Conjunctive Queries

Formal Methods

Giuseppe De Giacomo

Sapienza Università di Roma MSc in Engineering in Computer Science

・ロト ・雪 ・ ヨ ・ も ・ も うくぐ

Conjunctive queries (CQs)

Def.: A conjunctive query (CQ) is a FOL query of the form

 $\exists \vec{y}.conj(\vec{x},\vec{y})$

where $conj(\vec{x}, \vec{y})$ is a conjunction (i.e., an "and") of atoms and equalities, over the free variables \vec{x} , the existentially quantified variables \vec{y} , and possibly constants.

Note:

- CQs contain no disjunction, no negation, no universal quantification, and no function symbols besides constants.
- Hence, they correspond to relational algebra select-project-join (SPJ) queries.
- CQs are the most frequently asked queries.

Conjunctive queries and SQL – Example

Relational alphabet:

Person(name, age), Lives(person, city), Manages(boss, employee)

Query: find the name and the age of the persons who live in the same city as their boss.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conjunctive queries and SQL – Example

Relational alphabet: Person(name, age), Lives(person, city), Manages(boss, employee)

Query: find the name and the age of the persons who live in the same city as their boss.

Expressed in SQL:

SELECT P.name, P.age
FROM Person P, Manages M, Lives L1, Lives L2
WHERE P.name = L1.person AND P.name = M.employee AND
 M.boss = L2.person AND L1.city = L2.city

Conjunctive queries and SQL – Example

```
Relational alphabet:
Person(name, age), Lives(person, city), Manages(boss, employee)
```

Query: find the name and the age of the persons who live in the same city as their boss.

Expressed in SQL:

SELECT P.name, P.age
FROM Person P, Manages M, Lives L1, Lives L2
WHERE P.name = L1.person AND P.name = M.employee AND
 M.boss = L2.person AND L1.city = L2.city

Expressed as a CQ:

 $\exists b, e, p_1, c_1, p_2, c_2. \text{Person}(n, a) \land \text{Manages}(b, e) \land \text{Lives}(p1, c1) \land \text{Lives}(p2, c2) \land n = p1 \land n = e \land b = p2 \land c1 = c2$

Conjunctive queries and SQL – Example

```
Relational alphabet:
Person(name, age), Lives(person, city), Manages(boss, employee)
```

Query: find the name and the age of the persons who live in the same city as their boss.

Expressed in SQL:

SELECT P.name, P.age
FROM Person P, Manages M, Lives L1, Lives L2
WHERE P.name = L1.person AND P.name = M.employee AND
M.boss = L2.person AND L1.city = L2.city

Expressed as a CQ:

 $\exists b, e, p_1, c_1, p_2, c_2. \operatorname{Person}(n, a) \land \operatorname{Manages}(b, e) \land \operatorname{Lives}(p1, c1) \land \operatorname{Lives}(p2, c2) \land n = p1 \land n = e \land b = p2 \land c1 = c2$ Or simpler: $\exists b, c. \operatorname{Person}(n, a) \land \operatorname{Manages}(b, n) \land \operatorname{Lives}(n, c) \land \operatorname{Lives}(b, c)$

Datalog notation for CQs

A CQ $q = \exists \vec{y}.conj(\vec{x},\vec{y})$ can also be written using datalog notation as

 $q(\vec{x_1}) \leftarrow conj'(\vec{x_1}, \vec{y_1})$

where $conj'(\vec{x_1}, \vec{y_1})$ is the list of atoms in $conj(\vec{x}, \vec{y})$ obtained by equating the variables \vec{x} , \vec{y} according to the equalities in $conj(\vec{x}, \vec{y})$.

As a result of such an equality elimination, we have that $\vec{x_1}$ and $\vec{y_1}$ can contain constants and multiple occurrences of the same variable.

Def.: In the above query q, we call:

- $q(\vec{x_1})$ the head;
- $conj'(\vec{x_1}, \vec{y_1})$ the body;
- the variables in $\vec{x_1}$ the distinguished variables;
- the variables in \vec{y}_1 the non-distinguished variables.

Conjunctive queries – Example

- Consider an interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, E^{\mathcal{I}})$, where $E^{\mathcal{I}}$ is a binary relation note that such interpretation is a (directed) graph.
- The following CQ q returns all nodes that participate to a triangle in the graph:

 $\exists y, z. E(x, y) \land E(y, z) \land E(z, x)$

► The query *q* in datalog notation becomes:

$$q(x) \leftarrow E(x, y), E(y, z), E(z, x)$$

The query q in SQL is (we use Edge(f,s) for E(x,y): SELECT E1.f FROM Edge E1, Edge E2, Edge E3 WHERE E1.s = E2.f AND E2.s = E3.f AND E3.s = E1.f

Nondeterministic evaluation of CQs

Since a CQ contains only existential quantifications, we can evaluate it by:

- 1. guessing a truth assignment for the non-distinguished variables;
- 2. evaluating the resulting formula (that has no quantifications).

```
boolean ConjTruth(\mathcal{I}, \alpha, \exists \vec{y}.conj(\vec{x}, \vec{y})) {

GUESS assignment \alpha[\vec{y} \mapsto \vec{a}] {

return Truth(\mathcal{I}, \alpha[\vec{y} \mapsto \vec{a}], conj(\vec{x}, \vec{y}));

}
```

where Truth($\mathcal{I}, \alpha, \varphi$) is defined as for FOL queries, considering only the required cases.

```
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
    ・
```

Nondeterministic CQ evaluation algorithm

```
boolean Truth(\mathcal{I}, \alpha, \varphi) {
    if (\varphi is t_{-1} = t_{-2})
      return TermEval(\mathcal{I}, \alpha, t_{-1}) = TermEval(\mathcal{I}, \alpha, t_{-2});
    if (\varphi is P(t_{-1}, \ldots, t_{-k}))
    return P^{\mathcal{I}}(TermEval(\mathcal{I}, \alpha, t_{-1}), ..., TermEval(\mathcal{I}, \alpha, t_{-k}));
    if (\varphi is \psi \land \psi')
    return Truth(\mathcal{I}, \alpha, \psi) \land Truth(\mathcal{I}, \alpha, \psi');
}
\Delta^{\mathcal{I}} TermEval(\mathcal{I}, \alpha, t) {
    if (t is a variable x) return \alpha(x);
    if (t is a constant c) return c^{\mathcal{I}};
}
```

CQ evaluation - Combined, data, and query complexity

Theorem (Combined complexity of CQ evaluation)

 $\{ \langle \mathcal{I}, \alpha, q \rangle \mid \mathcal{I}, \alpha \models q \}$ is *NP-complete* — see below for hardness

- ► time: exponential
- space: polynomial

Theorem (Data complexity of CQ evaluation)

 $\{ \langle \mathcal{I}, \alpha \rangle \mid \mathcal{I}, \alpha \models q \}$ is LOGSPACE

- time: polynomial
- space: logarithmic

Theorem (Query complexity of CQ evaluation)

 $\{\langle \alpha, q \rangle \mid \mathcal{I}, \alpha \models q\}$ is *NP-complete* — see below for hardness

- ▶ time: exponential
- space: polynomial

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 りへぐ

3-colorability

A graph is k-colorable if it is possible to assign to each node one of k colors in such a way that every two nodes connected by an edge have different colors.

Def.: 3-colorability is the following decision problem Given a graph G = (V, E), is it 3-colorable?

Theorem *3-colorability is NP-complete.*

3-colorability

A graph is k-colorable if it is possible to assign to each node one of k colors in such a way that every two nodes connected by an edge have different colors.

Def.: 3-colorability is the following decision problem Given a graph G = (V, E), is it 3-colorable?

Theorem

3-colorability is NP-complete.

We exploit 3-colorability to show $\operatorname{NP}\nolimits$ -hardness of conjunctive query evaluation.

・ロト・4回ト・4回ト、4回ト、4回ト

Reduction from 3-colorability to CQ evaluation

Let G = (V, E) be a graph. We define:

- An Interpretation: $\mathcal{I} = (\Delta^{\mathcal{I}}, E^{\mathcal{I}})$ where:
 - $\Delta^{\mathcal{I}} = \{\mathbf{r}, \mathbf{g}, \mathbf{b}\}$
 - $E^{\mathcal{I}} = \{(\mathbf{r}, \mathbf{g}), (\mathbf{g}, \mathbf{r}), (\mathbf{r}, \mathbf{b}), (\mathbf{b}, \mathbf{r}), (\mathbf{g}, \mathbf{b}), (\mathbf{b}, \mathbf{g})\}$
- A conjunctive query: Let V = {x₁,...,x_n}, then consider the boolean conjunctive query defined as:

$$q_G = \exists x_1, \ldots, x_n . \bigwedge_{(x_i, x_j) \in E} E(x_i, x_j) \wedge E(x_j, x_i)$$

Theorem

G is 3-colorable iff $\mathcal{I} \models q_G$.

NP-hardness of CQ evaluation

The previous reduction immediately gives us the hardness for combined complexity.

Theorem *CQ* evaluation is *NP*-hard in combined complexity.

・ロト・日本・モート 中国・シタウ

$\operatorname{NP}\nolimits\xspace$ hardness of CQ evaluation

The previous reduction immediately gives us the hardness for combined complexity.

Theorem *CQ* evaluation is *NP*-hard in combined complexity.

Note: in the previous reduction, the interpretation does not depend on the actual graph. Hence, the reduction provides also the lower-bound for query complexity.

Theorem *CQ* evaluation is *NP*-hard in query (and combined) complexity.

Recognition problem and boolean query evaluation

Consider the recognition problem associated to the evaluation of a query q of arity k. Then

 $\mathcal{I}, \alpha \models q(x_1, \dots, x_k)$ iff $\mathcal{I}_{\alpha, \vec{c}} \models q(c_1, \dots, c_k)$

where $\mathcal{I}_{\alpha,\vec{c}}$ is identical to \mathcal{I} but includes new constants c_1, \ldots, c_k that are interpreted as $c_i^{\mathcal{I}_{\alpha,\vec{c}}} = \alpha(x_i)$.

That is, we can reduce the recognition problem to the evaluation of a boolean query.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Homomorphism

Let $\mathcal{I} = (\Delta^{\mathcal{I}}, P^{\mathcal{I}}, \dots, c^{\mathcal{I}}, \dots)$ and $\mathcal{J} = (\Delta^{\mathcal{J}}, P^{\mathcal{J}}, \dots, c^{\mathcal{J}}, \dots)$ be two interpretations over the same alphabet (for simplicity, we consider only constants as functions).

Def.: A homomorphism from \mathcal{I} to \mathcal{J} is a mapping $h: \Delta^{\mathcal{I}} \to \Delta^{\mathcal{J}}$ such that:

• $h(c^{\mathcal{I}}) = c^{\mathcal{J}}$ • $(o_1, \ldots, o_k) \in P^{\mathcal{I}}$ implies $(h(o_1), \ldots, h(o_k)) \in P^{\mathcal{J}}$

Note: An isomorphism is a homomorphism that is one-to-one and onto.

Theorem

FOL is unable to distinguish between interpretations that are isomorphic. *Proof.* See any standard book on logic.

Canonical interpretation of a (boolean) CQ

Let q be a conjunctive query $\exists x_1, \ldots, x_n.conj$

Def.: The canonical interpretation \mathcal{I}_q associated with q

is the interpretation $\mathcal{I}_q = (\Delta^{\mathcal{I}_q}, \mathcal{P}^{\mathcal{I}_q}, \dots, c^{\mathcal{I}_q}, \dots)$, where

- Δ^{I_q} = {x₁,...,x_n} ∪ {c | c constant occurring in q}, i.e., all the variables and constants in q;
- $c^{\mathcal{I}_q} = c$, for each constant c in q;
- $(t_1, \ldots, t_k) \in P^{\mathcal{I}_q}$ iff the atom $P(t_1, \ldots, t_k)$ occurs in q.

Canonical interpretation of a (boolean) CQ – Example

Consider the boolean query q

$$q(c) \leftarrow E(c, y), E(y, z), E(z, c)$$

Then, the canonical interpretation \mathcal{I}_{q} is defined as

$$\mathcal{I}_q = (\Delta^{\mathcal{I}_q}, E^{\mathcal{I}_q}, c^{\mathcal{I}_q})$$

where

Theorem ([CM77])

For boolean CQs, $\mathcal{I} \models q$ iff there exists a homomorphism from \mathcal{I}_q to \mathcal{I} .

Proof.

" \Rightarrow " Let $\mathcal{I} \models q$, let α be an assignment to the existential variables that makes q true in \mathcal{I} , and let $\hat{\alpha}$ be its extension to constants. Then $\hat{\alpha}$ is a homomorphism from \mathcal{I}_q to \mathcal{I} .

" \Leftarrow " Let *h* be a homomorphism from \mathcal{I}_q to \mathcal{I} . Then restricting *h* to the variables only we obtain an assignment to the existential variables that makes *q* true in \mathcal{I} .

Illustration of homomorphism theorem – Interpretation

Consider the following interpretation \mathcal{I} :

- $\Delta^{\mathcal{I}} = \{ john, paul, george, mick, ny, london, 0, \dots, 110 \}$
- $Person^{\mathcal{I}} = \{(john, 30), (paul, 60), (george, 35), (mick, 35)\}$
- $Lives^{\mathcal{I}} = \{(john, ny), (paul, ny), (george, london), (mick, london)\}$
- $Manages^{\mathcal{I}} = \{(paul, john), (george, mick), (paul, mick)\}$

In relational notation:

 $Person^{\mathcal{I}}$

		1
	IVAS	-
_	1003	

name	age		
john	30		
paul	60		
george	35		
mick	35		

$Manages^{\mathcal{I}}$

boss	emp. name			
paul	john			
george	mick			
paul	mick			

name	city		
john	ny		
paul	ny		
george	london		
mick	london		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Illustration of homomorphism theorem – Query

Consider the following query q:

 $q() \leftarrow Person(john, z), Manages(x, john), Lives(x, y), Lives(john, y)$

"There exists a manager that has john as an employee and lives in the same city of him?"

The canonical model \mathcal{I}_q is:

- $\Delta^{\mathcal{I}} = \{john, x, y, z\}$
- ▶ $john^{\mathcal{I}} = john$
- Person^{\mathcal{I}_q} = {(john, z)}
- Lives $\mathcal{I}_q = \{(john, y), (x, y)\}$
- $Manages^{\mathcal{I}_q} = \{(x, john)\}$

In relational notation:

Person ^I q		$\underline{Lives}^{\mathcal{I}_q}$		M_{2} m_{2} m_{2} m_{2}			
		name citv	Ivialiages				
name	age	-	iohn	N N		boss	emp. name
john	Z		John	y V		х	john
		l	~	У	ļ		

Illustration of homomorphism theorem – If-direction

Hp: $\mathcal{I} \models q$. **Th**: There exists an homomrphism $h : \mathcal{I}_q \to \mathcal{I}$. If $\mathcal{I} \models q$, then there exists an assignment $\hat{\alpha}$ such that $\langle \mathcal{I}, \alpha \rangle \models body(q)$:

- $\alpha(y) = ny$

Let us extend $\hat{\alpha}$ to constants:

• $\hat{\alpha}(john) = john$

 $h = \hat{lpha}$ is an homomorphism from \mathcal{I}_{q_1} to \mathcal{I} :

- ▶ $h(john^{\mathcal{I}_q}) = john^{\mathcal{I}}$? Yes!
- (john, z)) ∈ Person^{Iq} implies (h(john), h(z)) ∈ Person^I?
 Yes: (john, 30) ∈ Person^I;
- (john, x) ∈ Lives^{Iq} implies h(john), h(x)) ∈ Lives^I?
 Yes: (john, ny) ∈ Lives^I;
- $(x, y) \in Lives^{\mathcal{I}_q}$ implies $(h(x), h(y)) \in Lives^{\mathcal{I}}$? Yes: $(paul, ny) \in Lives^{\mathcal{I}}$;
- (x, john) ∈ Manages^I implies (h(x), h(john)) ∈ Manages^I?
 Yes: (paul, john) ∈ Manages^I.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Illustration of homomorphism theorem – Only-if-direction

Hp: There exists an homomrphism $h : \mathcal{I}_q \to \mathcal{I}$. **Th**: $\mathcal{I} \models q$. Let $h : \mathcal{I}_q \to \mathcal{I}$:

- h(john) = john;
- h(x) = paul;
- h(z) = 30;
- h(y) = ny.

Let us define an assignment α by restricting h to variables:

- $\alpha(x) = paul;$
- $\alpha(y) = ny$.

Then $\langle \mathcal{I}, \alpha \rangle \models body(q)$. Indeed:

- $(john, \alpha(z)) = (john, 30) \in Person^{\mathcal{I}};$
- $(\alpha(x), john) = (paul, john) \in Manages^{\mathcal{I}};$
- $(\alpha(x), \alpha(y)) = (paul, ny) \in Lives^{\mathcal{I}};$
- $(john, \alpha(y)) = (john, ny) \in Lives^{\mathcal{I}}$.

Canonical interpretation and (boolean) CQ evaluation

The previous result can be rephrased as follows:

(The recognition problem associated to) query evaluation can be reduced to finding a homomorphism.

Finding a homomorphism between two interpretations (aka relational structures) is also known as solving a Constraint Satisfaction Problem (CSP), a problem well-studied in AI – see also [KV98].

Observations

Theorem $\mathcal{I}_q \models q$ is always true.

Proof. By Chandra Merlin theorem: $\mathcal{I}_q \models q$ iff there exists homomorph. from \mathcal{I}_q to \mathcal{I}_q . Identity is one such homomorphism. \Box

Theorem

Let h be a homomorphism from \mathcal{I}_1 to \mathcal{I}_2 , and h' be a homomorphism from \mathcal{I}_2 to \mathcal{I}_3 . Then $h \circ h'$ is a homomorphism form \mathcal{I}_1 to \mathcal{I}_3 .

Proof. Just check that $h \circ h'$ satisfied the definition of homomorphism: i.e. $h'(h(\cdot))$ is a mapping from $\Delta^{\mathcal{I}_1}$ to $\Delta^{\mathcal{I}_3}$ such that:

The CQs characterizing property

Def.: Homomorphic equivalent interpretations

Two interpretations \mathcal{I} and \mathcal{J} are homomorphically equivalent if there is homomorphism $h_{\mathcal{I},\mathcal{J}}$ from \mathcal{I} to \mathcal{J} and homomorphism $h_{\mathcal{J},\mathcal{I}}$ from \mathcal{J} to \mathcal{I} .

Theorem (model theoretic characterization of CQs) CQs are unable to distinguish between interpretations that are homomorphic equivalent.

Proof. Consider any two homomorphically equivalent interpretations \mathcal{I} and \mathcal{J} with homomorphism $h_{\mathcal{I},\mathcal{J}}$ from \mathcal{I} to \mathcal{J} and homomorphism $h_{\mathcal{J},\mathcal{I}}$ from \mathcal{J} to \mathcal{I} .

- If I ⊨ q then there exists a homomorphism h from Iq to I. But then h ∘ h_{I,J} is a homomorphism from Iq to J, hence J ⊨ q.
- Similarly, if J ⊨ q then there exists a homomorphism g from I_q to J. But then g ∘ h_{J,I} is a homomorphism from I_q to I, hence I ⊨ q.

Query containment

Def.: Query containment

Given two FOL queries φ and ψ of the same arity, φ is contained in ψ , denoted $\varphi \subseteq \psi$, if for all interpretations \mathcal{I} and all assignments α we have that

 $\mathcal{I}, \alpha \models \varphi \quad \text{implies} \quad \mathcal{I}, \alpha \models \psi$

(In logical terms: $\varphi \models \psi$.)

Note: Query containment is of special interest in query optimization.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへぐ

Query containment

Def.: Query containment

Given two FOL queries φ and ψ of the same arity, φ is contained in ψ , denoted $\varphi \subseteq \psi$, if for all interpretations \mathcal{I} and all assignments α we have that

$$\mathcal{I}, \alpha \models \varphi \quad \text{implies} \quad \mathcal{I}, \alpha \models \psi$$

(In logical terms: $\varphi \models \psi$.)

Note: Query containment is of special interest in query optimization.

Theorem

For FOL queries, query containment is undecidable. *Proof.*: Reduction from FOL logical implication.

Query containment for CQs

For CQs, query containment $q_1(\vec{x}) \subseteq q_2(\vec{x})$ can be reduced to query evaluation.

- 1. Freeze the free variables, i.e., consider them as constants. This is possible, since $q_1(\vec{x}) \subseteq q_2(\vec{x})$ iff
 - $\mathcal{I}, \alpha \models q_1(\vec{x})$ implies $\mathcal{I}, \alpha \models q_2(\vec{x})$, for all \mathcal{I} and α ; or equivalently
 - *I*_{α,č} ⊨ *q*₁(*c*) implies *I*_{α,č} ⊨ *q*₂(*c*), for all *I*_{α,č}, where *c* are new constants, and *I*_{α,c} extends *I* to the new constants with *c*^{*I*_{α,c} = α(x).}
- 2. Construct the canonical interpretation $\mathcal{I}_{q_1(\vec{c})}$ of the CQ $q_1(\vec{c})$ on the left hand side ...
- 3. ... and evaluate on $\mathcal{I}_{q_1(\vec{c})}$ the CQ $q_2(\vec{c})$ on the right hand side, i.e., check whether $\mathcal{I}_{q_1(\vec{c})} \models q_2(\vec{c})$.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ● 三 ● 今 ○ ○

Reducing containment of CQs to CQ evaluation

Theorem ([CM77])

For CQs, $q_1(\vec{x}) \subseteq q_2(\vec{x})$ iff $\mathcal{I}_{q_1(\vec{c})} \models q_2(\vec{c})$, where \vec{c} are new constants. Proof.

- " \Rightarrow " Assume that $q_1(\vec{x}) \subseteq q_2(\vec{x})$.
 - Since $\mathcal{I}_{q_1(\vec{c})} \models q_1(\vec{c})$ it follows that $\mathcal{I}_{q_1(\vec{c})} \models q_2(\vec{c})$.

" \Leftarrow " Assume that $\mathcal{I}_{q_1(\vec{c})} \models q_2(\vec{c})$.

- By [CM77] on hom., for every *I* such that *I* ⊨ q₁(*c*) there exists a homomorphism *h* from *I*_{q1}(*c*) to *I*.
- On the other hand, since I_{q1(c)} ⊨ q2(c), again by [CM77] on hom., there exists a homomorphism h' from I_{q2(c)} to I_{q1(c)}.
- The mapping h ∘ h' (obtained by composing h and h') is a homomorphism from I_{q2(c)} to I. Hence, once again by [CM77] on hom., I ⊨ q2(c).

So we can conclude that $q_1(\vec{c}) \subseteq q_2(\vec{c})$, and hence $q_1(\vec{x}) \subseteq q_2(\vec{x})$.

Query containment for CQs

For CQs, we also have that (boolean) query evaluation $\mathcal{I} \models q$ can be reduced to query containment.

Let $\mathcal{I} = (\Delta^{\mathcal{I}}, P^{\mathcal{I}}, \dots, c^{\mathcal{I}}, \dots)$. We construct the (boolean) CQ $q_{\mathcal{I}}$ as follows:

- $q_{\mathcal{I}}$ has no existential variables (hence no variables at all);
- the constants in $q_{\mathcal{I}}$ are the elements of $\Delta^{\mathcal{I}}$;
- for each relation P interpreted in I and for each fact

 (a₁,..., a_k) ∈ P^I, q_I contains one atom P(a₁,..., a_k) (note that each a_i ∈ Δ^I is a constant in q_I).

Theorem For CQs, $\mathcal{I} \models q$ iff $q_{\mathcal{I}} \subseteq q$.

・ロマ・山下・ (山下・ (山下・ (日・)

Query containment for CQs - Complexity

From the previous results and NP-completenss of combined complexity of CQ evaluation, we immediately get:

Theorem

Containment of CQs is NP-complete.

Query containment for CQs – Complexity

From the previous results and NP-completenss of combined complexity of CQ evaluation, we immediately get:

Theorem

Containment of CQs is NP-complete.

Since CQ evaluation is NP-complete even in query complexity, the above result can be strengthened:

Theorem Containment $q_1(\vec{x}) \subseteq q_2(\vec{x})$ of CQs is NP-complete, even when q_1 is considered fixed.

・ロト・日本・ エー・ トー しょう

Union of conjunctive queries (UCQs)

Def.: A union of conjunctive queries (UCQ) is a FOL query of the form

$$\bigvee_{i=1,\ldots,n} \exists \vec{y}_i.conj_i(\vec{x},\vec{y}_i)$$

where each $conj_i(\vec{x}, \vec{y_i})$ is a conjunction of atoms and equalities with free variables \vec{x} and $\vec{y_i}$, and possibly constants.

Note: Obviously, each conjunctive query is also a of union of conjunctive queries.

Datalog notation for UCQs

A union of conjunctive queries

$$q = \bigvee_{i=1,\ldots,n} \exists \vec{y}_i.conj_i(\vec{x},\vec{y}_i)$$

is written in datalog notation as

$$\{ \begin{array}{rcl} q(\vec{x}) &\leftarrow & conj'_1(\vec{x},\vec{y_1}') \\ & \vdots \\ q(\vec{x}) &\leftarrow & conj'_n(\vec{x},\vec{y_n}') \end{array} \}$$

where each element of the set is the datalog expression corresponding to the conjunctive query $q_i = \exists \vec{y_i}.conj_i(\vec{x}, \vec{y_i})$.

Note: in general, we omit the set brackets.

Evaluation of UCQs

From the definition " \lor " in FOL we have that:

$$\mathcal{I}, \alpha \models \bigvee_{i=1,\ldots,n} \exists \vec{y}_i.conj_i(\vec{x}, \vec{y}_i)$$

if and only if

$$\mathcal{I}, \alpha \models \exists \vec{y_i}.conj_i(\vec{x}, \vec{y_i})$$
 for some $i \in \{1, \ldots, n\}$.

Hence to evaluate a UCQ q, we simply evaluate a number (linear in the size of q) of conjunctive queries in isolation.

Hence, evaluating UCQs has the same complexity as evaluating CQs.

UCQ evaluation - Combined, data, and query complexity

Theorem (Combined complexity of UCQ evaluation) $\{ \langle \mathcal{I}, \alpha, q \rangle \mid \mathcal{I}, \alpha \models q \}$ is *NP*-complete.

- ► time: exponential
- space: polynomial

Theorem (Data complexity of UCQ evaluation)

 $\{ \langle \mathcal{I}, q \rangle \mid \mathcal{I}, \alpha \models q \}$ is LOGSPACE-complete (query q fixed).

- time: polynomial
- space: logarithmic

Theorem (Query complexity of UCQ evaluation)

 $\{ \langle \alpha, q \rangle \mid \mathcal{I}, \alpha \models q \}$ is *NP*-complete (interpretation \mathcal{I} fixed).

- time: exponential
- space: polynomial

Query containment for UCQs

Theorem For UCQs, $\{q_1, \ldots, q_k\} \subseteq \{q'_1, \ldots, q'_n\}$ iff for each q_i there is a q'_i such

that $q_i \subseteq q'_i$.

Proof.

"⇐" Obvious.

" \Rightarrow " If the containment holds, then we have $\{q_1(\vec{c}), \ldots, q_k(\vec{c})\} \subseteq \{q'_1(\vec{c}), \ldots, q'_n(\vec{c})\}$, where \vec{c} are new constants:

- Now consider $\mathcal{I}_{q_i(\vec{c})}$. We have $\mathcal{I}_{q_i(\vec{c})} \models q_i(\vec{c})$, and hence $\mathcal{I}_{q_i(\vec{c})} \models \{q_1(\vec{c}), \dots, q_k(\vec{c})\}.$
- By the containment, we have that I_{q_i(c)} ⊨ {q'₁(c),...,q'_n(c)}. I.e., there exists a q'_i(c) such that I_{q_i(c)} ⊨ q'_i(c).
- ▶ Hence, by [CM77] on containment of CQs, we have $q_i \subseteq q'_i$. □

Query containment for UCQs - Complexity

From the previous result, we have that we can check $\{q_1, \ldots, q_k\} \subseteq \{q'_1, \ldots, q'_n\}$ by at most $k \cdot n$ CQ containment checks.

We immediately get:

Theorem Containment of UCQs is NP-complete.

< ロ > < 団 > < 三 > < 三 > < 三 < つ < で

References

[CM77] A. K. Chandra and P. M. Merlin.
 Optimal implementation of conjunctive queries in relational data bases.
 In Proc. of the 9th ACM Symp. on Theory of Computing (STOC'77), pages 77–90, 1977.

[KV98] P. G. Kolaitis and M. Y. Vardi.

Conjunctive-query containment and constraint satisfaction.

In Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS'98), pages 205–213, 1998.

[Var82] M. Y. Vardi.

The complexity of relational query languages.

In Proc. of the 14th ACM SIGACT Symp. on Theory of Computing (STOC'82), pages 137–146, 1982.