from(x, y2) ⊃ MobileCall(y1)

The association MobileOrigin approximates this, making it explicit in the dia-
gram that MobileCalls and CellPhones are related to each other. ¤

3 Reasoning on UML class diagrams

The design of UML class diagrams modeling complex real world domains is
facilitated by automated CASE tools. Currently, CASE tools support the de-
signer with a user friendly graphical environment and provide powerful means
to access different kinds of repositories that store information associated to
the elements of the developed project. The fact that UML class diagrams can

13 This diagram is based on an example provided with i.com, a prototype design
tool for conceptual modeling with reasoning support [17].
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∀x, y. Origin(x) ∧ place(x, y) ⊃ String(x)
∀x, y. call(x, y) ∧ Origin(x) ⊃ PhoneCall(y)
∀x, y. from(x, y) ∧ Origin(x) ⊃ Phone(y)
∀x. Origin(x) ⊃ ∃y. call(x, y)
∀x. Origin(x) ⊃ ∃y. from(x, y)
∀x, y, y′. Origin(x) ∧ call(x, y) ∧ call(x, y′) ⊃ y = y′

∀x, y, y′. Origin(x) ∧ from(x, y) ∧ from(x, y′) ⊃ y = y′

∀x, x′, y1, y2. Origin(x) ∧ Origin(x′) ∧ call(x, y1) ∧ call(x′, y1) ∧
from(x, y2) ∧ from(x′, y2) ⊃ x = x′

∀y. PhoneCall(y) ⊃ (1 ≤ ]{x | Origin(x) ∧ call(x, y)} ≤ 1)

∀x, y. call(x, y) ∧MobileOrigin(x) ⊃ MobileCall(y)
∀x, y. from(x, y) ∧MobileOrigin(x) ⊃ CellPhone(y)
∀x. MobileOrigin(x) ⊃ ∃y. call(x, y)
∀x. MobileOrigin(x) ⊃ ∃y. from(x, y)
∀x, y, y′. MobileOrigin(x) ∧ call(x, y) ∧ call(x, y′) ⊃ y = y′

∀x, y, y′. MobileOrigin(x) ∧ from(x, y) ∧ from(x, y′) ⊃ y = y′

∀x, x′, y1, y2. MobileOrigin(x) ∧MobileOrigin(x′) ∧ call(x, y1) ∧ call(x′, y1) ∧
from(x, y2) ∧ from(x′, y2) ⊃ x = x′

∀x, y. reference(x, y) ⊃ PhoneBill(x) ∧ PhoneCall(y)

∀x. PhoneCall(x) ⊃ (1 ≤ ]{y | reference(x, y)} ≤ 1)
∀y. PhoneBill(y) ⊃ (1 ≤ ]{x | reference(x, y)})
∀x. MobileCall(x) ⊃ PhoneCall(x)

∀x. MobileOrigin(x) ⊃ Origin(x)

∀x. CellPhone(x) ⊃ Phone(x)
∀x. FixedPhone(x) ⊃ Phone(x)
∀x. CellPhone(x) ⊃ ¬FixedPhone(x)
∀x. Phone(x) ⊃ CellPhone(x) ∨ FixedPhone(x)

Fig. 13. FOL representation of the UML class diagram shown in Figure 12

be re-expressed in FOL allows one in principle to go far beyond such a kind
of support. Indeed, the designer can use the FOL formalization to formally
check relevant properties of class diagrams so as to assess the quality of the
diagram according to objective quality criteria. Typical properties of interest
are the following (see, e.g., [22,23]).

Consistency of the whole class diagram A class diagram is consistent,
if it admits an instantiation, i.e., if its classes can be populated without
violating any of the requirements imposed by the diagram. Formally, this
means that the corresponding set of FOL assertions admits a model in
which at least one class has a nonempty extension. When the diagram is
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not consistent, the definitions altogether are contradictory, since they do
not allow any class to be populated. Observe that the interaction of various
types of constraints may make it very difficult to detect inconsistencies.

Class consistency A class is consistent, if the class diagram admits an in-
stantiation in which the class has a nonempty set of instances. Intuitively,
the class can be populated without violating the requirements imposed by
the class diagram. Formally, the set of FOL assertions corresponding to
the diagram admits a model in which the class has a nonempty extension.
The inconsistency of a class may be due to a design error or due to over-
constraining. In any case, the understandability of the diagram is weakened,
since the class stands for the empty class, and thus, at the very least, it is
inappropriately named. To increase the quality of the diagram, the designer
may remove the inconsistency by relaxing some constraints (possibly by
correcting errors), or by deleting the class, thus removing redundancy and
increasing understandability.

Class subsumption A class C1 subsumes a class C2, if the class diagram
implies that C1 is a generalization of C2. Formally, in every model of the set
of FOL assertions, the extension of C1 is a superset of the extension of C2.
Such a subsumption allows one to deduce that properties for C1 hold also
for C2. This suggests the possible omission of an explicit generalization.
Alternatively, if all instances of the more specific class are not supposed
to be instances of the more general class, then something is wrong with
the diagram, since it is forcing an undesired conclusion. Class subsumption
is also the basis for a classification of all the classes in a diagram. Such a
classification, as in any object-oriented approach, can be exploited in several
ways within the modeling process [24].

Class equivalence Two classes are equivalent if they denote the same set
of instances whenever the requirements imposed by the class diagram are
satisfied: in this case one of them is redundant. Determining equivalence of
two classes allows for their merging, thus reducing the complexity of the dia-
gram. Moreover, knowing about class equivalences avoids misunderstanding
among different users.

Refinement of properties The properties of various classes and associa-
tions may interact to yield stricter multiplicities or typing than those ex-
plicitly specified in the diagram. Detecting such cases allows the designer
for refining the class diagram by making such properties explicit, thus en-
hancing the readability of the diagram.

Implicit consequences More generally, a property is an (implicit) conse-
quence of a class diagram if it holds whenever all requirements imposed by
the diagram are satisfied. Formally, this means that the property is logically
implied by the FOL assertions corresponding to the class diagram, i.e., the
property holds in every model of the assertions. Determining implicit con-
sequences is useful on the one hand to reduce the complexity of the diagram
by removing those parts that implicitly follow from other ones, and on the
other hand it can be used to make properties explicit, thus enhancing its
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place: String
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from
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Phone

CellPhone FixedPhone

Origin

MobileOrigin

MobileCall

PhoneCallPhoneBill

{complete, disjoint}

Fig. 14. UML class diagram of Example 3.1 (modified version of the one in Figure 12)

readability. Note that the above properties can be seen as special cases of
implicit consequences.

We illustrate the above properties on our running example.

Example 3.1 Consider the UML class diagram shown in Figure 12. By rea-
soning on such a diagram, one can deduce that the class MobileCall participates
to association MobileOrigin with multiplicity 0..1. Indeed, Origin is a general-
ization of MobileOrigin, hence every tuple of MobileOrigin is a tuple of Origin as
well; moreover, since every PhoneCall participates exactly once to association
Origin, necessarily every MobileCall participates at most once to association
MobileOrigin, since MobileCall is a subclass of PhoneCall. This is an example
of refinement of a multiplicity.

If, possibly by mistake, we add a generalization to the diagram in Figure 12
that asserts that each CellPhone is a FixedPhone (see Figure 14), we get several
undesirable properties. First, the class CellPhone is inconsistent, i.e., it has no
instances. Indeed, the disjointness constraint asserts that there are no cell
phones that are also fixed phones, and since the empty set is the only set that
can be at the same time disjoint from and contained in the class FixedPhone,
the class CellPhone must have it as extension. Second, since the class Phone is
made up by the union of classes CellPhone and FixedPhone, and since CellPhone
is inconsistent, the classes Phone and FixedPhone are equivalent, hence one
of them is redundant. Finally, since there are no cell phones, there are no
pairs in the association MobileOrigin, and so it is inconsistent too. The class
MobileCall is not inconsistent since it can be populated by instances that do not
participate to association MobileOrigin. Note that, if we added the constraint

∀y1, y2, x. MobileCall(y1) ∧ Origin(x) ∧ call(x, y1) ∧ from(x, y2) ⊃ CellPhone(y2)

discussed in Example 2.5, considering the minimal multiplicity 1 of MobileCall
in Origin, MobileCall would be inconsistent too. ¤

The example above shows that reasoning is required in order to understand
whether the class diagram enjoys required properties. Considering the high
complexity of industrial software, it can be very difficult to verify the proper-
ties of a UML class diagram and to guarantee that they are preserved during
the design of the diagram. Thus, it would be highly desirable to have CASE
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tools equipped with automated reasoning capabilities to support the designer.
One possibility would be to resort to a full FOL theorem prover [25,26]. While
certainly worth exploring, due to the intrinsic undecidability of FOL, such an
approach does not give us completely automated techniques for reasoning on
UML class diagrams (unless suitable termination strategies for a FOL theorem
prover are devised). Here instead we follow a different approach, and we in-
vestigate the intrinsic complexity of reasoning on UML class diagrams, taking
into account restricted forms of constraints. We characterize the complexity
by resorting to DLs [7]. On the one hand, we show that reasoning on UML
class diagrams (that include as constraints only disjointness and covering)
is EXPTIME-hard. On the other hand, we show that EXPTIME-decidable
DLs can fully capture UML class diagrams with restricted forms of FOL con-
straints. This demonstrates that DL reasoning algorithms are ideal candidates
for being used as core reasoning engines in advanced CASE tools with rea-
soning support. In particular, as we will discuss later (see Section 8), the
deductions in the example above can be automatically obtained by DL-based
reasoning systems, possibly wrapped by CASE tools such as [17].

4 Description Logics

Description Logics (DLs) are logics tailored towards representing knowledge
in terms of classes and relationships between classes. Formally they are a
well behaved fragment of first order logic (FOL) equipped with decidable
reasoning tasks. In DLs, the domain of interest is modeled by means of concepts
and relationships, which denote classes of objects and relations, respectively.
Generally speaking, a DL is formed by three basic components:

• a description language, which specifies how to construct complex concept
and relation expressions (also called simply concepts and relations), by start-
ing from a set of atomic symbols and by applying suitable constructors,

• a knowledge specification mechanism, which specifies how to construct a DL
knowledge base, in which properties of concepts and relations are asserted,
and

• a set of automated reasoning tasks provided by the DL.

The set of allowed constructors characterizes the expressive power of the de-
scription language. Various languages have been considered by the DL com-
munity, and numerous works investigate the relationship between expressive
power and computational complexity of reasoning (see [27] for a survey). The
research on these logics has resulted in a number of automated reasoning
systems [28–30], which have been successfully tested in various application
domains (see e.g., [31–33]).
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In this section we briefly review three Description Logics that we will consider
in the rest of the paper, namely DLRifd [9], ALCQI [34] and ALC [7].

4.1 The Description Logic DLRifd

DLRifd is a DL whose distinguishing features, compared to other DLs, are
its ability of representing n-ary relations, functional dependencies on n-ary
relations, and identification constraints on concepts [9,10]. The basic elements
of DLRifd are concepts (unary relations), and n-ary relations. Let A and
P denote respectively atomic concepts and atomic relations (of given arity
between 2 and nmax). DLRifd concepts, denoted by C, and DLRifd relations,
denoted by R, , are built according to the following syntax rules:

C ::= >1 | A | ¬C | C1 u C2 | (≤ k [i]R)

R ::= >n | P | (i/n : C) | ¬̇R | R1 uR2

where i denotes a component of a relation, i.e., an integer between 1 and nmax,
n denotes the arity of a relation, i.e., an integer between 2 and nmax, and k
denotes a non-negative integer. We consider only concepts and relations that
are well-typed, which means that (i) only relations of the same arity n are
combined to form expressions of type R1 u R2 (which inherit the arity n),
and (ii) i ≤ n whenever i denotes a component of a relation of arity n. We
also make use of the following abbreviations: (i) C1 t C2 for ¬(¬C1 u ¬C2);
(ii) C1⇒C2 for ¬C1 t C2; (iii) (≥ k [i]R) for ¬(≤ k−1 [i]R); (iv) ∃[i]R for
(≥ 1 [i]R); (v) ∀[i]R for ¬∃[i]¬R; (vi) R1 t R2 for ¬̇(¬̇R1 u ¬̇R2). Moreover,
we abbreviate (i/n : C) with (i : C) when n is clear from the context.

Let us comment on the constructs of DLRifd . Among the constructs used in
forming concept expressions we find the boolean constructs, namely negation
(¬), conjunction (u), and disjunction (t, an abbreviation), and a general form
of number restrictions. Number restrictions are constraints on the number of
fillers, i.e., the objects that are in a certain relationship with a given object:
for example, the expression (≥ k [i]R) denotes the concept formed by the ob-
jects that participate at least k times to the relation R as the i-th component.
Note that number restrictions are a general form of quantification restrictions:
for instance, the expression ∃[i]R, which abbreviates (≥ 1 [i]R), denotes the
objects that participate at least once to the relation R as i-th component.
As for relation expressions, DLRifd includes conjunction (u), disjunction (t,
an abbreviation), and a limited form of negation (¬̇), which essentially cor-
responds to set difference. Finally, the construct (i/n : C) allows one to select
those n-tuples whose i-th component is an instance of concept C.

As usual in DLs, a DLRifd Knowledge Base (KB) is constituted by a finite
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set of inclusion assertions. In DLRifd , these assertions have one of the forms:

R1 v R2 C1 v C2

with R1 and R2 of the same arity.

Besides inclusion assertions, DLRifd KBs allow for assertions expressing iden-
tification constraints and functional dependencies. An identification assertion
on a concept C has the form:

(id C [i1]R1, . . . , [ih]Rh)

where each Rj is a relation, and each ij denotes one component of Rj. Intu-
itively, such an assertion states that no two different instances of C agree on
the participation to R1, . . . , Rh. More precisely, if a is an instance of C that is
the ij-th component of a tuple tj of Rj, for j ∈ {1, . . . , h}, and b is an instance
of C that is the ij-th component of a tuple sj of Rj, for j ∈ {1, . . . , h}, and
for each j, tj agrees with sj in all components different from ij, then a and b
are the same object.

For example, the identification assertions (id Origin [1]call, [1]from) expresses
that each Origin of a call is uniquely determined by the (phone)-call and by
the phone from which the call was made.

A functional dependency assertion on a relation R has the form:

(fd R i1, . . . , ih → j)

where h ≥ 2, and i1, . . . , ih, j denote components of R. The assertion imposes
that two tuples of R that agree on the components i1, . . . , ih, agree also on
the component j.

For example, the functional dependency assertion (fd callLengthString 1, 2 → 3)
expresses that the first two components of the ternary relation callLengthString

functionally determine the third component.

Note that unary functional dependencies (i.e., functional dependencies with
h = 1) are ruled out in DLRifd , since these lead to undecidability of reason-
ing [9]. Note also that the right hand side of a functional dependency contains
a single element. However, this is not a limitation, because any functional de-
pendency with more than one element in the right hand side can always be
split into several dependencies of the above form.

As usual in DLs, the semantics of DLRifd is specified through the notion of
interpretation. An interpretation I = (∆I , ·I) of aDLRifd KBK is constituted
by an interpretation domain ∆I and an interpretation function ·I that assigns
to each concept C a subset CI of ∆I and to each relation R of arity n a subset

19



>In ⊆ (∆I)n

P I ⊆ >In
(i/n : C)I = {t ∈ >In | t[i] ∈ CI}

(¬̇R)I = >In \RI

(R1 uR2)I = RI
1 ∩RI

2

>I1 = ∆I

AI ⊆ ∆I

(¬C)I = ∆I \ CI

(C1 u C2)I = CI
1 ∩ CI

2

(≤ k [i]R)I = {a ∈ ∆I | ]{t ∈ RI
1 | t[i] = a} ≤ k}

Fig. 15. Semantic rules for DLRifd (P , R, R1, and R2 have arity n)

RI of (∆I)n, such that the conditions in Figure 15 are satisfied. In the figure,
t[i] denotes the i-th component of tuple t, and ]S denotes the cardinality of
the set S. Observe that >1 denotes the interpretation domain, while >n, for
n > 1, does not denote the n-Cartesian product of the domain, but only a
subset of it that covers all relations of arity n. It follows, from this property,
that the “¬” constructor on relations is used to express difference of relations,
rather than complement.

To specify the semantics of a KB we first define when an interpretation satisfies
an assertion as follows:

• An interpretation I satisfies an inclusion assertion R1 v R2 (resp., C1 v C2)
if RI

1 ⊆ RI
2 (resp., CI

1 ⊆ CI
2 ).

• An interpretation I satisfies the assertion (id C [i1]R1, . . . , [ih]Rh) if for all
a, b ∈ CI and for all t1, s1 ∈ RI

1 , . . . , th, sh ∈ RI
h we have that:

a = t1[i1] = · · · = th[ih],

b = s1[i1] = · · · = sh[ih],

tj[i] = sj[i], for j ∈ {1, . . . , h}, and for i 6= ij





implies a = b

• An interpretation I satisfies the assertion (fd R i1, . . . , ih → j) if for all
t, s ∈ RI , we have that:

t[i1] = s[i1], . . . , t[ih] = s[ih] implies t[j] = s[j]

An interpretation that satisfies all assertions in a KB K is called a model of
K.

We say that a KB K is satisfiable if there exists a model of K. A concept C is
satisfiable w.r.t. KB K if there is a model I of K such that CI is nonempty.
An assertion α is logically implied by K if all models of K satisfy α. It can
be shown that all these reasoning tasks, namely KB satisfiability, concept
satisfiability w.r.t. a KB, and logical implication, are mutually reducible (in
polynomial time).
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One of the distinguishing features of DLs is that they have decidable reasoning
tasks, i.e., they admit (terminating) reasoning procedures that are sound and
complete with respect to the semantics. In particular, reasoning (i.e., KB
satisfiability, concept satisfiability w.r.t. a KB, and logical implication) in
DLRifd is EXPTIME-complete [10,9].

DLRifd (as most DLs, including ALCQI – see later) has the tree-model prop-
erty [10,9]. This means that, if a DLRifd KB admits a model, it also admits
a model which has the structure of a tree, where nodes are either objects or
(reified) tuples, and edges connect tuples to their components. Observe that in
tree-like structures non-unary identification assertions and (non-unary) func-
tional dependency assertions are trivially satisfied, since there cannot be two
tuples agreeing on more than one component [9]. As a consequence we have
that a DLRifd KB is satisfiable if and only the same knowledge base without
non-unary identification and functional dependency assertions is satisfiable.
Hence, logical implication of inclusion assertions can be verified without con-
sidering identification and functional dependency assertions at all. This leads
us to consider simpler logics in which such assertions are not present.

4.2 The Description Logics ALCQI and ALC

ALCQI [35,36] is a rich DL in which knowledge is represented in terms of
concepts (classes) and roles (binary relations). It can be seen as a fragment
of DLRifd where relations are restricted to be binary and KBs are restricted
to be a finite set of inclusion assertions on concepts only (no inclusion asser-
tions on relations, and no identification assertions, and obviously no functional
dependency assertions since they require a relation of arity at least three).

Let A and P denote respectively atomic concepts and atomic roles (binary
relations). ALCQI concepts, denoted by C, and ALCQI roles, denoted by R,
are built according to the following syntax rules:

C ::= A | ¬C | C1 u C2 | (≤ k R.C)

R ::= P | P−

Additionally, we make use of the abbreviations below: (i) ⊥ for Au¬A (where
A is any atomic concept); (ii) > for ¬⊥; (iii) C1 tC2 for ¬(¬C1 u ¬C2); (iv)
C1⇒C2 for ¬C1 t C2; (v) (≥ k R.C) for ¬(≤ k − 1 R.C); (vi) ∃R.C for
(≥ 1 R.C); (vii) ∀R.C for ¬∃R.¬C.

An ALCQI KB is constituted by a finite set of inclusion assertions of the
form C1 v C2, with C1 and C2 arbitrary concept expressions.
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Notably ALCQI includes inverse roles P−, which allow for talking about the
inverse of a relation, and qualified number restrictions, which are the most
general form of cardinality constraints on roles. The semantics of ALCQI
constructs and KBs is analogous to that of DLRifd . In particular the semantic
rules for inverse roles and qualified number restrictions are as follows:

(P−)I = {(a, a′) ∈ ∆I ×∆I | (a′, a) ∈ P I}
(≤ k R.C)I = {a ∈ ∆I | ]{a′ ∈ ∆I | (a, a′) ∈ RI ∧ a′ ∈ CI} ≤ k}

We can define KB satisfiability, concept satisfiability w.r.t. a KB, and logi-
cal implication, as for DLRifd . Moreover, as for DLRifd , reasoning (i.e., KB
satisfiability, concept satisfiability w.r.t. a KB, and logical implication) in a
ALCQI KB is EXPTIME-complete [35,36].

Finally we turn to ALC [37]. This is a simpler DL, obtained from ALCQI by
dropping inverse roles and restricting qualified number restrictions to existen-
tial restrictions only. The syntax of ALC concept is thus as follows:

C ::= A | ¬C | C1 u C2 | ∃P .C

We also introduce the standard abbreviations:

C1 t C2 for ¬(¬C1 u ¬C2)

∀P .C for ¬∃P .¬C

The semantics of the existential restrictions is

(∃P .C)I = {a ∈ ∆I | ∃b.(a, b) ∈ P I ∧ b ∈ CI}.

The semantics of the other constructs is as inALCQI. As forALCQI, anALC
KB is a finite set of inclusion assertions on ALC concepts. In spite of its sim-
plicity, reasoning in ALC KBs is EXPTIME-complete, as for ALCQI [38,39].

5 Hardness of reasoning on UML class diagrams

The reasoning tasks necessary for checking the various properties discussed in
Section 3 are mutually reducible to each other. As an example, we show the
mutual reducibility between class consistency and class subsumption.

Given a class diagram with classes C1 and C2, if we want to check whether
C1 subsumes C2, then we can add to the class diagram the part depicted
in Figure 16, where O, C, and C1 are new classes, and check whether C is
inconsistent. Indeed, if C1 subsumes C2, there can be no object that is both in
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O

{disjoint}

C1 C1 C2

C

Fig. 16. Reduction from class subsumption to class consistency

O

{disjoint}

C1 C1 C

C∅

Fig. 17. Reduction from class consistency to class subsumption

C1, hence not in C1, and in C2, and so C is inconsistent. Conversely, if C1 does
not subsume C2, this means that there is a model I of the (original) diagram
with an object o not in C1 but in C2. We can take the extension of C1 in I to
include o. Hence C has a nonempty extension in I and is consistent.

Given a class diagram with a class C, if we want to check whether C is incon-
sistent, then we can add to the class diagram the part depicted in Figure 17,
where O, C1, C1, and C∅ are new classes, and check whether C∅ subsumes C.
Indeed, since C1 and C1 are disjoint, C∅ denotes the empty class, and so C is
inconsistent if and only if it is subsumed by C∅.

Hence in the following, without loss of generality, we focus on class consistency
only. Specifically, we show that class consistency in UML class diagrams is
EXPTIME-hard, even when we use only binary associations, the only kind of
multiplicities are of the form 0..∗ and 1..∗, and the only type of constraints
are disjointness and covering constraints. We prove the claim by a reduction
from concept satisfiability in ALC KBs, which is EXPTIME-hard [38,39]. We
proceed in two steps:

(1) First, we show that we can restrict the attention to a syntactically re-
stricted form of ALC called ALC− below.

(2) Then, we describe a reduction from atomic concept satisfiability in ALC−
KBs to class consistency in UML class diagrams.

In the following, we call primitive an inclusion assertion of the form A v C,
where A is an atomic concept and C is an arbitrary concept.
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The DL ALC− is obtained from ALC by dropping intersection and allowing
only for complex concepts built with at most one construct of ALC, i.e.,

C ::= A | ¬A | A1 t A2 | ∃P .A | ∀P .A

where A denotes an atomic concept and P denotes an atomic role. An ALC−
KB is a finite set of primitive ALC− inclusion assertions, i.e., inclusion asser-
tions of the form A v C where C is an ALC− concept.

By exploiting a result in [40] we can reduce concept satisfiability in ALC KBs
to atomic concept satisfiability in ALC− KBs.

Lemma 5.1 Concept satisfiability w.r.t. an ALC KB can be linearly reduced
to atomic concept satisfiability w.r.t. a primitive ALC KB.

Proof. Let K be an ALC KB and C an ALC concept. By a result in [40],
C is satisfiable w.r.t. K if and only if AT u C is satisfiable w.r.t. the KB K1

consisting of the single assertion

AT v u
C1vC2∈K

(¬C1 t C2) u u
1≤i≤n

∀Pi.AT

where AT is a new atomic concept and P1, . . . , Pn are all atomic roles appearing
in K and C.

Then, in order to reduce the problem to atomic concept satisfiability, we in-
troduce a new atomic concept AC , and check its satisfiability w.r.t. K2 =
K1∪{AC v AT uC}. Indeed, if K1 admits a model I such that (AT uC)I 6= ∅,
then by extending I so that AI

C = (AT u C)I , we get a model of K2 in which
AI

C 6= ∅. Conversely, every model of K2 with AI
C 6= ∅ is also a model of K1

with (AT u C)I 6= ∅.

Below we assume, without loss of generality, that primitive ALC KBs are in
negation normal form. Indeed, every primitive ALC KB can be rewritten in
negation normal form in linear time.

Given a primitive ALC KB K (in negation normal form), we construct a
primitive ALC− KB K′ by recursively replacing each ALC assertion in K that
is not already a (primitive) ALC− assertion as follows:

(1) A v C1 u C2 is replaced by A v C1 and A v C2;
(2) A v C1 t C2 is replaced by A v A1 t A2, A1 v C1 and A2 v C2, where

A1 and A2 are new atomic concepts;
(3) A v ∀P .C is replaced by A v ∀P .A1 and A1 v C, where A1 is a new

atomic concept;
(4) A v ∃P .C is replaced by A v ∃P .A1 and A1 v C, where A1 is a new

atomic concept.

24



Notice that the number of such replacements is finite (in fact linear), since for
each occurrence of an ALC construct in K at most one replacement is done.

Lemma 5.2 Given a primitive ALC KB K, the size of the (primitive) ALC−
KB K′ obtained as above is linear in the size of K.

Proof. By construction.

Lemma 5.3 An atomic concept A0 is satisfiable w.r.t. a primitive ALC KB
K if and only if A0 is satisfiable w.r.t. the (primitive) ALC− KB K′ obtained
as above.

Proof. We show that A0 is satisfiable w.r.t. K if and only if it is satisfiable
w.r.t. the KB obtained after n replacements, for each n > 0. We proceed by
induction on n. Let Ki be the KB obtained from K after i replacements.

Base case: K0 = K (obvious).

Inductive case: By inductive hypothesis, we have that A0 is satisfiable w.r.t.
K if and only if A0 is satisfiable w.r.t. Kn. We prove that, given a model I
of Kn with AI

0 6= ∅ we can construct a model J of Kn+1 with AJ
0 6= ∅, and

conversely, that every model J of Kn+1 with AJ
0 6= ∅ is also a model of Kn.

(1) If the next step to be applied is the replacement of A v C1 u C2 with
A v C1 and A v C2, then:

Kn+1 = Kn ∪ {A v C1, A v C2} \ {A v C1 u C2}

In this case, the statement is obvious, since {A v C1 u C2} logically
implies {A v C1, A v C2} and vice-versa. Therefore Kn+1 and Kn have
the same models.

(2) If the next step consists in the replacement of A v C1tC2 by A v A1tA2,
A1 v C1 and A2 v C2, where A1 and A2 are new atomic concepts, we
get:

Kn+1 = Kn ∪ {A v A1 t A2, A1 v C1, A2 v C2} \ {A v C1 t C2}

“⇐” Let I be a model of Kn with AI
0 6= ∅, let J coincide with I on

all atomic concepts and roles in Kn, and additionally let AJ
1 = CI

1 and
AJ

2 = CI
2 . Since I satisfies A v C1 t C2, we have by construction that

J satisfies A v A1 t A2, A1 v C1 and A2 v C2, and hence is a model of
Kn+1 with AJ

0 6= ∅.
“⇒” Let J be a model of Kn+1 with AJ

0 6= ∅. Since it satisfies A v
A1 t A2, for each instance a ∈ AJ , we have a ∈ AJ

1 or a ∈ AJ
2 . In the

first case, by A1 v C1, we get a ∈ CJ
1 ; in the second case, by A2 v C2,

we get a ∈ CJ
2 . Therefore, J satisfies A v C1 tC2, and hence is a model
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of Kn as well.
(3) If the next step to be applied is to replace A v ∀P .C by A v ∀P .A1 and

A1 v C, where A1 is a new atomic concept, we have:

Kn+1 = Kn ∪ {A v ∀P .A1, A1 v C} \ {A v ∀P .C}

“⇐” Let I be a model of Kn with AI
0 6= ∅, let J coincide with I on all

atomic concepts and roles in Kn, and additionally let AJ
1 = CI . Since I

satisfies A v ∀P .C, we have by construction that J satisfies A v ∀P .A1

and A1 v C, and hence is a model of Kn+1 with AJ
0 6= ∅.

“⇒” Let J be a model of Kn+1 with AJ
0 6= ∅. Since it satisfies A v

∀P .A1, for each instance a ∈ AJ , if a is connected via role P to an
instance a′, then a′ ∈ AJ

1 . By A1 v C, we have that a′ ∈ CJ . Therefore
J satisfies A v ∀P .C, and hence is a model of Kn as well.

(4) If the next step to be applied is to replace A v ∃P .C by A v ∃P .A1 and
A1 v C, where A1 is a new atomic concept, we have:

Kn+1 = Kn ∪ {A v ∃P .A1, A1 v C} \ {A v ∃P .C}

“⇐” Let I be a model of Kn with AI
0 6= ∅, let J coincide with I on all

atomic concepts and roles in Kn, and additionally let AJ
1 = CJ . Since I

satisfies A v ∃P .C, we have by construction that J satisfies A v ∃P .A1

and A1 v C, and hence is a model of Kn+1 with AJ
0 6= ∅.

“⇒” Let J be a model of Kn+1 with AJ
0 6= ∅. Since it satisfies A v

∃P .A1, there exists an instance a ∈ AJ that is connected via role P to
an instance a′ ∈ AJ

1 . By A1 v C, we have that a′ ∈ CJ . Therefore J
satisfies A v ∃P .C, and hence is a model of Kn as well.

Next, we reduce concept satisfiability w.r.t. a primitive ALC− KB K′ to class
consistency in a UML class diagram D. For each atomic concept A in K′,
we introduce a class A in D. Additionally, we add a class O that generalizes
(possibly indirectly) all classes in D. O is also used to specify disjointness
among classes (see later). For each atomic role P , we introduce an association
P (with related association class), involving the class O twice. Intuitively,
using O in such a way, we do not constrain in any way the classes to which the
instances of the components of P may belong. More classes and associations,
as well as generalizations between O and the new classes, are added below as
needed.

The assertions in the ALC− KB K′ are encoded in the class diagram as follows:

(1) For each assertion of the form A v B, we introduce a generalization
between the classes A and B (where A is the subclass).
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O

{disjoint}

BA

Fig. 18. UML encoding of the assertion A v ¬B

A B1 B2

{complete}

B

Fig. 19. UML encoding of the assertion A v B1 tB2

O

{disjoint} P

A A B

PA PA

{complete}

Fig. 20. UML encoding of the assertion A v ∀P .B

O

P

A
1..∗

B

PAB

Fig. 21. UML encoding of the assertion A v ∃P .B

(2) For each assertion of the form A v ¬B, we construct the hierarchy in
Figure 18, exploiting the superclass O to express disjointness between A
and B.

(3) For each assertion of the form A v B1 t B2, we introduce an auxiliary
class B, and construct the hierarchy in Figure 19. Intuitively, being B
a covering of B1 and B2, and A a subclass of B, it follows that A is a
subclass of the union of B1 and B2.

(4) For each assertion of the form A v ∀P .B, we introduce a new class A
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and two new binary associations PA and PA (with their associated classes)
and we construct the portion of diagram in Figure 20, where A and A are
disjoint and there is a generalization with covering constraint between P
and its children PA and PA. Note that A and B are the components of
PA, whereas A and O are the components of PA. Intuitively, the diagram
enforces that each instance of A participating to P is in fact participating
to PA, and hence associated via P to an instance of B.

(5) For each assertion of the form A v ∃P .B, we introduce a new binary
association PAB, with its associated class, and we construct the portion
of diagram shown in Figure 21. Note the proper multiplicity constraint
1..∗ on the participation of A to PAB. 14 Intuitively, this implies that for
each instance of A, there exists an instance of B related to it through
PAB, and hence through P .

Lemma 5.4 Given a primitive ALC− KB K′, the size of the UML class dia-
gram D constructed as above is linear in the size of K′.

Proof. By construction.

Lemma 5.5 An atomic concept A is satisfiable w.r.t. an ALC− KB K′ if and
only if the class A is consistent in the UML class diagram D constructed as
above.

Proof. “⇐” Let J = (∆J , ·J ) be an instantiation for D (i.e., a model of
the corresponding FOL assertions). We show that J is also a model of all
assertions in K′.

(1) For each assertion of the form A v B in K′, there is a generalization in
D between the child class A and the parent class B. Hence, J assigns an
extension to A and B in such a way that AJ ⊆ BJ .

(2) For each assertion of the form A v ¬B in K′, we have in D the hierarchy
shown in Fig. 18, characterized by a disjointness constraint between A
and B. J assigns to the classes A, B and O the sets AJ , BJ , OJ so that
AJ ⊆ OJ , BJ ⊆ OJ and AJ ∩ BJ = ∅. From the latter we have that
AJ ⊆ ∆J \BJ .

(3) Each assertion of the form A v B1 t B2 in K′ corresponds in D to the
hierarchy shown in Fig. 19, characterized by a covering constraint among
B and its children B1 and B2. J assigns an extension to the classes A,
B, B1 and B2 in such a way that AJ ⊆ BJ , and BJ = BJ

2 ∪BJ
2 . Hence

we get AJ ⊆ BJ
1 ∪BJ

2 .
(4) Each assertion of the form A v ∀P .B in K′ corresponds, in D, to the

14 In fact, in the case where we also have the assertion A v ∀P .B for some B,
instead of proceeding as in Figure 21, we can simply add the cardinality constraint
1..∗ to the association PAB in Figure 20.
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sub-diagram in Fig. 20. J assigns to the classes in such a diagram an
extension in such a way that the following constraints are satisfied:

AJ ⊆ OJ

A
J ⊆ OJ

AJ ∩ A
J

= ∅
BJ ⊆ OJ

PJ ⊆ OJ ×OJ

PJ
A
⊆ A

J ×OJ

PJ
A ⊆ AJ ×BJ

PJ
A ⊆ PJ

PJ
A
⊆ PJ

PJ ⊆ PJ
A ∪ PJ

A

From the constraints above, we get that PJ
A ∩ PJ

A
= ∅. Therefore, if x ∈

AJ then for all x′ ∈ OJ if (x, x′) ∈ PJ then (x, x′) ∈ PJ
A and therefore

x′ ∈ BJ , i.e., AJ ⊆ {x ∈ OJ | ∀x′ ∈ OJ . (x, x′) ∈ PJ ⊃ x′ ∈ BJ }.
(5) Each assertion of the form A v ∃P .B in K′ corresponds, in D, to the

sub-diagram shown in Fig. 21. J assigns to the classes in such a diagram
an extension in such a way that the following constraints are satisfied:

AJ ⊆ OJ

BJ ⊆ OJ

PJ ⊆ OJ ×OJ

PJ
AB ⊆ PJ

PJ
AB ⊆ AJ ×BJ

and for each x ∈ AJ we have that ]{x′ ∈ ∆I | (x, x′) ∈ PJ
AB} ≥ 1

(mandatory participation constraint). From these we get that for each
x ∈ AJ there exists x′ ∈ OJ such that (x, x′) ∈ PJ and x′ ∈ BJ , i.e.,
AJ ⊆ {x ∈ OJ | ∃x′ ∈ OJ (x, x′) ∈ PJ ∧ x′ ∈ BJ }.

“⇒” Let I = (∆I , ·I) be a model of K′ with AI 6= ∅. We show that it can
be seen as an instantiation of D, once we assign a suitable extension to the
auxiliary classes and roles introduced in the construction of D. First, we define
OI = ∆I .

(1) For each assertion of the form A v B in K′, we have a generalization
between classes A and B in D. I assigns to concepts A and B in K′
the subsets AI and BI of ∆I , such that AI ⊆ BI , and hence correctly
captures the generalization between classes A and B in D.

(2) For each assertion of the form A v ¬B in K′, we have a fragment of D
as in Fig. 18. I assigns to concepts A and B the subsets AI and BI of
∆I , such that AI ⊆ ∆I \BI . Then we have that AI ⊆ OI , BI ⊆ OI and
AI ∩BI = ∅, thus correctly capturing the fragment of D.

(3) For each assertion of the form A v B1 tB2 in K′, we have a fragment of
D as in Fig. 19. I assigns to concepts B1 and B2 the subsets BI

1 and BI
2
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of ∆I , respectively, and to A a subset of their union, i.e., AI ⊆ BI
1 ∪BI

2 .
Let us define BI = BI

1 ∪ BI
2 . Then AI ⊆ BI , thus correctly capturing

the fragment of D.
(4) For each assertion of the form A v ∀P .B in K′, we have a fragment of D

as in Figure 20. Let us define:

• A
I

= ∆I \ AI

• P I
A = {(x, x′) ∈ P I | x ∈ AI}

• P I
A

= {(x, x′) ∈ P I | x ∈ A
I}

Then, by AI ⊆ {x ∈ ∆I | ∀x′ ∈ ∆I. (x, x′) ∈ P I ⊃ x′ ∈ BI}, we get:

AI ⊆ OI

A
I ⊆ OI

AI ∩ A
I

= ∅
BI ⊆ OI

P I ⊆ OI ×OI

P I
A ⊆ AI ×BI

P I ⊆ P I
A ∪ P I

A

P I
A ⊆ P I

P I
A
⊆ P I

thus correctly capturing the fragment of D.
(5) For each assertion of the form A v ∃P .B in K′, we have a fragment of D

as in Figure 21. Let us define P I
AB = {(x, x′) ∈ P I | x ∈ AI}. Then, by

AI ⊆ {x ∈ ∆I | ∃x′ ∈ ∆I. (x, x′) ∈ P I ∧ x′ ∈ BI}, we get that for each
x ∈ AI we have ]{x′ ∈ ∆I | (x, x′) ∈ P I

AB} ≥ 1, and we have that such
an instantiation is correct for the fragment of D.

By Lemmata 5.1, 5.2, 5.3, 5.4, 5.5, and EXPTIME-hardness of reasoning in
ALC knowledge bases, we get our hardness result.

Theorem 5.6 Class consistency in UML class diagrams is EXPTIME-hard.

6 Upper Bounds for Reasoning on UML Class Diagrams

In this section we show that reasoning on UML class diagrams is decidable,
and in fact EXPTIME-complete. To do so we show that we can polynomially
encode UML class diagrams in DLRifd knowledge bases and that such an
encoding precisely captures the FOL semantics of UML class diagrams. Hence,
reasoning on such diagrams is reduced to reasoning on DLRifd knowledge
bases, which is in EXPTIME.
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6.1 Encoding of UML Class Diagrams in DLRifd

We now illustrate the encoding of UML class diagrams in DLRifd , discussing
each construct separately.

6.1.1 Classes

An UML class is represented by a DLRifd concept. Indeed, both UML classes
and DLRifd concepts denote sets of objects.

To capture an attribute a of type T for a class C we use a DLRifd binary
relation a, and we specify the type of the attribute with the assertion:

C v ∀[1](a⇒(2 : T ))

Such an assertion specifies that, for each instance c of the concept C, all
objects related to c by a, are instances of T . Note that an attribute name is
not necessarily unique in the whole diagram, and hence two different classes
could have the same attribute, possibly of different types. This situation is
correctly captured by the formalization in DLRifd . To specify a multiplicity
[i..j] associated to the attribute we add the assertion:

C v (≥ i [1]a) u (≤ j [1]a)

Such an assertion specifies that each instance of C participates at least i times
and at most j times to relation a via component 1. If i = 0, i.e., the attribute
is optional, we omit the first conjunct, and if j = ∗ we omit the second
one. Observe that, for attributes with multiplicity [0..∗], we omit the whole
assertion, and that, when the multiplicity is missing (i.e., [1..1] is assumed)
the above assertion becomes:

C v ∃[1]a u (≤ 1 [1]a)

Let
f(P1, . . . , Pm) : R

be an operation of a class C that has m parameters belonging to the classes
P1, . . . , Pm respectively and a result belonging to R. We formalize such an
operation as a DLRifd relation, named fP1,...,Pm , of arity 1+m+1 among in-
stances of the DLRifd concepts C,P1, . . . , Pm, R. On such a relation we enforce
the following assertions.

• An assertion imposing the correct types to the parameters:

fP1,...,Pm v (2 : P1) u · · · u (m + 1 : Pm)
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• An assertion imposing that the invocation of the operation on a given object
with given parameters determines in a unique way the result (i.e., the rela-
tion corresponding to the operation is in fact a function from the invocation
object and the parameters to the result):

(fd fP1,...,Pm 1, . . . , m + 1 → m + 2)

In case the operation has no parameters (i.e., m = 0), instead of the above
functional dependency we make use of the assertion:

>1 v (≤ 1 [1]f)

The form of the above DLRifd assertions depends only on the number of
parameters, and not on the specific class for which the operation is defined,
nor on the types of parameters and of the result.

• An assertion imposing the correct type of the result, when the operation is
invoked on instances of the class C:

C v ∀[1](fP1,...,Pm ⇒(m + 2 : R))

As discussed in Section 2, the chosen way of naming relations corresponding to
operations does not pose any difficulty in the formalization of overloading of
operations within the same class, since an operation is represented in DLRifd

by a relation having as name the signature of the operation, which consists
not only of the operation name but also of the parameter types. Observe that
the formalization of operations in DLRifd allows one to have operations with
the same name or even with the same signature in two different classes. As
discussed in Section 2, overriding of operations may show up as a restriction
on the return type.

Example 6.1 The DLRifd assertions that capture the attributes of class
phone in Figure 1 are:

Phone v ∀[1](number⇒(2 : String))

Phone v (≥ 1 [1]number)

Phone v ∀[1](brand⇒(2 : String))

Operation lastDialed() is captured by the DLRifd assertions:

Phone v ∀[1](lastDialed)⇒(2 : String)

>1 v (≤ 1 [1]lastDialed)
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Operation callLength(String) is captured by the DLRifd assertions:

callLengthString v (2 : String)

(fd callLengthString 1, 2 → 3)

Phone v ∀[1](callLengthString⇒(3 : Int))

¤

6.1.2 Associations

We have to distinguish between associations not having an association class
and those having one. In the former case, we can encode an n-ary association
A between classes C1, . . . , Cn (see Figure 3) simply as a DLRifd n-ary relation
A, together with the following typing assertion:

A v (1 : C1) u (2 : C2) u · · · u (n : Cn)

An n-ary association A with an association class (see Figure 5) is formalized
in DLRifd by reifying A into a DLRifd concept A with n binary relations
r1, . . . , rn, one for each component of the association A. We enforce the fol-
lowing assertion:

A v ∃[1]r1 u (≤ 1 [1]r1) u ∀[1](r1 ⇒ (2 : C1)) u
∃[1]r2 u (≤ 1 [1]r2) u ∀[1](r2 ⇒ (2 : C2)) u

...

∃[1]rn u (≤ 1 [1]rn) u ∀[1](rn ⇒ (2 : Cn))

where ∃[1]ri (with i ∈ {1, . . . , n}) specifies that the concept A must have all
components r1, . . . , rn of the association A, (≤ 1 [1]ri) (with i ∈ {1, . . . , n})
specifies that each such component is single-valued, and ∀[1](ri ⇒ (2 : Ci))
(with i ∈ {1, . . . , n}) specifies the class each component has to belong to.
Finally, in order to faithfully represent the association by a class, we assert

(id A [1]r1, . . . , [1]rn)

which specifies that each instance of A represents a distinct tuple in C1×· · ·×
Cn.

We can easily represent in DLRifd a multiplicity on a binary association. If
the association has no related association class, we capture multiplicities by
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the following DLRifd assertions (referring to Figure 2):

C1 v (≥ n` [1]A) u (≤ nu [1]A)

C2 v (≥ m` [2]A) u (≤ mu [2]A)

Example 6.2 The DLRifd assertions that capture the aggregation 15 in Fig-
ure 8, are:

reference v (1 : PhoneBill) u (2 : PhoneCall)

PhoneBill v (≥ 1 [1]reference)

PhoneCall v (≥ 1 [2]reference) u (≤ 1 [2]reference)

¤

If, instead, the association has a related class, we can impose a number restric-
tion on the relations modeling the components of the association. Since the
names of such relations (which correspond to roles) are unique with respect
to the association only, and not with respect to the entire diagram, we have
to state such constraints in DLRifd as follows (referring to Figure 4):

C1 v (≥ n` [2](r1 u (1 : A))) u (≤ nu [2](r1 u (1 : A)))

C2 v (≥ m` [2](r2 u (1 : A))) u (≤ mu [2](r2 u (1 : A)))

Example 6.3 The DLRifd assertions modeling the association in Figure 6
are:

Origin v ∀[1](call⇒(2 : PhoneCall)) u ∃[1]call u (≤ 1 [1]call) u
∀[1](from⇒(2 : Phone)) u ∃[1]from u (≤ 1 [1]from)

(id Origin [1]call, [1]from)

PhoneCall v (≥ 1 [2](call u (1 : Origin))) u (≤ 1 [2](call u (1 : Origin)))

Origin v ∀[1](place⇒(2 : String))

Origin v ∃[1]place u (≤ 1 [1]place)

¤

15 Recall that an aggregation is a special case of binary association without associ-
ation class.
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6.1.3 Generalizations and hierarchies

Generalization is naturally supported in DLRifd . If a UML class C2 generalizes
a class C1, we can express this by the DLRifd assertion:

C1 v C2

Inheritance between DLRifd concepts corresponds exactly to inheritance be-
tween UML classes. This is an obvious consequence of the semantics of v,
which is based on sub-setting. Observe that the encoding in DLRifd also cap-
tures correctly inheritance among association classes and multiple inheritance
between classes.

A class hierarchy as the one in Figure 9 can be represented by the assertions

Ci v C for each i ∈ {1, . . . , n}

A disjointness constraint among classes C1, . . . , Cn can be formalized as

Ci v
nu

j=i+1
¬Cj for each i ∈ {1, . . . , n}

while a covering constraint can be expressed as

C v
n⊔

j=1

Cj

Example 6.4 The hierarchy in Figure 10 can be formalized by means of the
following DLRifd assertions:

CellPhone v Phone

FixedPhone v Phone

CellPhone v ¬FixedPhone

Phone v CellPhone t FixedPhone

¤

If needed, one can easily add DLRifd assertions to state that all classes that
are not in the same hierarchy are a priori disjoint, and that objects in the
same hierarchy must belong to a most specific class.

Example 6.5 Finally, we show in Figure 22 how the UML class diagram in
Figure 12 can be encoded in DLRifd .

¤
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Origin v ∀[1](place⇒(2 : String))

Origin v ∃[1]place u (≤ 1 [1]place)

Origin v ∀[1](call⇒(2 : PhoneCall)) u ∃[1]call u (≤ 1 [1]call) u
∀[1](from⇒(2 : Phone)) u ∃[1]from u (≤ 1 [1]from)

(id Origin [1]call, [1]from)

MobileOrigin v ∀[1](call⇒(2 : MobileCall)) u ∃[1]call u (≤ 1 [1]call) u
∀[1](from⇒(2 : CellPhone)) u ∃[1]from u (≤ 1 [1]from)

(id MobileOrigin [1]call, [1]from)

PhoneCall v (≥ 1 [2](call u (1 : Origin))) u (≤ 1 [2](call u (1 : Origin)))

reference v (1 : PhoneBill) u (2 : PhoneCall)

PhoneBill v (≥ 1 [1]reference)

PhoneCall v (≥ 1 [2]reference) u (≤ 1 [2]reference)

MobileCall v PhoneCall

MobileOrigin v Origin

CellPhone v Phone

FixedPhone v Phone

CellPhone v ¬FixedPhone

Phone v CellPhone t FixedPhone

Fig. 22. DLRifd knowledge base corresponding to the UML class diagram shown in
Figure 12

6.2 Correctness of the Encoding

We now show that the encoding presented above is indeed correct. In partic-
ular, we show that there is a direct correspondence between instantiations of
the UML class diagram and models of the corresponding DLRifd knowledge
base. This is captured by the following theorem.

Theorem 6.6 Let D be a UML class diagram and KD the DLRifd knowledge
base constructed as described above. Then every instantiation of D is a model
of KD, and vice-versa.

Proof. First of all, we observe that both (the FOL formalization of) the UML
class diagram D and the DLRifd knowledge base KD are over the same alpha-
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bet. So interpretations are compatible. Considering each UML class diagram
construct separately, it is easy to see that an interpretation satisfies its FOL
formalization if and only if it satisfies the corresponding DLRifd assertions.
We show this in some detail below, also to make apparent the very close
correspondence between the two formalizations.

• Class attributes. An attribute a of type T of the class C with multiplicity
[i..j] is captured in D by the FOL assertions:

∀x, y. (C(x) ∧ a(x, y)) ⊃ T (y)

∀x, y. C(x) ⊃ i ≤ ]{y | a(x, y)} ≤ j

The corresponding DLRifd assertions in KD are

C v ∀[1](a⇒(2 : T ))

C v (≥ i [1]a) u (≤ j [1]a)

Now, given an instantiation I for D, each x ∈ CI is such that x is connected
through the binary relation aI only to elements of T I , and x participates at
least i and at most j times to aI . Hence I satisfies the DLRifd assertions
above. Conversely, given a model I of KD, it is easy to see that each x ∈ CI

is connected through the binary relation aI only to elements of T I , and x
participates at least i and at most j times to aI . Therefore, I satisfies the
FOL formulas above.

• Class operations. An operation f(P1, . . . , Pm) : R of class C is expressed by
the FOL assertions: 16

∀x, p1, . . . , pm, r. f(x, p1, . . . , pm, r) ⊃ ∧n
i=1 Pi(pi)

∀x, p1, . . . , pm, r, r′. f(x, p1, . . . , pm, r) ∧ f(x, p1, . . . , pm, r′) ⊃ r = r′

∀x, p1, . . . , pm, r. C(x) ∧ f(x, p1, . . . , pm, r) ⊃ R(r)

The corresponding DLRifd assertions in KD are

fP1,...,Pm v (2 : P1) u · · · u (m + 1 : Pm)

(fd fP1,...,Pm 1, . . . , m + 1 → m + 2)

C v ∀[1](fP1,...,Pm ⇒(m + 2 : R))

Given an instantiation I for D, it is such that for each x ∈ CI , if x partici-
pates to y ∈ fI as first component, the components 2, . . . ,m+2 of y belong

16 To simplify the notation, we again denote fP1,...,Pm simply by f .
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to P I
1 , . . . , P I

m, R respectively, and the component m + 2 is uniquely deter-
mined by the first m + 1. Hence I satisfies the DLRifd assertions above.
Conversely, by the inclusion assertion, a model I of KD is such that for
any x ∈ CI , if x participates to y ∈ fIP1,...,Pm

, the components 2, . . . ,m + 2
of y belong to P I

1 , . . . , P I
m, R respectively. Moreover, by the functional de-

pendency, the component m + 2 is uniquely determined by the first m + 1.
Therefore, I satisfies the FOL formulas above.

• Associations without association class. Typing of an n-ary association A
without association class is captured in D by the FOL assertion:

∀x1, . . . , xn. A(x1, . . . , xn) ⊃ C1(x1) ∧ · · · ∧ Cn(xn).

The corresponding DLRifd assertion in KD is

A v (1 : C1) u (2 : C2) u · · · u (n : Cn)

Given an instantiation I for D, we have that for any x ∈ AI , the compo-
nents of x belong to CI

1 , . . . , CI
n respectively. Hence I satisfies the DLRifd

assertion above. Conversely, given an interpretation I for KD, the DLRifd

assertion above requires that for any x ∈ AI , the components of x belong
to CI

1 , . . . , CI
n respectively. Therefore I satisfies the FOL formula above.

Multiplicities of a binary associations without association class are ex-
pressed by the FOL assertions:

∀x. C1(x) ⊃ (n` ≤ ]{y | A(x, y)} ≤ nu)

∀y. C2(y) ⊃ (m` ≤ ]{x | A(x, y)} ≤ mu)

The corresponding DLRifd assertions in KD are

C1 v (≥ n` [1]A) u (≤ nu [1]A)

C2 v (≥ m` [2]A) u (≤ mu [2]A)

Again, considering the semantics of the assertions in FOL and in DLRifd ,
it is immediate to verify that they are satisfied by exactly the same models.

• Associations with association class. An n-ary association A with association
class is formalized in D by the following FOL assertions:

∀x, y. A(x) ∧ ri(x, y) ⊃ Ci(y) for i = 1, . . . , n

∀x. A(x) ⊃ ∃y. ri(x, y) for i = 1, . . . , n

∀x, y, y′. A(x) ∧ ri(x, y) ∧ ri(x, y′) ⊃ y = y′ for i = 1, . . . , n

∀y1, . . . , yn, x, x′. A(x) ∧ A(x′) ∧ ∧n
i=1(ri(x, yi) ∧ ri(x

′, yi)) ⊃ x = x′
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The corresponding DLRifd assertions in KD are

A v ∃[1]r1 u (≤ 1 [1]r1) u ∀[1](r1 ⇒ (2 : C1)) u
∃[1]r2 u (≤ 1 [1]r2) u ∀[1](r2 ⇒ (2 : C2)) u

...

∃[1]rn u (≤ 1 [1]rn) u ∀[1](rn ⇒ (2 : Cn))

(id A [1]r1, . . . , [1]rn)

Given an instantiation I for D, by the FOL assertion above, we have that
for each x ∈ AI , x participates exactly once as first component to each of
the binary relations rIi , and x is connected through rI1 , . . . , rIn to elements
of CI

1 , . . . , CI
n respectively; moreover, no two instances of AI can agree on

the participation to rI1 , . . . , rIn. Hence I satisfies all the DLRifd assertions
above. Similarly, it is easy to see that a model I of KD, which has to satisfy
the DLRifd assertions above, satisfies the corresponding FOL assertions as
well.

Multiplicities of a binary association A with association class are ex-
pressed by the FOL assertions:

∀y1. C1(y1) ⊃ (n` ≤ ]{x | A(x) ∧ r1(x, y1)} ≤ nu)

∀y2. C2(y2) ⊃ (m` ≤ ]{x | A(x) ∧ r2(x, y2)} ≤ mu)

The corresponding DLRifd assertions in KD are

C1 v (≥ n` [2](r1 u (1 : A))) u (≤ nu [2](r1 u (1 : A)))

C2 v (≥ m` [2](r2 u (1 : A))) u (≤ mu [2](r2 u (1 : A)))

Again, considering the semantics of the assertions in FOL and in DLRifd ,
it is immediate to verify that they are satisfied by exactly the same models.

• Generalizations. The generalization between a more general class C a more
specific class C1 is formalized by the FOL assertion:

∀x. C1(x) ⊃ C(x)

The corresponding DLRifd assertion in KD is:

C1 v C

Considering the semantics of such assertions, it is immediate to verify that
they are satisfied by exactly the same models. It is also immediate to verify
that the FOL and DLRifd assertions expressing covering constraints and
disjointness constraints on class hierarchies are satisfied by exactly the same
models.
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A consequence of the above result is that reasoning on UML class diagrams
can be performed by reasoning on DLRifd knowledge bases. In particular, the
following result holds.

Theorem 6.7 Let D be a UML class diagram and KD the DLRifd knowledge
base constructed as described above. Then a class C is consistent in D if and
only if the concept C is satisfiable w.r.t. KD.

Proof. The claim is a straightforward consequence of Theorem 6.6.

Since we can reduce reasoning on UML class diagrams to reasoning on DLRifd

knowledge bases, from the results about reasoning in DLRifd [9] we get an
EXPTIME upper bound for reasoning on UML class diagrams.

Theorem 6.8 Class consistency in UML class diagrams is EXPTIME-complete.

Proof. Theorem 5.6 gives us the EXPTIME-hardness. The completeness fol-
lows from Theorem 6.7, by considering that the size of KD is polynomial in D
and that concept satisfiability w.r.t. DLRifd knowledge bases is EXPTIME-
complete [9].

7 Reasoning on UML Class Diagrams using ALCQI

The results in the previous section show that we can exploit reasoning tools
developed for DLs to reason on UML class diagrams. However, current state-
of-the-art DL based reasoning systems do not support yet all constructs of
DLRifd . In particular, they do not support functional dependencies and iden-
tification constraints. In this section we show that, as far as reasoning on UML
class diagrams is concerned (cf., Section 3), we can resort to a less expressive
DL, namely ALCQI, for which tableaux based reasoning algorithms have
been developed [41,30]. State-of-the-art DL based reasoning systems [18,19]
implement such tableaux algorithms, which allows them to be exploited as
core engines for advanced UML CASE tools. For an example of the kind of
services that such a tool could provide, see [17]. Notably, ALCQI does not
include functional dependencies and identification constraints, which play a
special role, since they allow us to correctly capture the FOL semantics of
n-ary associations and of operations.

Interestingly, due to the tree-model property of DLRifd (cf., Section 4), when
we do not want to specifically reason about functional dependencies or iden-
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tification constraints, which is the case for most of the UML reasoning tasks
(cf. Section 3), we can drop such constraints from DLRifd knowledge bases,
while still preserving soundness and completeness of reasoning on concepts
and relations [9]. Another potential difficulty is that, in ALCQI, relations are
only binary, while DLRifd admits relations of arbitrary arity. We overcome
this difficulty by translating a DLRifd relation of arity n > 2 through reifica-
tion: this is done by introducing a concept, denoting the tuples of the relation,
and n ALCQI (binary) functional roles, one for each component of the rela-
tion. The tree-model property guarantees that such a translation is faithful,
in the sense that there will be no two instances of the concept representing
the same tuple of the relation [34].

7.1 Encoding of UML Class Diagrams in ALCQI

Building on these observations we now present an encoding of UML class
diagrams directly in ALCQI that, although it does not preserve models, is
sound and complete with respect to the main reasoning tasks on UML class
diagrams.

7.1.1 Classes

An UML class C is represented by an atomic concept C. Each attribute a
of type T for class C is represented by an atomic role a, together with an
inclusion assertion encoding the typing of the attribute a for the class C:

C v ∀a.T

We formalize the multiplicity [i..j] of attribute a as

C v (≥ i a.>) u (≤ j a.>)

expressing that for each instance of the concept C there are at least i and
at most j role fillers for role a. As we did for DLRifd , for attributes with
multiplicity [0..∗] we omit the whole assertion, and when the multiplicity is
missing (i.e., [1..1] is assumed) the above assertion becomes:

C v ∃a.> u (≤ 1 a.>)

An operation f() : R without parameters for class C is modeled directly as a
(binary) role Rf(), for which the following assertion holds:

C v ∀Rf().R u (≤ 1 Rf().>)
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Instead, an operation with one or more parameters f(P1, . . . , Pm) : R of class
C, which formally corresponds to an (m + 2)-ary relation that is functional
on the last component, cannot be directly expressed in ALCQI. Therefore,
we make use of reification, and introduce an atomic concept Cf(P1,...,Pm), m+2
ALCQI roles r1, . . . , rm+2 and the following assertions, which type the input
parameters and the return value:

Cf(P1,...,Pm) v ∃r1.> u (≤ 1 r1.>) u
...

∃rm+1.> u (≤ 1 rm+1.>)

Cf(P1,...,Pm) v ∀r2.P1 u · · · u ∀rm+1.Pm

C v ∀r−1 .(Cf(P1,...,Pm)⇒∀rm+2.R)

The first assertion states that each instance of Cf(P1,...,Pm), representing a tuple,
correctly is connected to exactly one object for each of the roles r1, . . . , rm+1.
Instead, note that in general there may be two instances of Cf(P1,...,Pm) repre-
senting the same tuple. However, this cannot be the case in a tree-like model
(cf., tree-model property). The other two assertions impose the correct typing
of the parameters, depending only on the name of the operation, and of the
return value, depending also on the class.

7.1.2 Associations

Each binary association (or aggregation) A between a class C1 and a class C2

is represented by the atomic role A, together with the inclusion assertion

> v ∀A.C2 u ∀A−.C1

encoding the typing of A. The multiplicities of A (see Figure 2) are formalized
by the assertions

C1 v (≥ n` A.>) u (≤ nu A.>)

C2 v (≥ m` A−.>) u (≤ mu A−.>)

Binary associations with association class, and n-ary (with n > 2) associa-
tions, with or without association class, are modeled through reification. More
precisely, each association A relating classes C1, . . . , Cn is represented by an
atomic concept A together with the inclusion assertion

A v ∃r1.C1 u · · · u ∃rn.Cn u (≤ 1 r1) u · · · u (≤ 1 rn)
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If the association A has explicit role names in the UML class diagram, then
r1, . . . , rn above are such names. Otherwise, they are arbitrary names used to
denote the components of A. As we did for operations, we are not requiring
that each instance of the concept A denotes a distinct tuple, but again this is
the case in tree-like models.

Multiplicities on binary associations with association class (see Figure 4) are
represented by

C1 v (≥ n` r−1 .A) u (≤ nu r−1 .A)

C2 v (≥ m` r−2 .A) u (≤ mu r−2 .A)

7.1.3 Generalizations

Generalizations between classes, and disjointness and covering constraints on
hierarchies are expressed in ALCQI as they are in DLRifd . In particular, a
generalization between a class C and its child class C1 can be represented using
the ALCQI inclusion assertion C1 v C. A class hierarchy as the one in Fig-
ure 9 can be represented by the assertions C1 v C, . . . , Cn v C. A disjointness
constraint among classes C1, . . . , Cn can be modeled as Ci v un

j=i+1¬Cj, with
1 ≤ i ≤ n− 1, while a covering constraint can be expressed as C v tn

i=1Ci.

Example 7.1 We show in Figure 23 the ALCQI knowledge base correspond-
ing to the UML class diagram in Figure 12. ¤

7.2 Correctness of the Encoding

We now show that the encoding of a UML class diagram into an ALCQI
knowledge base is correct, in the sense that it preserves class consistency, and
hence essentially all reasoning services over UML class diagrams. Formally,
the following result holds.

Theorem 7.2 Let D be a UML class diagram and KD the ALCQI knowledge
base constructed as specified above. Then a class C is consistent in D if and
only if the concept C is satisfiable w.r.t. KD.

Proof. “⇒” Let I = (∆I , ·I) be an instantiation of D (i.e., a model of the
corresponding FOL assertions) such that CI 6= ∅. Then we can build a model
J = (∆J , ·J ) of KD such that CJ 6= ∅ as follows.

• ∆J = ∆I∪⋃
A∈A{t(d1,...,dn) | (d1, . . . , dn) ∈ AI}∪⋃

F∈F{t(d1,...,dn) | (d1, . . . , dn) ∈
F I}, where A denotes the set of all non-binary associations without asso-
ciation class in D, and F denotes all functional relations that model class
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Origin v ∀place.String

Origin v ∃place.> u (≤ 1 place)

Origin v ∃call.PhoneCall u (≤ 1 call) u
∃from.Phone u (≤ 1 from)

MobileOrigin v ∃MobileCall.MobileCall u (≤ 1 MobileCall) u
∃from.CellPhone u (≤ 1 from)

PhoneCall v (≥ 1 call−.Origin) u (≤ 1 call−.Origin)

> v ∀reference−.PhoneBill u ∀reference.PhoneCall

PhoneBill v (≥ 1 reference−)

PhoneCall v (≥ 1 reference) u (≤ 1 reference)

MobileCall v PhoneCall

MobileOrigin v Origin

CellPhone v Phone

FixedPhone v Phone

CellPhone v ¬FixedPhone

Phone v CellPhone t FixedPhone

Fig. 23. ALCQI knowledge base corresponding to the UML class diagram shown in
Figure 12

operations.
• CJ = CI for all concepts C corresponding to classes C in D.
• RJ = RI for all ALCQI roles R corresponding to attributes, operations

without parameters, aggregations, binary associations without association
class, and association class roles in D.

• For each operation f(P1, . . . , Pm) : R with one or more parameters, we
define CJf(P1,...,Pm) = {t(d0,d1,...,dm+1) | (d0, d1, . . . , dm+1) ∈ fI(P1,...,Pm)}, and for
each ALCQI role ri modeling the i-th component of the relation f(P1,...,Pm),
we define rJi = {(t(d0,d1,...,dm+1), di) | (d0, d1, . . . , dm+1) ∈ fI(P1,...,Pm)}.

• Finally, for each n-ary association A with arity n > 2 and without asso-
ciation class, we define AJ = {t(d1,...,dn) | d1, . . . , dn ∈ AI} and for each
ALCQI role ri modeling the i-th component of the association A, we define
rJi = {(t(d1,...,dn), di) | (d1, . . . , dn) ∈ AI}.

Trivially CJ = CI 6= ∅. It is also immediate to check that J satisfies all the
assertions in KD. Again one can proceed by focusing on the assertions that
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each kind of UML class diagram construct gives rise to.

As an example, we detail the proof for operations, since proving the statement
in this case is less straightforward than in all the others cases. An operation
f(P1, . . . , Pm) : R of a class C in the diagram D is represented by the FOL
formulas:

∀x, p1, . . . , pm, r. f(x, p1, . . . , pm, r) ⊃ ∧m
i=1 Pi(pi)

∀x, p1, . . . , pm, r, r′. f(x, p1, . . . , pm, r) ∧ f(x, p1, . . . , pm, r′) ⊃ r = r′

∀x, p1, . . . , pm, r. C(x) ∧ f(x, p1, . . . , pm, r) ⊃ R(r)

that correspond to the ALCQI assertions:

Cf(P1,...,Pm) v ∃r1.> u (≤ 1 r1.>) u
...

∃rm+2.> u (≤ 1 rm+2.>)

Cf(P1,...,Pm) v ∀r2.P1 u · · · u ∀rm+1.Pm

C v ∀r−1 .(Cf(P1,...,Pm)⇒∀rm+2.R)

Given an instantiation I of D, for all y ∈ fI , the components 2, . . . , m + 1 of
y belong to P I

1 , . . . , P I
m, and for all x ∈ CI if x participates as first component

to y ∈ fI , the component m + 2 of y belongs to RI . Additionally, the first
m + 1 components uniquely determine the component m + 2.

The interpretation J , built from I as shown above, instantiates the con-
cept Cf(P1,...,Pm), which models f(P1, . . . , Pm) : R, with the (m + 2)-tuples of
fI(P1,...,Pm), and instantiates each role ri with pairs where the first component is

a tuple (d0, d1, . . . , dm+1) of fI(P1,...,Pm) and the second one is the component di

of (d0, d1, . . . , dm+1) to which ri refers. In particular, each tuple of ri connects
each element of Cf(P1,...,Pm) to the element of the correct type (and only to
it) and no two elements of Cf(P1,...,Pm) represent the same tuple. Hence, J it
satisfies the above ALCQI assertions.

“⇐” By the tree-model property we know that if C is satisfiable w.r.t. the
ALCQI knowledge base KD then there exists a tree-like model J = (∆J , ·J )
of KD, such that CJ 6= ∅. From such a tree-like model we can build an
instantiation I = (∆I , ·I) of D such that CI 6= ∅ as follows.

• ∆I =
⋃

C∈C CJ , where C denotes the set of all classes in D.
• CI = CJ for all classes C in D.
• RI = RJ for all attributes, operations without parameters, aggregations,

binary associations without association class, and association class roles in
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D.
• For each operation f(P1, . . . , Pm) : R with one or more parameters, we

define fI(P1,...,Pm) = {(d0, d1, . . . , dm+1) | ∃t ∈ CJf(P1,...,Pm).
∧m+1

i=0 (t, di) ∈ rJi }.
• Finally for each n-ary association A with arity n > 2 and without association

class, we define AI = {(d1, . . . , dn) | ∃t ∈ AJ .
∧m+1

i=0 (t, di) ∈ rJi }.

Observe that, since J is a tree-like model, it is guaranteed that there is only
one object t in Cf(P1,...,Pm) that represents a given tuple, similarly for the
concepts A representing n-ary associations with or without association class.
Hence tuples of n-ary associations, tuples of relations corresponding to class
operations, as well as key constraints for association classes and uniqueness of
the operation results is guaranteed. Keeping such an observation in mind is
easy to check that I is indeed an instantiation of K with CI 6= ∅.

Analogously to the previous case, we detail the proof for operations. Given a
model J for KD, each y ∈ CJf(P1,...,Pm) is connected to elements of CJ , PJ

1 , . . . ,

PJ
m , RJ via roles rJ1 , . . . , rJm+2, respectively; y participates to each rJi exactly

once, as first component. The instantiation I, built from J as shown above,
populates fI(P1,...,Pm) with m+2-tuples (d0, d1, . . . , dm+1) that correspond to the

elements of CJf(P1,...,Pm), and such that each di is the second component of rJi .
In particular, each parameter and return value of f(P1,...,Pm) is correctly typed
and, from J and the tree model property, f(P1,...,Pm) is a function from the
invocation object and the parameters to the result value. Hence, I correctly
instantiates f(P1,...,Pm).

Note that the notion of correctness that can be adopted for the encoding
in ALCQI is the one that results from Theorem 7.2. Such a notion is much
weaker than the one for the encoding in DLRifd given by Theorem 6.6. Indeed,
differently from the encoding in DLRifd , the encoding in ALCQI does not
preserve models since ALCQI is not equipped with means to express n-ary
relations and identification and functional dependency constrains, which are
needed to fully express UML class diagrams. However, as Theorem 7.2 shows,
the encoding in ALCQI preserves enough semantics to carry out sound and
complete reasoning on UML class diagrams.

Finally, note that the size of the ALCQI knowledge base KD, obtained by
encoding a UML class diagram D in ALCQI, is linear in the size of D. Hence
the EXPTIME upper bound for reasoning on UML class diagrams is preserved
by the encoding in ALCQI.
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7.3 Description Logics Reasoners

Current state-of-the-art DL reasoning systems [18,19,42] support arbitrary
complex ALCQI knowledge bases and implement sound and complete rea-
soning algorithms. These algorithms are based on tableaux techniques [43]
and, although not optimal from the computational complexity point of view,
are highly optimized and exhibit good average case performance [44].

Two of the best-known systems are FaCT 17 , developed at the University of
Manchester [18,41,29] and Racer 18 , developed at the Hamburg University
of Science and Technology [19,45]. Both these systems perform a preliminary
classification (see [46]) of the concepts of the ALCQI knowledge base. Clas-
sification iteratively computes, by subsequent subsumption tests, a taxonomy
of classes, making explicit all subsumption relationships among the concepts
of the knowledge base. Once this classification step is performed, reasoning
services can take advantage of it to speed up inferences.

Encoding a UML class diagram in an ALCQI knowledge base allows the
designer of the diagram for exploiting the reasoning services offered by DL
reasoners. In such a way, relevant properties of the diagram can be formally
verified, as discussed in Section 3. Indeed, classification builds a hierarchy of
the (concepts corresponding to the) UML classes belonging to the diagram.
This hierarchy reflects the various constraints that the diagram enforces on the
classes, as well as their properties and the relations among them. In the next
section, we apply these ideas to an application domain of industrial interest.

8 A Case Study

In the previous section we showed that UML class diagrams can be encoded
as ALCQI knowledge bases preserving enough semantics to keep reasoning
sound and complete. On the other handALCQI is a DL that can be dealt with
by current state-of-the-art DL-based systems. Hence these systems could serve
as a core reasoning engine in advanced CASE tools equipped with automated
reasoning capabilities on UML class diagrams. In order to verify such an idea,
we did some experimentation both on UML class diagrams developed for ed-
ucational purposes, and on UML class diagrams of industrial interest [47,48].
In this section we give a brief overview of the latter experience with an indus-
trial scale example, namely, the UML class diagrams forming the Common
Information Model.

17 http://www.cs.man.ac.uk/~horrocks/FaCT/
18 http://www.sts.tu-harburg.de/~r.f.moeller/~racer/
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Common Information Model (CIM) 19 is a model defined by the Distributed
Management Task Force (DMTF), with the purpose of providing a rigorous ap-
proach for modeling systems and networks using the object-oriented paradigm.
CIM has a Meta Schema, expressed as a set of UML class diagrams that form
the basis of a sort of vocabulary for analyzing and describing managed systems.
According to the particular needs of a given application, such schemas can be
extended through subclassing to include aspects specific to the application.
CIM offers three main conceptual schemas, each expressed as a UML class
diagram: the Core Model, the Common Model and the Extension Schemas.
The Core Model and the Common Model together form the CIM Schema.

• The Core Model is an information model capturing basic notions that are
applicable to all areas of management (e.g., logical device or system com-
ponent).

• The Common Model is an information model that expresses concepts re-
lated to specific management areas, but still independent of a particular
technology or implementation. The common areas defined in the Common
Model are: Systems, Devices, Applications, Networks, and Physical.

• Extension Schemas are made up of classes that represent managed objects
that are technology specific additions to the Common Model.

Such schemas are constituted by UML class diagrams of substantial size (hun-
dreds of classes and of associations) and include multiplicity constraints on
binary association and aggregations, class and association hierarchies, cover-
ing and disjointness constraints. Such diagrams are written in MOF (Meta
Object Facility) format, so as to be easily used in applications such as meta-
information repositories, software development management systems, infor-
mation management systems, and data warehousing.

We make use of a translator that reads a MOF file and generates an ALCQI
knowledge base that corresponds to the UML class diagram described in the
MOF file [48]. The ALCQI knowledge base resulting from the translation is
classified using a DL-based system, namely FaCT or Racer. Observe that
this step, although exponential in theory, takes just a few seconds on standards
machines for each of the CIM models above on both FaCT and Racer. Once
these preliminary steps are done, we are ready to ask for interesting properties
of the UML class diagrams, making use of reasoning provided by the DL-
based systems on the ALCQI counterpart of the diagrams. Typically, these
properties can be verified in fractions of seconds.

The UML class diagrams forming CIM are very well designed making most in-
teresting properties explicitly available or verifiable by scanning the diagram,
and avoiding redundancy as much as possible. However, by automated rea-

19 http://www.dmtf.org/standards/cim/
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soning, we were able to show, in few cases indeed, that it is possible to refine
the diagrams in order to make explicit some properties otherwise hidden in
the interaction of the various classes and associations. Here we illustrate one
of such cases.

Example 8.1 We focus on the CIM Core Model and, in particular, on the
sub-schema shown in Figure 24, which is taken from the CIM specification. 20

This sub-schema models the relation between managed system elements and
their statistical information. Since there may be different kinds of statistical
information, depending on the managed system element it refers to, the class
StatisticalInformation and the association class related to association Statistics
have several sub-classes. The latter information is not shown in the fragment of
the CIM Core Model in Figure 24. Observe also that there is an implicit cover-
ing constraint and a disjointness constraint on each ISA hierarchy. Therefore,
each child of Statistics contains tuples that are made up of elements from one
sub-class of ManagedSystemElement and the suitable sub-class of StatisticalIn-
formation. Additionally, each element of the sub-classes of StatisticalInformation
participates exactly once to the suitable association sub-classes of Statistics.

Now we can wonder whether an instance of StatisticalInformation has to par-
ticipate exactly once to the association Statistics; observe that this is not
explicitly written in the diagram. Let Kcm be the ALCQI knowledge base
corresponding to the UML class diagram of the CIM Core Model. What we
want to know can be checked by asking for the (un)satisfiability of the con-
cept (≥ 2 r−1 .Statistics) t ¬∃r−1 .Statistics with respect to Kcm, where we are
assuming that class StatisticalInformation participates to association Statistics
via role r1.

The answer the reasoners provide to this inference query is “No”. Let us
explain why. The covering and disjointness constraints impose that each tuple
of Statistics belongs to exactly one of its sub-classes and that each element
of StatisticalInformation belongs to exactly one of its children. Hence, if an
instance of StatisticalInformation participates twice to association Statistics,
since it belongs to exactly one of the sub-classes of StatisticalInformation, then
the maximal multiplicity related to it is violated. On the other hand, if an
instance does not participate at all in the association Statistics, then, by the
same reason, the minimal multiplicity is violated.

As a result we can refine the multiplicity of the participation of instances of
the class StatisticalInformation to the association Statistics and state that such
a multiplicity is 1..1, instead of just 0..∗. 21

20 http://www.dmtf.org/standards/cim/cim_schema_v26.php
21 Note that, as indicated in the CIM Core Model, all classes in the same hierarchy
participate to associations in the same hierarchy with the same role.
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Fig. 24. A fragment of the CIM Core Model UML class diagram
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Observe that leave out such a refinement may have been a design choice in
specifying the CIM diagrams. The point here is not to detect a bug on the
CIM Core Model, but to show that automated tools can point out implicit
consequences of what is explicitly represented. ¤

9 Related Work

Several works in the literature tackle the task of establishing a common formal
understanding of UML diagrams, including UML class diagrams. However, to
the best of our knowledge, none of them has the explicit goal of building
a solid basis for allowing automated reasoning techniques that are sound,
complete, and terminating. Additionally, a complexity characterization, such
as the one that we propose here for UML class diagrams, is missing for all
UML diagrams. In what follows, we review some of the most relevant papers
on the formalization of UML class diagrams.

In [49–51] formalizations are reported that tackle the precursors of UML,
namely Rumbaugh’s Object Modeling Technique (OMT) diagrams [52] and
Jacobson’s Object-Oriented Software Engineering [53]. In [49] the authors pro-
pose a FOL based formalization for OMT’s diagrams and in particular for the
object models (OMT’s and OOSE’s equivalent of UML class diagrams). In [50]
the authors formalize an object model in terms of an algebraic specification
and its instance diagram 22 in terms of an algebra: the semantics of the object
model is the set of algebras which are consistent which the algebraic specifica-
tion of that model. In [51], OOSE object diagrams are extended by annotations
expressed in object oriented formal specification languages. Similar studies on
formalizing general object-oriented constructs are reported in [54,55]. All these
studies can be readily applied to UML as well. However, automated reasoning
is not considered therein.

More recently, in [4] a formal semantics, in terms of the specification lan-
guage Z (also based on FOL), is given to UML class diagrams, in order to
characterize well-formed diagrams. Then, the author proposes a way to ex-
tract hidden information on the class diagrams, by performing a sequence of
diagram transformations. Intuitively, a claim to be proved is encoded in terms
of a “target UML class diagram”: this claim holds if and only if it is possible to
apply a set of semantic-preserving transformations that lead from the original
UML class diagram to the target one. While this can be considered a form of
reasoning, it requires human intervention and it is not guaranteed to be com-
plete. Another approach to formalize UML class diagrams, also based on Z,

22 Instance diagrams are obtained by populating their corresponding object models
with elements from the application domain.

51



is proposed in [56]. These approaches essentially exploit a reduction to FOL,
similar to the one presented here; however, no guarantee on the decidability
of reasoning is given.

Instead, the precise UML (pUML) group 23 has the much broader goal of
giving a semantics to the whole of UML [2,3,57–59]. Their work is based on the
idea of establishing a formal semantics for a core set of constructs in the various
UML diagrams, and relate them to each other and to the remaining constructs
(possibly across different diagrams) via a meta-modeling language. A meta-
model based approach is also taken in [60], where the authors formalize UML
meta-models and the mapping between them. Intuitively, the authors propose
a mapping from a source meta-model, which in particular can be a UML
meta-model (expressed as UML class diagrams, and representing any UML
diagram), to a target meta-model, which is associated to the formal language
used in the formalization of the UML diagram. The mapping between these
two meta-models has to be a homomorphism in order to keep basic properties
of the meta-models unchanged. Properties of the source meta-model can be
proved once proved on the target meta-model. Again, automated reasoning is
not addressed.

Finally, as mentioned, there has been a line of research on developing reasoning
tools for conceptual and object oriented data models (e.g., [11–17,22,24]).
Observe that the hardness results reported here can be applied to several
conceptual data models studied in those papers.

10 Conclusions

In this paper we have shown that reasoning on UML class diagrams can be
quite a complex task. Indeed we have proved that it is EXPTIME-complete,
without considering arbitrary OCL constraints (which would lead to undecid-
ability). This result suggests that it is highly desirable to provide automated
reasoning support for detecting relevant properties of the diagram. With re-
spect to this, we have shown that the DL ALCQI, implemented in current
state-of-the-art DL-based systems, is already equipped with the capabilities
necessary to reason on UML class diagrams. The experimentation we did,
while certainly limited and not providing a definitive answer, indicate that
current state-of-the-art DL-based systems are ready to serve as a core reason-
ing engine in advanced CASE tools.

Various issues remain to be addressed. First of all, the reasoning tasks we have
analyzed in this paper do not include reasoning on keys and identification con-

23 http://puml.org/
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straints. While these are not among the basic reasoning services that should
be supported, they may be of interest for dealing with class diagrams in which
keys are introduced for classes, together with complex class hierarchies. Such
forms of reasoning can be directly supported in DLRifd [9]. Instead, DL-based
systems need to be substantially enhanced to fully implement DLRifd (in par-
ticular sophisticated abilities to deal with individuals need to be added). An-
other aspect that deserves further treatment are multiplicities on associations
of arbitrary arity, which UML defines to be look-across [21,61]. Reasoning on
look-across multiplicity constraints is largely unexplored. While multiplicities
on n-ary associations appear rarely in UML class diagrams, more work needs
to be done to understand their interaction with other constructs in order to
take them into account during reasoning. It is also of interest to characterize
interesting fragments of OCL constraints that do not lead to undecidability.
Although we did not treat it in this paper, DLRifd (and even ALCQI) can
express interesting forms of OCL constraints, such as rich typing restrictions
on associations and refinement of properties along class hierarchies.

Finally, it is worth noting that the results presented here hold also for other
conceptual modeling formalisms typically used in software engineering and
databases. In particular, the EXPTIME-completeness result applies to the
Entity-Relationship model enhanced with ISA on entities and relationships [20].
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[26] R. Hähnle, Tableaux and related methods, in: Robinson and Voronkov [62],
Ch. 3, pp. 100–178.

[27] F. M. Donini, M. Lenzerini, D. Nardi, A. Schaerf, Reasoning in description
logics, in: G. Brewka (Ed.), Principles of Knowledge Representation, Studies in
Logic, Language and Information, CSLI Publications, 1996, pp. 193–238.

[28] I. Horrocks, Using an expressive description logic: FaCT or fiction?, in: Proc.
of the 6th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR’98), 1998, pp. 636–647.

[29] I. Horrocks, P. F. Patel-Schneider, Optimizing description logic subsumption,
J. of Logic and Computation 9 (3) (1999) 267–293.
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