Conjunctive Queries

Formal Methods

Giuseppe De Giacomo

Sapienza Università di Roma MSc in Engineering in Computer Science

Conjunctive queries (CQs)

Def.: A conjunctive query (CQ) is a FOL query of the form

$$
\exists \vec{y} \cdot \operatorname{conj}(\vec{x}, \vec{y})
$$

where $\operatorname{conj}(\vec{x}, \vec{y})$ is a conjunction (i.e., an "and") of atoms and equalities, over the free variables \vec{x}, the existentially quantified variables \vec{y}, and possibly constants.

Note:

- CQs contain no disjunction, no negation, no universal quantification, and no function symbols besides constants.
- Hence, they correspond to relational algebra select-project-join (SPJ) queries.
- CQs are the most frequently asked queries.

Conjunctive queries and SQL - Example

Relational alphabet:
Person(name, age), Lives(person, city), Manages(boss, employee)
Query: find the name and the age of the persons who live in the same city as their boss.

Conjunctive queries and SQL - Example

Relational alphabet:
Person(name, age), Lives(person, city), Manages(boss, employee)
Query: find the name and the age of the persons who live in the same city as their boss.
Expressed in SQL:

```
SELECT P.name, P.age
FROM Person P, Manages M, Lives L1, Lives L2
WHERE P.name = L1.person AND P.name = M.employee AND
    M.boss = L2.person AND L1.city = L2.city
```


Conjunctive queries and SQL - Example

Relational alphabet:
Person(name, age), Lives(person, city), Manages(boss, employee)
Query: find the name and the age of the persons who live in the same city as their boss.
Expressed in SQL:

```
SELECT P.name, P.age
FROM Person P, Manages M, Lives L1, Lives L2
WHERE P.name = L1.person AND P.name = M.employee AND
    M.boss = L2.person AND L1.city = L2.city
```

Expressed as a CQ:
$\exists b, e, p_{1}, c_{1}, p_{2}, c_{2} . \operatorname{Person}(n, a) \wedge \operatorname{Manages}(b, e) \wedge \operatorname{Lives}(p 1, c 1) \wedge \operatorname{Lives}(p 2, c 2) \wedge$ $n=p 1 \wedge n=e \wedge b=p 2 \wedge c 1=c 2$

Conjunctive queries and SQL - Example

Relational alphabet:
Person(name, age), Lives(person, city), Manages(boss, employee)
Query: find the name and the age of the persons who live in the same city as their boss.

Expressed in SQL:

```
SELECT P.name, P.age
FROM Person P, Manages M, Lives L1, Lives L2
WHERE P.name = L1.person AND P.name = M.employee AND
    M.boss = L2.person AND L1.city = L2.city
```

Expressed as a CQ:
$\exists b, e, p_{1}, c_{1}, p_{2}, c_{2} . \operatorname{Person}(n, a) \wedge \operatorname{Manages}(b, e) \wedge \operatorname{Lives}(p 1, c 1) \wedge \operatorname{Lives}(p 2, c 2) \wedge$ $n=p 1 \wedge n=e \wedge b=p 2 \wedge c 1=c 2$
Or simpler: $\exists b, c . \operatorname{Person}(n, a) \wedge \operatorname{Manages}(b, n) \wedge \operatorname{Lives}(n, c) \wedge \operatorname{Lives}(b, c)$

Datalog notation for CQs

A CQ $q=\exists \vec{y} \cdot \operatorname{conj}(\vec{x}, \vec{y})$ can also be written using datalog notation as

$$
q\left(\vec{x}_{1}\right) \leftarrow \operatorname{conj}^{\prime}\left(\overrightarrow{x_{1}}, \overrightarrow{y_{1}}\right)
$$

where $\operatorname{conj}^{\prime}\left(\vec{x}_{1}, \overrightarrow{y_{1}}\right)$ is the list of atoms in $\operatorname{conj}(\vec{x}, \vec{y})$ obtained by equating the variables \vec{x}, \vec{y} according to the equalities in $\operatorname{conj}(\vec{x}, \vec{y})$.

As a result of such an equality elimination, we have that $\overrightarrow{x_{1}}$ and $\overrightarrow{y_{1}}$ can contain constants and multiple occurrences of the same variable.

Def.: In the above query q, we call:

- $q\left(\vec{x}_{1}\right)$ the head;
- $\operatorname{conj}^{\prime}\left(\overrightarrow{x_{1}}, \overrightarrow{y_{1}}\right)$ the body;
- the variables in \vec{x}_{1} the distinguished variables;
- the variables in $\overrightarrow{y_{1}}$ the non-distinguished variables.

Conjunctive queries - Example

- Consider an interpretation $\mathcal{I}=\left(\Delta^{\mathcal{I}}, E^{\mathcal{I}}\right)$, where $E^{\mathcal{I}}$ is a binary relation - note that such interpretation is a (directed) graph.
- The following CQ q returns all nodes that participate to a triangle in the graph:

$$
\exists y, z . E(x, y) \wedge E(y, z) \wedge E(z, x)
$$

- The query q in datalog notation becomes:

$$
q(x) \leftarrow E(x, y), E(y, z), E(z, x)
$$

- The query q in SQL is (we use Edge (f,s) for $E(x, y)$:

Since a CQ contains only existential quantifications, we can evaluate it by:

1. guessing a truth assignment for the non-distinguished variables;
2. evaluating the resulting formula (that has no quantifications).
```
boolean ConjTruth(\mathcal{I},\alpha,\exists\vec{y}.\operatorname{conj(\vec{x},\vec{y})) {}
    GUESS assignment \alpha[\vec{y}\mapsto\vec{a}]{
        return Truth(\mathcal{I},\alpha[\vec{y}\mapsto\vec{a}],\operatorname{conj}(\vec{x},\vec{y}));
}
```

where $\operatorname{Truth}(\mathcal{I}, \alpha, \varphi)$ is defined as for FOL queries, considering only the required cases.

Nondeterministic CQ evaluation algorithm

```
boolean Truth(\mathcal{I},\alpha,\varphi) {
    if ( }\varphi\mathrm{ is t_1=t_2)
        return TermEval(\mathcal{I},\alpha,t_1) = TermEval(\mathcal{I},\alpha,t_2);
    if ( }\varphi\mathrm{ is P(t_1, .., t_k))
        return }\mp@subsup{P}{}{\mathcal{I}}\mathrm{ (TermEval(I , , ,t_1), ..,TermEval(I I , , ,t_k));
    if ( }\varphi\mathrm{ is }\psi\wedge\mp@subsup{\psi}{}{\prime}
        return Truth(\mathcal{I},\alpha,\psi) ^ Truth(\mathcal{I},\alpha,\mp@subsup{\psi}{}{\prime});
}
\Delta I
    if (t is a variable x) return \alpha(x);
    if (t is a constant c) return c c
}
```


CQ evaluation - Combined, data, and query complexity

Theorem (Combined complexity of CQ evaluation)
$\{\langle\mathcal{I}, \alpha, q\rangle \mid \mathcal{I}, \alpha=q\}$ is NP-complete - see below for hardness

- time: exponential
- space: polynomial

Theorem (Data complexity of CQ evaluation) $\{\langle\mathcal{I}, \alpha\rangle \mid \mathcal{I}, \alpha \models q\}$ is LOGSPACE

- time: polynomial
- space: logarithmic

Theorem (Query complexity of CQ evaluation)

$\{\langle\alpha, q\rangle \mid \mathcal{I}, \alpha \models q\}$ is NP-complete - see below for hardness

- time: exponential
- space: polynomial

3-colorability

A graph is k-colorable if it is possible to assign to each node one of k colors in such a way that every two nodes connected by an edge have different colors.

Def.: 3-colorability is the following decision problem
Given a graph $G=(V, E)$, is it 3-colorable?

Theorem
3-colorability is NP-complete.

3-colorability

A graph is k-colorable if it is possible to assign to each node one of k colors in such a way that every two nodes connected by an edge have different colors.

Def.: 3-colorability is the following decision problem
Given a graph $G=(V, E)$, is it 3-colorable?

Theorem
3-colorability is NP-complete.
We exploit 3-colorability to show NP-hardness of conjunctive query evaluation.

Reduction from 3-colorability to CQ evaluation

Let $G=(V, E)$ be a graph. We define:

- An Interpretation: $\mathcal{I}=\left(\Delta^{\mathcal{I}}, E^{\mathcal{I}}\right)$ where:
- $\Delta^{\mathcal{I}}=\{r, g, b\}$
- $E^{\mathcal{I}}=\{(\mathrm{r}, \mathrm{g}),(\mathrm{g}, \mathrm{r}),(\mathrm{r}, \mathrm{b}),(\mathrm{b}, \mathrm{r}),(\mathrm{g}, \mathrm{b}),(\mathrm{b}, \mathrm{g})\}$
- A conjunctive query: Let $V=\left\{x_{1}, \ldots, x_{n}\right\}$, then consider the boolean conjunctive query defined as:

$$
q_{G}=\exists x_{1}, \ldots, x_{n} \cdot \bigwedge_{\left(x_{i}, x_{j}\right) \in E} E\left(x_{i}, x_{j}\right) \wedge E\left(x_{j}, x_{i}\right)
$$

Theorem
G is 3-colorable iff $\mathcal{I} \models q_{G}$.

The previous reduction immediately gives us the hardness for combined complexity.

Theorem
CQ evaluation is NP-hard in combined complexity.

NP-hardness of CQ evaluation

The previous reduction immediately gives us the hardness for combined complexity.
Theorem
CQ evaluation is NP-hard in combined complexity.

Note: in the previous reduction, the interpretation does not depend on the actual graph. Hence, the reduction provides also the lower-bound for query complexity.
Theorem
CQ evaluation is NP-hard in query (and combined) complexity.

Recognition problem and boolean query evaluation

Consider the recognition problem associated to the evaluation of a query q of arity k. Then

$$
\mathcal{I}, \alpha \models q\left(x_{1}, \ldots, x_{k}\right) \quad \text { iff } \quad \mathcal{I}_{\alpha, \vec{c}} \models q\left(c_{1}, \ldots, c_{k}\right)
$$

where $\mathcal{I}_{\alpha, \vec{c}}$ is identical to \mathcal{I} but includes new constants c_{1}, \ldots, c_{k} that are interpreted as $c_{i}^{\mathcal{I}_{\alpha, \vec{c}}}=\alpha\left(x_{i}\right)$.

That is, we can reduce the recognition problem to the evaluation of a boolean query.

Homomorphism

Let $\mathcal{I}=\left(\Delta^{\mathcal{I}}, P^{\mathcal{I}}, \ldots, c^{\mathcal{I}}, \ldots\right)$ and $\mathcal{J}=\left(\Delta^{\mathcal{J}}, P^{\mathcal{J}}, \ldots, c^{\mathcal{J}}, \ldots\right)$ be two interpretations over the same alphabet (for simplicity, we consider only constants as functions).
Def.: A homomorphism from \mathcal{I} to \mathcal{J}
is a mapping $h: \Delta^{\mathcal{I}} \rightarrow \Delta^{\mathcal{J}}$ such that:

- $h\left(c^{\mathcal{I}}\right)=c^{\mathcal{J}}$
- $\left(o_{1}, \ldots, o_{k}\right) \in P^{\mathcal{I}}$ implies $\left(h\left(o_{1}\right), \ldots, h\left(o_{k}\right)\right) \in P^{\mathcal{J}}$

Note: An isomorphism is a homomorphism that is one-to-one and onto.
Theorem
FOL is unable to distinguish between interpretations that are isomorphic.
Proof. See any standard book on logic.

Canonical interpretation of a (boolean) CQ

Let q be a conjunctive query $\exists x_{1}, \ldots, x_{n}$.conj
Def.: The canonical interpretation \mathcal{I}_{q} associated with q is the interpretation $\mathcal{I}_{q}=\left(\Delta^{\mathcal{I}_{q}}, P^{\mathcal{I}_{q}}, \ldots, c^{\mathcal{I}_{q}}, \ldots\right)$, where
$-\Delta^{\mathcal{I}_{q}}=\left\{x_{1}, \ldots, x_{n}\right\} \cup\{c \mid c$ constant occurring in $q\}$, i.e., all the variables and constants in q;

- $c^{\mathcal{I}_{q}}=c, \quad$ for each constant c in q;
- $\left(t_{1}, \ldots, t_{k}\right) \in P^{\mathcal{I}_{q}} \quad$ iff the atom $P\left(t_{1}, \ldots, t_{k}\right)$ occurs in q.

Canonical interpretation of a (boolean) CQ - Example

Consider the boolean query q

$$
q(c) \leftarrow E(c, y), E(y, z), E(z, c)
$$

Then, the canonical interpretation \mathcal{I}_{q} is defined as

$$
\mathcal{I}_{q}=\left(\Delta^{\mathcal{I}_{q}}, E^{\mathcal{I}_{q}}, c^{\mathcal{I}_{q}}\right)
$$

where

- $\Delta^{\mathcal{I}_{q}}=\{y, z, c\}$
- $E^{\mathcal{I}_{q}}=\{(c, y),(y, z),(z, c)\}$
- $c^{\mathcal{I}_{q}}=c$

Theorem ([CM77])
For boolean $C Q s, \mathcal{I} \models q$ iff there exists a homomorphism from \mathcal{I}_{q} to \mathcal{I}.

Proof.
$" \Rightarrow$ " Let $\mathcal{I} \models q$, let α be an assignment to the existential variables that makes q true in \mathcal{I}, and let $\hat{\alpha}$ be its extension to constants. Then $\hat{\alpha}$ is a homomorphism from \mathcal{I}_{q} to \mathcal{I}.
" \Leftarrow " Let h be a homomorphism from \mathcal{I}_{q} to \mathcal{I}. Then restricting h to the variables only we obtain an assignment to the existential variables that makes q true in \mathcal{I}.

Illustration of homomorphism theorem - Interpretation

Consider the following interpretation \mathcal{I} :

- $\Delta^{\mathcal{I}}=\{$ john, paul, george, mick, ny, london, $0, \ldots, 110\}$
- Person $^{\mathcal{I}}=\{($ john, 30), (paul, 60), (george, 35), (mick, 35) $\}$
- Lives $^{\mathcal{I}}=\{($ john, ny $),($ paul, ny $),($ george, london $),($ mick, london $)\}$
- Manages ${ }^{\mathcal{I}}=\{($ paul, john $),($ george, mick $),($ paul, mick $)\}$

In relational notation:

Person ${ }^{\text {I }}$

name	age
john	30
paul	60
george	35
mick	35

Manages ${ }^{\text {I }}$

boss	emp. name
paul	john
george	mick
paul	mick

Lives $^{\text {I }}$

name	city
john	ny
paul	ny
george	london
mick	london

Illustration of homomorphism theorem - Query

Consider the following query q :
$q() \leftarrow \operatorname{Person}(j o h n, z)$, Manages $(x$, john $)$, Lives (x, y), Lives $(j o h n, y)$
"There exists a manager that has john as an employee and lives in the same city of him?"
The canonical model \mathcal{I}_{q} is:

- $\Delta^{\mathcal{I}}=\{j o h n, x, y, z\}$
- john $^{\mathcal{I}}=j o h n$
- Person $^{\mathcal{I}_{q}}=\{($ john,$z)\}$
- Lives $^{\mathcal{I}_{q}}=\{($ john,$y),(x, y)\}$
- Manages ${ }^{\mathcal{I}_{q}}=\{(x$, john $)\}$

In relational notation:

Person $^{\mathcal{I}_{q}}$	
name	age
john	z

Lives $^{\mathcal{I}_{q}}$

name	city
john	y
x	y

Manages ${ }^{\mathcal{I}_{q}}$

boss	emp. name
\times	john

Illustration of homomorphism theorem - If-direction

Hp: $\mathcal{I} \models q$. Th: There exists an homomrphism $h: \mathcal{I}_{q} \rightarrow \mathcal{I}$.
If $\mathcal{I} \models q$, then there exists an assignment $\hat{\alpha}$ such that $\langle\mathcal{I}, \alpha\rangle \models \operatorname{body}(q)$:

- $\alpha(x)=$ paul
- $\alpha(z)=30$
- $\alpha(y)=n y$

Let us extend $\hat{\alpha}$ to constants:

- $\hat{\alpha}(j o h n)=j o h n$
$h=\hat{\alpha}$ is an homomorphism from $\mathcal{I}_{q_{1}}$ to \mathcal{I} :
- $h\left(j o h n^{\mathcal{I}_{q}}\right)=j o h n^{\mathcal{I}}$? Yes!
- $(j o h n, z)) \in$ Person $^{\mathcal{I}_{q}}$ implies $(h(j o h n), h(z)) \in$ Person $^{\mathcal{I}}$?

Yes: $(j o h n, 30) \in$ Person $^{\mathcal{I}}$;

- $($ john,$x) \in$ Lives $^{\mathcal{I}_{q}}$ implies $\left.h(j o h n), h(x)\right) \in$ Lives $^{\mathcal{I}}$?

Yes: $(j o h n, n y) \in$ Lives I;

- $(x, y) \in$ Lives $^{\mathcal{I}_{q}}$ implies $(h(x), h(y)) \in$ Lives $^{\mathcal{I}}$?

Yes: $($ paul,$n y) \in$ Lives I;

- $(x$, john $) \in$ Manages $^{\mathcal{I}_{q}}$ implies $(h(x), h(j o h n)) \in$ Manages $^{\mathcal{I}}$?

Yes: $($ paul,$j o h n) \in$ Manages I.

Illustration of homomorphism theorem - Only-if-direction

Hp: There exists an homomrphism $h: \mathcal{I}_{q} \rightarrow \mathcal{I}$. Th: $\mathcal{I} \models q$.
Let $h: \mathcal{I}_{q} \rightarrow \mathcal{I}$:

- $h(j o h n)=j o h n ;$
- $h(x)=$ paul;
- $h(z)=30$;
- $h(y)=n y$.

Let us define an assignment α by restricting h to variables:

- $\alpha(x)=$ paul;
- $\alpha(z)=30$;
- $\alpha(y)=n y$.

Then $\langle\mathcal{I}, \alpha\rangle \models \operatorname{body}(q)$. Indeed:

- $($ john,$\alpha(z))=(j o h n, 30) \in$ Person $^{\mathcal{I}}$;
- $(\alpha(x), j o h n)=($ paul, john $) \in$ Manages $^{\text {I }}$;
- $(\alpha(x), \alpha(y))=($ paul, ny $) \in$ Lives $^{\mathcal{I}}$;
- $($ john,$\alpha(y))=(j o h n, n y) \in$ Lives $^{\mathcal{I}}$.

Canonical interpretation and (boolean) CQ evaluation

The previous result can be rephrased as follows:
(The recognition problem associated to) query evaluation can be reduced to finding a homomorphism.

Finding a homomorphism between two interpretations (aka relational structures) is also known as solving a Constraint Satisfaction Problem (CSP), a problem well-studied in AI - see also [KV98].

Observations

Theorem

$\mathcal{I}_{q} \models q$ is always true.

Proof. By Chandra Merlin theorem: $\mathcal{I}_{q} \models q$ iff there exists homomorph. from \mathcal{I}_{q} to \mathcal{I}_{q}. Identity is one such homomorphism.

Theorem

Let h be a homomorphism from \mathcal{I}_{1} to \mathcal{I}_{2}, and h^{\prime} be a homomorphism from \mathcal{I}_{2} to \mathcal{I}_{3}. Then $h \circ h^{\prime}$ is a homomorphism form \mathcal{I}_{1} to \mathcal{I}_{3}.

Proof. Just check that $h \circ h^{\prime}$ satisfied the definition of homomorphism: i.e. $h^{\prime}(h(\cdot))$ is a mapping from $\Delta^{\mathcal{I}_{1}}$ to $\Delta^{\mathcal{I}_{3}}$ such that:

- $h^{\prime}\left(h\left(c^{\mathcal{I}_{1}}\right)\right)=c^{\mathcal{I}_{3}}$;
- $\left(o_{1}, \ldots, o_{k}\right) \in P^{\mathcal{I}_{1}}$ implies $\left(h^{\prime}\left(h\left(o_{1}\right)\right), \ldots, h^{\prime}\left(h\left(o_{k}\right)\right)\right) \in P^{\mathcal{I}_{3}}$.

The CQs characterizing property

Def.: Homomorphic equivalent interpretations

Two interpretations \mathcal{I} and \mathcal{J} are homomorphically equivalent if there is homomorphism $h_{\mathcal{I}, \mathcal{J}}$ from \mathcal{I} to \mathcal{J} and homomorphism $h_{\mathcal{J}, \mathcal{I}}$ from \mathcal{J} to \mathcal{I}.

Theorem (model theoretic characterization of CQs)

CQs are unable to distinguish between interpretations that are homomorphic equivalent.

Proof. Consider any two homomorphically equivalent interpretations \mathcal{I} and \mathcal{J} with homomorphism $h_{\mathcal{I}, \mathcal{J}}$ from \mathcal{I} to \mathcal{J} and homomorphism $h_{\mathcal{J}, \mathcal{I}}$ from \mathcal{J} to \mathcal{I}.

- If $\mathcal{I} \models q$ then there exists a homomorphism h from \mathcal{I}_{q} to \mathcal{I}. But then $h \circ h_{\mathcal{I}, \mathcal{J}}$ is a homomorphism from \mathcal{I}_{q} to \mathcal{J}, hence $\mathcal{J} \models q$.
- Similarly, if $\mathcal{J} \models q$ then there exists a homomorphism g from \mathcal{I}_{q} to \mathcal{J}. But then $g \circ h_{\mathcal{J}, \mathcal{I}}$ is a homomorphism from \mathcal{I}_{q} to \mathcal{I}, hence $\mathcal{I} \models q$.

Query containment

Def.: Query containment

Given two FOL queries φ and ψ of the same arity, φ is contained in ψ, denoted $\varphi \subseteq \psi$, if for all interpretations \mathcal{I} and all assignments α we have that

$$
\mathcal{I}, \alpha \models \varphi \quad \text { implies } \quad \mathcal{I}, \alpha \models \psi
$$

(In logical terms: $\varphi \models \psi$.)
Note: Query containment is of special interest in query optimization.

Query containment

Def.: Query containment

Given two FOL queries φ and ψ of the same arity, φ is contained in ψ, denoted $\varphi \subseteq \psi$, if for all interpretations \mathcal{I} and all assignments α we have that

$$
\mathcal{I}, \alpha \models \varphi \quad \text { implies } \quad \mathcal{I}, \alpha \models \psi
$$

(In logical terms: $\varphi \models \psi$.)
Note: Query containment is of special interest in query optimization.

Theorem

For FOL queries, query containment is undecidable.
Proof:: Reduction from FOL logical implication.

Query containment for CQs

For CQs, query containment $q_{1}(\vec{x}) \subseteq q_{2}(\vec{x})$ can be reduced to query evaluation.

1. Freeze the free variables, i.e., consider them as constants.

This is possible, since $q_{1}(\vec{x}) \subseteq q_{2}(\vec{x})$ iff

- $\mathcal{I}, \alpha \models q_{1}(\vec{x})$ implies $\mathcal{I}, \alpha \models q_{2}(\vec{x})$, for all \mathcal{I} and α; or equivalently
- $\mathcal{I}_{\alpha, \vec{c}} \models q_{1}(\vec{c})$ implies $\mathcal{I}_{\alpha, \vec{c}} \models q_{2}(\vec{c})$, for all $\mathcal{I}_{\alpha, \vec{c}}$, where \vec{c} are new constants, and $\mathcal{I}_{\alpha, \bar{c}}$ extends \mathcal{I} to the new constants with $c^{\mathcal{I}_{\alpha, \bar{c}}}=\alpha(x)$.

2. Construct the canonical interpretation $\mathcal{I}_{q_{1}(\vec{c})}$ of the $\mathrm{CQ} q_{1}(\vec{c})$ on the left hand side ...
3. ... and evaluate on $\mathcal{I}_{q_{1}(\vec{c})}$ the $\mathrm{CQ} q_{2}(\vec{c})$ on the right hand side, i.e., check whether $\mathcal{I}_{q_{1}(\vec{c})} \models q_{2}(\vec{c})$.

Reducing containment of CQs to CQ evaluation

Theorem ([CM77])
For $C Q s, q_{1}(\vec{x}) \subseteq q_{2}(\vec{x})$ iff $\mathcal{I}_{q_{1}(\vec{c})} \models q_{2}(\vec{c})$, where \vec{c} are new constants. Proof.
$" \Rightarrow$ " Assume that $q_{1}(\vec{x}) \subseteq q_{2}(\vec{x})$.

- Since $\mathcal{I}_{q_{1}(\vec{c})} \models q_{1}(\vec{c})$ it follows that $\mathcal{I}_{q_{1}(\vec{c})} \models q_{2}(\vec{c})$.
$" \Leftarrow "$ Assume that $\mathcal{I}_{q_{1}(\bar{c})} \models q_{2}(\vec{c})$.
- By [CM77] on hom., for every \mathcal{I} such that $\mathcal{I} \models q_{1}(\vec{c})$ there exists a homomorphism h from $\mathcal{I}_{q_{1}(c)}$ to \mathcal{I}.
- On the other hand, since $\mathcal{I}_{q_{1}(\vec{c})} \models q_{2}(\vec{c})$, again by [CM77] on hom., there exists a homomorphism h^{\prime} from $\mathcal{I}_{q_{2}(\bar{c})}$ to $\mathcal{I}_{q_{1}(\bar{c})}$.
- The mapping $h \circ h^{\prime}$ (obtained by composing h and h^{\prime}) is a homomorphism from $\mathcal{I}_{q_{2}(\vec{c})}$ to \mathcal{I}. Hence, once again by [CM77] on hom., $\mathcal{I} \models q_{2}(\vec{c})$.
So we can conclude that $q_{1}(\vec{c}) \subseteq q_{2}(\vec{c})$, and hence $q_{1}(\vec{x}) \subseteq q_{2}(\vec{x})$.

Query containment for CQs

For CQs, we also have that (boolean) query evaluation $\mathcal{I} \models q$ can be reduced to query containment.

Let $\mathcal{I}=\left(\Delta^{\mathcal{I}}, P^{\mathcal{I}}, \ldots, c^{\mathcal{I}}, \ldots\right)$.
We construct the (boolean) CQ q_{I} as follows:

- q_{I} has no existential variables (hence no variables at all);
- the constants in $q_{\mathcal{I}}$ are the elements of $\Delta^{\mathcal{I}}$;
- for each relation P interpreted in \mathcal{I} and for each fact $\left(a_{1}, \ldots, a_{k}\right) \in P^{\mathcal{I}}, q_{\mathcal{I}}$ contains one atom $P\left(a_{1}, \ldots, a_{k}\right)$ (note that each $a_{i} \in \Delta^{\mathcal{I}}$ is a constant in $q_{\mathcal{I}}$).

Theorem

For $C Q s, \mathcal{I} \models q$ iff $q_{\mathcal{I}} \subseteq q$.

Query containment for CQs - Complexity

From the previous results and NP-completenss of combined complexity of CQ evaluation, we immediately get:
Theorem
Containment of CQs is NP-complete.

Query containment for CQs - Complexity

From the previous results and NP-completenss of combined complexity of CQ evaluation, we immediately get:
Theorem
Containment of CQs is NP-complete.

Since CQ evaluation is NP-complete even in query complexity, the above result can be strengthened:

Theorem
Containment $q_{1}(\vec{x}) \subseteq q_{2}(\vec{x})$ of CQs is NP-complete, even when q_{1} is considered fixed.

Union of conjunctive queries (UCQs)

Def.: A union of conjunctive queries (UCQ) is a FOL query of the form

$$
\bigvee_{i=1, \ldots, n} \exists \vec{y}_{i} \cdot \operatorname{conj}_{i}\left(\vec{x}, \vec{y}_{i}\right)
$$

where each $\operatorname{conj}_{i}\left(\vec{x}, \overrightarrow{y_{i}}\right)$ is a conjunction of atoms and equalities with free variables \vec{x} and $\overrightarrow{y_{i}}$, and possibly constants.

Note: Obviously, each conjunctive query is also a of union of conjunctive queries.

Datalog notation for UCQs

A union of conjunctive queries

$$
q=\bigvee_{i=1, \ldots, n} \exists \vec{y}_{i} \cdot \operatorname{conj}_{i}\left(\vec{x}, \vec{y}_{i}\right)
$$

is written in datalog notation as

$$
\begin{aligned}
\{q(\vec{x}) & \leftarrow \operatorname{conj}_{1}^{\prime}\left(\vec{x}, \overrightarrow{y_{1}^{\prime}}\right) \\
& \vdots \\
q(\vec{x}) & \left.\leftarrow \operatorname{conj}_{n}^{\prime}\left(\vec{x}, \overrightarrow{y_{n}^{\prime}}\right)\right\}
\end{aligned}
$$

where each element of the set is the datalog expression corresponding to the conjunctive query $q_{i}=\exists \vec{y}_{i} \cdot \operatorname{conj}_{i}\left(\vec{x}, \vec{y}_{i}\right)$.

Note: in general, we omit the set brackets.

Evaluation of UCQs

From the definition " \vee " in FOL we have that:

$$
\mathcal{I}, \alpha \models \bigvee_{i=1, \ldots, n} \exists \vec{y}_{i} \cdot \operatorname{conj} j_{i}\left(\vec{x}, \vec{y}_{i}\right)
$$

if and only if

$$
\mathcal{I}, \alpha \models \exists \vec{y}_{i} . \operatorname{conj}_{i}\left(\vec{x}, \vec{y}_{i}\right) \quad \text { for some } i \in\{1, \ldots, n\} .
$$

Hence to evaluate a UCQ q, we simply evaluate a number (linear in the size of q) of conjunctive queries in isolation.

Hence, evaluating UCQs has the same complexity as evaluating CQs.

UCQ evaluation - Combined, data, and query complexity

Theorem (Combined complexity of UCQ evaluation)
$\{\{\mathcal{I}, \alpha, q\rangle \mid \mathcal{I}, \alpha \models q\}$ is NP-complete.

- time: exponential
- space: polynomial

Theorem (Data complexity of UCQ evaluation) $\{\langle\mathcal{I}, q\rangle \mid \mathcal{I}, \alpha \models q\}$ is LogSpace-complete (query q fixed).

- time: polynomial
- space: logarithmic

Theorem (Query complexity of UCQ evaluation)
$\{\langle\alpha, q\rangle \mid \mathcal{I}, \alpha \models q\}$ is NP-complete (interpretation \mathcal{I} fixed).

- time: exponential
- space: polynomial

Query containment for UCQs

Theorem
For UCQs, $\left\{q_{1}, \ldots, q_{k}\right\} \subseteq\left\{q_{1}^{\prime}, \ldots, q_{n}^{\prime}\right\}$ iff for each q_{i} there is a q_{j}^{\prime} such that $q_{i} \subseteq q_{j}^{\prime}$.
Proof.
" \leqslant " Obvious.
" \Rightarrow " If the containment holds, then we have
$\left\{q_{1}(\vec{c}), \ldots, q_{k}(\vec{c})\right\} \subseteq\left\{q_{1}^{\prime}(\vec{c}), \ldots, q_{n}^{\prime}(\vec{c})\right\}$, where \vec{c} are new constants:

- Now consider $\mathcal{I}_{q_{i}(\vec{c})}$. We have $\mathcal{I}_{q_{i}(\vec{c})} \vDash q_{i}(\vec{c})$, and hence $\mathcal{I}_{q_{i}(\vec{c})} \vDash\left\{q_{1}(\vec{c}), \ldots, q_{k}(\vec{c})\right\}$.
- By the containment, we have that $\mathcal{I}_{q_{i}(\vec{c})} \models\left\{q_{1}^{\prime}(\vec{c}), \ldots, q_{n}^{\prime}(\vec{c})\right\}$. I.e., there exists a $q_{j}^{\prime}(\vec{c})$ such that $\mathcal{I}_{q(\bar{c})}=q_{j}^{\prime}(\vec{c})$.
- Hence, by [CM77] on containment of CQs, we have $q_{i} \subseteq q_{j}^{\prime}$.

Query containment for UCQs - Complexity

From the previous result, we have that we can check
$\left\{q_{1}, \ldots, q_{k}\right\} \subseteq\left\{q_{1}^{\prime}, \ldots, q_{n}^{\prime}\right\}$ by at most $k \cdot n$ CQ containment checks.
We immediately get:
Theorem
Containment of UCQs is NP-complete.

References

[CM77] A. K. Chandra and P. M. Merlin.
Optimal implementation of conjunctive queries in relational data bases.
In Proc. of the 9th ACM Symp. on Theory of Computing (STOC'77), pages 77-90, 1977.
[KV98] P. G. Kolaitis and M. Y. Vardi.
Conjunctive-query containment and constraint satisfaction.
In Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS'98), pages 205-213, 1998.
[Var82] M. Y. Vardi.
The complexity of relational query languages.
In Proc. of the 14th ACM SIGACT Symp. on Theory of Computing (STOC'82), pages 137-146, 1982.

