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First-order logic

I First-order logic (FOL) is the logic to speak about objects, which are
the domain of discourse or universe.

I FOL is concerned about properties of these objects and relations
over objects (resp., unary and n-ary predicates).

I FOL also has functions including constants that denote objects.



FOL syntax – Terms

We first introduce:

I A set Vars = {x
1

, . . . , xn} of individual variables (i.e., variables that
denote single objects).

I A set of functions symbols, each of given arity � 0.
Functions of arity 0 are called constants.

Def.: The set of Terms is defined inductively as follows:

I Vars ✓ Terms;

I If t
1

, . . . , tk 2 Terms and f k is a k-ary function symbol, then
f k(t

1

, . . . , tk) 2 Terms;

I Nothing else is in Terms.

FOL syntax – Formulas

Def.: The set of Formulas is defined inductively as follows:

I If t
1

, . . . , tk 2 Terms and Pk is a k-ary predicate, then
Pk(t

1

, . . . , tk) 2 Formulas (atomic formulas).

I If t
1

, t
2

2 Terms, then t
1

= t
2

2 Formulas.
I If ' 2 Formulas and  2 Formulas then

I ¬' 2 Formulas

I ' ^  2 Formulas

I ' _  2 Formulas

I '!  2 Formulas

I If ' 2 Formulas and x 2 Vars then
I 9x .' 2 Formulas

I 8x .' 2 Formulas

I Nothing else is in Formulas.

Note: a predicate of arity 0 is a proposition of propositional logic.



Interpretations

Given an alphabet of predicates P
1

,P
2

, . . . and functions f
1

, f
2

, . . ., each
with an associated arity, a FOL interpretation is:

I = (�I ,PI
1

,PI
2

, . . . , f I
1

, f I
2

, . . .)

where:

I �I is the domain (a set of objects)

I if Pi is a k-ary predicate, then PI
i ✓ �I ⇥ · · ·⇥�I (k times)

I if fi is a k-ary function, then f Ii : �I ⇥ · · ·⇥�I �! �I (k times)

I if fi is a constant (i.e., a 0-ary function), then f Ii : () �! �I

(i.e., fi denotes exactly one object of the domain)

Assignment

Let Vars be a set of (individual) variables.

Def.: Given an interpretation I, an assignment is a function

↵ : Vars �! �I

that assigns to each variable x 2 Vars an object ↵(x) 2 �I .

It is convenient to extend the notion of assignment to terms. We can do
so by defining a function ↵̂ : Terms �! �I inductively as follows:

I ↵̂(x) = ↵(x), if x 2 Vars

I ↵̂(f (t
1

, . . . , tk)) = f I(↵̂(t
1

), . . . , ↵̂(tk))

Note: for constants ↵̂(c) = cI .



Truth in an interpretation wrt an assignment

We define when a FOL formula ' is true in an interpretation I wrt an
assignment ↵, written I,↵ |= ':

I I,↵ |= P(t
1

, . . . , tk) if (↵̂(t
1

), . . . , ↵̂(tk)) 2 PI

I I,↵ |= t
1

= t
2

if ↵̂(t
1

) = ↵̂(t
2

)

I I,↵ |= ¬' if I,↵ 6|= '

I I,↵ |= ' ^  if I,↵ |= ' and I,↵ |=  

I I,↵ |= ' _  if I,↵ |= ' or I,↵ |=  

I I,↵ |= '!  if I,↵ |= ' implies I,↵ |=  

I I,↵ |= 9x .' if for some a 2 �I we have I,↵[x 7! a] |= '

I I,↵ |= 8x .' if for every a 2 �I we have I,↵[x 7! a] |= '

Here, ↵[x 7! a] stands for the new assignment obtained from ↵ as
follows:

↵[x 7! a](x) = a
↵[x 7! a](y) = ↵(y) for y 6= x

Open vs. closed formulas

Definitions

I A variable x in a formula ' is free if x does not occur in the scope
of any quantifier, otherwise it is bounded.

I An open formula is a formula that has some free variable.

I A closed formula, also called sentence, is a formula that has no free
variables.

For closed formulas (but not for open formulas) we can define what it
means to be true in an interpretation, written I |= ', without mentioning
the assignment, since the assignment ↵ does not play any role in
verifying I,↵ |= '.

Instead, open formulas are strongly related to queries — cf. relational
databases.



FOL queries

Def.: A FOL query is an (open) FOL formula.

When ' is a FOL query with free variables (x
1

, . . . , xk), then we
sometimes write it as '(x

1

, . . . , xk), and say that ' has arity k .

Given an interpretation I, we are interested in those assignments that
map the variables x

1

, . . . , xk (and only those). We write an assignment ↵
s.t. ↵(xi ) = ai , for i = 1, . . . , k , as ha

1

, . . . , aki.

Def.: Given an interpretation I, the answer to a query
'(x

1

, . . . , xk) is
'(x

1

, . . . , xk)I = {(a
1

, . . . , ak) | I, ha1, . . . , aki |= '(x
1

, . . . , xk)}
Note: We will also use the notation 'I , which keeps the free variables
implicit, and '(I) making apparent that ' becomes a functions from
interpretations to set of tuples.

FOL boolean queries

Def.: A FOL boolean query is a FOL query without free
variables.

Hence, the answer to a boolean query '() is defined as follows:

'()I = {() | I, hi |= '()}

Such an answer is

I (), if I |= '

I ;, if I 6|= '.

As an obvious convention we read () as “true” and ; as “false”.



FOL formulas: logical tasks

Definitions

I Validity: ' is valid i↵ for all I and ↵ we have that I,↵ |= '.

I Satisfiability: ' is satisfiable i↵ there exists an I and ↵ such that
I,↵ |= ', and unsatisfiable otherwise.

I Logical implication: ' logically implies  , written ' |=  i↵ for all I
and ↵, if I,↵ |= ' then I,↵ |=  .

I Logical equivalence: ' is logically equivalent to  , i↵ for all I and
↵, we have that I,↵ |= ' i↵ I,↵ |=  (i.e., ' |=  and  |= ').

FOL queries – Logical tasks

I Validity: if ' is valid, then 'I = �I ⇥ · · ·⇥�I for all I, i.e., the
query always returns all the tuples of I.

I Satisfiability: if ' is satisfiable, then 'I 6= ; for some I, i.e., the
query returns at least one tuple.

I Logical implication: if ' logically implies  , then 'I ✓  I for all I,
written ' ✓  , i.e., the answer to ' is contained in that of  in
every interpretation. This is called query containment.

I Logical equivalence: if ' is logically equivalent to  , then 'I =  I

for all I, written ' ⌘  , i.e., the answer to the two queries is the
same in every interpretation. This is called query equivalence and
corresponds to query containment in both directions.

Note: These definitions can be extended to the case where we have
axioms, i.e., constraints on the admissible interpretations.



Query evaluation

Let us consider:

I a finite alphabet, i.e., we have a finite number of predicates and
functions, and

I a finite interpretation I, i.e., an interpretation (over the finite
alphabet) for which �I is finite.

Then we can consider query evaluation as an algorithmic problem, and
study its computational properties.

Note: To study the computational complexity of the problem, we need to
define a corresponding decision problem.

Query evaluation problem

Definitions

I Query answering problem: given a finite interpretation I and a FOL
query '(x

1

, . . . , xk), compute

'I = {(a
1

, . . . , ak) | I, ha1, . . . , aki |= '(x
1

, . . . , xk)}

I Recognition problem (for query answering): given a finite
interpretation I, a FOL query '(x

1

, . . . , xk), and a tuple (a
1

, . . . , ak),
with ai 2 �I , check whether (a

1

, . . . , ak) 2 'I , i.e., whether

I, ha
1

, . . . , aki |= '(x
1

, . . . , xk)

Note: The recognition problem for query answering is the decision
problem corresponding to the query answering problem.



Query evaluation algorithm

We define now an algorithm that computes the function Truth(I,↵,')
in such a way that Truth(I,↵,') = true i↵ I,↵ |= '.

We make use of an auxiliary function TermEval(I,↵, t) that, given an
interpretation I and an assignment ↵, evaluates a term t returning an
object o 2 �I :

�I TermEval(I,↵,t) {
if (t is x 2 Vars)

return ↵(x);
if (t is f (t 1, . . . , t k))

return f

I(TermEval(I,↵,t 1),...,TermEval(I,↵,t k));
}

Then, Truth(I,↵,') can be defined by structural recursion on '.

Query evaluation algorithm (cont’d)

boolean Truth(I,↵,') {

if (' is t 1 = t 2)

return TermEval(I,↵,t 1) = TermEval(I,↵,t 2);

if (' is P(t 1, . . . , t k))

return PI
(TermEval(I,↵,t 1),...,TermEval(I,↵,t k));

if (' is ¬ )
return ¬Truth(I,↵, );

if (' is  �  0)
return Truth(I,↵, ) � Truth(I,↵, 0);

if (' is 9x . ) {

boolean b = false;

for all (a 2 �

I
)

b = b _ Truth(I,↵[x 7! a], );
return b;

}

if (' is 8x . ) {

boolean b = true;

for all (a 2 �

I
)

b = b ^ Truth(I,↵[x 7! a], );
return b;

}

}



Query evaluation – Results

Theorem (Termination of Truth(I,↵,'))
The algorithm Truth terminates.

Proof. Immediate.

Theorem (Correctness)
The algorithm Truth is sound and complete, i.e., I,↵ |= ' if and only if
Truth(I,↵,') = true.

Proof. Easy, since the algorithm is very close to the semantic definition
of I,↵ |= '.

Query evaluation – Time complexity I

Theorem (Time complexity of Truth(I,↵,'))
The time complexity of Truth(I,↵,') is O((|I|+ |↵|+ |'|)|'|), i.e.,
polynomial in the size of I and exponential in the size of '.

Proof.

I f I (of arity k) can be represented as k-dimensional array, hence
accessing the required element can be done in time linear in |I|.

I TermEval(. . .) visits the term, so it generates a linear number of
recursive calls, hence its time cost is O(|'| · (|I|+ |↵|)), i.e.,
polynomial time in (|I|+ |↵|+ |'|).

I PI (of arity k) can be represented as k-dimensional boolean array,
hence accessing the required element can be done in time linear in
|I|.

I Truth(. . .) for the boolean cases simply visits the formula, so
generates either one or two recursive calls.



Query evaluation – Time complexity II

I Truth(. . .) for the quantified cases 9x .' and 8x . involves looping
for all elements in �I and testing the resulting assignments.

I The total number of such testings is O(|�I |]Vars).

Considering that
O((|'| · (|I|+ |↵|)) · |�I |]Vars)  O(|I|+ |↵|+ |'|)(2+|'|)), the claim
holds.

Query evaluation – Space complexity I

Theorem (Space complexity of Truth(I,↵,'))
The space complexity of Truth(I,↵,') is O(|'| · (|'| · log |I|)), i.e.,
logarithmic in the size of I and polynomial in the size of '.

Proof.

I f I(. . .) can be represented as k-dimensional array, hence accessing
the required element requires O(log |I|);

I TermEval(. . .) simply visits the term, so it generates a linear
number of recursive calls. Each activation record has a size
O(log |I|) to evaluate the function call it represent, and we need
O(|'|) activation records;

I PI(. . .) can be represented as k-dimensional boolean array, hence
accessing the required element requires O(log |I|);

I Truth(. . .) for the boolean cases simply visits the formula, so
generates either one or two recursive calls, each requiring constant
size;

I Truth(. . .) for the quantified cases 9x .' and 8x . involves looping
for all elements in �I and testing the resulting assignments;



Query evaluation – Space complexity II

I The total number of activation records that need to be at the same
time on the stack is O(]Vars).

Hence, we have O(]Vars · (|'| · log(|I|))  O(|'| · (|'| · log(|I|)) the
claim holds.

Note: the worst case form for the formula is

8x
1

.9x
2

. · · · 8xn�1

.9xn.P(x1, x2, . . . , xn�1

, xn).

Query evaluation – Complexity measures [Var82]

Definition (Combined complexity)
The combined complexity is the complexity of {hI,↵,'i | I,↵ |= '},
i.e., interpretation, tuple, and query are all considered part of the input.

Definition (Data complexity)
The data complexity is the complexity of {hI,↵i | I,↵ |= '}, i.e., the
query ' is fixed (and hence not considered part of the input).

Definition (Query complexity)
The query complexity is the complexity of {h↵,'i | I,↵ |= '}, i.e., the
interpretation I is fixed (and hence not considered part of the input).



Query evaluation – Combined, data, query complexity

Theorem (Combined complexity of query evaluation)
The complexity of {hI,↵,'i | I,↵ |= '} is:

I time: exponential
I space: PSpace-complete — see [Var82] for hardness

Theorem (Data complexity of query evaluation)
The complexity of {hI,↵i | I,↵ |= '} is:

I time: polynomial
I space: LogSpace

Theorem (Query complexity of query evaluation)
The complexity of {h↵,'i | I,↵ |= '} is:

I time: exponential
I space: PSpace-complete — see [Var82] for hardness

Example
We consider FOL interpretations exactly as used in relational databases. This
requires to drop functions except for constants. Moreover we assume that the
interpretation of constants is the identity function, that is constants are
interpreted as themselves. This allows us to drop also the interpretation of
constants from our interpretations, which now have the form:

I = (�I ,PI
1

,PI
2

, . . . ,PI
n ).

Interpretation: I is as follows (also given in relational notation):

I �I = {john, paul , george,mick, ny , london, 0, 1, . . . , 100}
I

Person

I = {(john, 30), (paul , 60), (george, 35), (mick, 35)}
I

Lives

I = {(john, ny), (paul , ny), (george, london), (mick, london)}
I

Manages

I = {(paul , john), (george,mick), (paul ,mick)}
Person

I

name age

john 30
paul 60
george 35
mick 35

Lives

I

name city

john ny
paul ny
george london
mick london

Manages

I

boss emp. name

paul john
george mick
paul mick

Query: find name and age of persons who live in the same city as their boss.

9z ,w .Person(x , y) ^Manages(z , x) ^ Lives(x ,w) ^ Lives(z ,w)



Example - Interpretation

Consider the following interpretation I:
I �I is equal to the active domain: all objects occurring in any predicate

extension.

I
Sailors

I see table below

I
Boats

I see table below

I
Reserves

I see table below

Sailors

I

sid sname

22 dustin
31 lubber
58 rusty

Boats

I

bid color

101 red
102 green
103 red
104 blue

Reserves

I

sid bid day

22 101 10/10/96
58 103 11/12/96

Example - Queries

I Find the names of the sailors who have reserved boat 103.

I Find the names of the sailors who have reserved a red boat.

I Find the colors of the boats reserved by Bob.

I Find the names of the sailors who have reserved at least one boat.

I Find the names of the sailors who have reserved a red and a green boat.

I Find the names of the sailors who have reserved a red or a green boat.

I Find the names of the sailors who have reserved at least two boats.

I Find the names of the sailors who have not reserved a red boat.

I Find the names of the sailors who have reserved all boats.

I Find the names of the sailors who have reserved all red boats.



Example - Queries
I Find the names of the sailors who have reserved boat 103.

9x .Sailors(x , y) ^ 9w .Reserves(x , 103, z)

q(y)  Sailors(x, y), Reserves(x, 103, z)

I Find the names of the sailors who have reserved a red boat.

9x .Sailors(x , y) ^ 9z ,w .Reserves(x , z ,w) ^ Boats(z , red)

q(y)  Sailors(x, y), Reserves(x, z, w), Boats(z, red)

I Find the colors of the boats reserved by Bob.

9x .Boats(x , y) ^ 9z ,w .Reserves(z , y ,w) ^ Sailor(z ,Bob)

q(y)  Boats(x, y), Reserves(z, y, w), Sailor(z, Bob)

I Find the names of the sailors who have reserved at least one boat.

9x .Sailors(x , y) ^ 9z ,w .Reserves(x , z ,w)

q(y)  Sailors(x, y), Reserves(x, z, w)

I Find the names of the sailors who have reserved a red and a green boat.

9x .S(x , y)^9z ,w .R(x , z ,w)^B(z , red)^9z 0,w 0.R(x , z 0,w 0)^B(z 0, green)

q(y)  Sailors(x, y), Reserves(x, z, w), Boats(s, red), Reserves(x, z0, w0), Boats(z0, green)
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I Find the names of the sailors who have reserved a red boat.

9x .Sailors(x , y) ^ 9z ,w .Reserves(x , z ,w) ^ Boats(z , red)

q(y)  Sailors(x, y), Reserves(x, z, w), Boats(z, red)

I Find the colors of the boats reserved by Bob.

9x .Boats(x , y) ^ 9z ,w .Reserves(z , y ,w) ^ Sailor(z ,Bob)

q(y)  Boats(x, y), Reserves(z, y, w), Sailor(z, Bob)

I Find the names of the sailors who have reserved at least one boat.

9x .Sailors(x , y) ^ 9z ,w .Reserves(x , z ,w)

q(y)  Sailors(x, y), Reserves(x, z, w)

I Find the names of the sailors who have reserved a red and a green boat.

9x .S(x , y)^9z ,w .R(x , z ,w)^B(z , red)^9z 0,w 0.R(x , z 0,w 0)^B(z 0, green)

q(y)  Sailors(x, y), Reserves(x, z, w), Boats(s, red), Reserves(x, z0, w0), Boats(z0, green)
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9x .Sailors(x , y)^9z ,w .Reserves(x , z ,w)^9z 0,w 0.Reserves(x , z 0,w 0)^z 6= z

0
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