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Conjunctive queries (CQs)

Def.: A conjunctive query (CQ) is a FOL query of the form

Jy.conj(X, y)
where conj(X, y) is a conjunction (i.e., an “and") of atoms and

equalities, over the free variables X, the existentially quantified
variables y, and possibly constants.

Note:

» CQs contain no disjunction, no negation, no universal quantification,
and no function symbols besides constants.

» Hence, they correspond to relational algebra select-project-join
(SPJ) queries.

» CQs are the most frequently asked queries.



Conjunctive queries and SQL — Example

Relational alphabet:
Person(name, age), Lives(person,city), Manages(boss, employee)

Query: find the name and the age of the persons who live in the same
city as their boss.
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Person(name, age), Lives(person,city), Manages(boss, employee)

Query: find the name and the age of the persons who live in the same
city as their boss.

Expressed in SQL:

SELECT P.name, P.age

FROM Person P, Manages M, Lives L1, Lives L2

WHERE P.name = Ll.person AND P.name = M.employee AND
M.boss L2.person AND Lil.city = L2.city
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Relational alphabet:
Person(name, age), Lives(person,city), Manages(boss, employee)

Query: find the name and the age of the persons who live in the same
city as their boss.

Expressed in SQL:

SELECT P.name, P.age

FROM Person P, Manages M, Lives L1, Lives L2

WHERE P.name = Ll.person AND P.name = M.employee AND
M.boss = L2.person AND Ll.city = L2.city
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n=pl AN n=e N b=p2 N cl=c2

Or simpler: 3b, c.Person(n, a) A Manages(b, n) A Lives(n, c¢) A Lives(b, c)



Datalog notation for CQs

A CQ g = Jy.conj(X, y) can also be written using datalog notation as
q(x1) < conj' (X1, y1)

where conj’(x1, y1) is the list of atoms in conj(x, y) obtained by equating

the variables X, y according to the equalities in conj(X, y).

As a result of such an equality elimination, we have that x; and y; can
contain constants and multiple occurrences of the same variable.

Def.: In the above query g, we call:

> g(xi) the head;

> conj’ (X1, y1) the body;

» the variables in x; the distinguished variables;
>

the variables in y; the non-distinguished variables.

Conjunctive queries — Example

» Consider an interpretation Z = (AZ, ET), where EZ is a binary
relation — note that such interpretation is a (directed) graph.

» The following CQ g returns all nodes that participate to a triangle in
the graph:
Jy,z.E(x,y) N E(y,z) N E(z,x)

» The query g in datalog notation becomes:

q(x) < E(x,y), E(y,2), E(z,x)

» The query g in SQL is (we use Edge(f,s) for E(x,y):

SELECT E1.f
FROM Edge E1, Edge E2, Edge E3
WHERE El.s = E2.f AND E2.s = E3.f AND E3.s = El1.f



Nondeterministic evaluation of CQs

Since a CQ contains only existential quantifications, we can evaluate it
by:
1. guessing a truth assignment for the non-distinguished variables;

2. evaluating the resulting formula (that has no quantifications).

boolean ConjTruth(Z,a,dy.conj(x,y)) {
GUESS assignment afy +— a] {
return Truth(Z,aly — a],conj(X,y));
}

where Truth(Z, a, ) is defined as for FOL queries, considering only the
required cases.

Nondeterministic CQ evaluation algorithm

boolean Truth(Z,a,p) {
if (p is t1=1t2)
return TermEval(Z,«a,t_1) = TermEval(Z,«a,t.2);
if (¢ is P(t.1,...,t_k))
return PZ(TermEval(Z,«a,t.1),...,TermEval(Z,a,t_k));
if (p is Y A YY)
return Truth(Z,«,v) A Truth(Z,a,y’);
+

AT TermEval (Z,a,t) {
if (¢t is a variable x) return «a(x);
if (t is a constant c¢) return cZ;



CQ evaluation — Combined, data, and query complexity

Theorem (Combined complexity of CQ evaluation)
{{Z,a,q) | T, = q} is NP-complete — see below for hardness
» time: exponential
» space: polynomial
Theorem (Data complexity of CQ evaluation)
{{Z,a) | Z,a = q} is LOGSPACE

» time: polynomial
» space: logarithmic

Theorem (Query complexity of CQ evaluation)
{{a,q) | Z, 0 = q} is NP-complete — see below for hardness

> time: exponential
» space: polynomial

3-colorability

A graph is k-colorable if it is possible to assign to each node one of k
colors in such a way that every two nodes connected by an edge have
different colors.

Def.: 3-colorability is the following decision problem

Given a graph G = (V, E), is it 3-colorable?

Theorem
3-colorability is NP-complete.



3-colorability

A graph is k-colorable if it is possible to assign to each node one of k
colors in such a way that every two nodes connected by an edge have
different colors.

Def.: 3-colorability is the following decision problem
Given a graph G = (V, E), is it 3-colorable?

Theorem
3-colorability is NP-complete.

We exploit 3-colorability to show NP-hardness of conjunctive query
evaluation.

Reduction from 3-colorability to CQ evaluation

Let G = (V, E) be a graph. We define:
> An Interpretation: Z = (A%, ET) where:

> AT = {r,g,b}
> ET = {(r7 g): (g? r)’ (r, b), (b, r), (g7 b); (ba g)}
» A conjunctive query: Let V = {xq,...,x,}, then consider the

boolean conjunctive query defined as:

gc = 3Ix1,...,Xp- /\ E(xi, xj) N E(xj, x;)
(XivXj)eE

Theorem
G is 3-colorable iff T |= qg.



NP-hardness of CQ evaluation

The previous reduction immediately gives us the hardness for combined
complexity.

Theorem
CQ evaluation is NP-hard in combined complexity.

NP-hardness of CQ evaluation

The previous reduction immediately gives us the hardness for combined
complexity.

Theorem
CQ evaluation is NP-hard in combined complexity.

Note: in the previous reduction, the interpretation does not depend on
the actual graph. Hence, the reduction provides also the lower-bound for
query complexity.

Theorem
CQ evaluation is NP-hard in query (and combined) complexity.



Recognition problem and boolean query evaluation

Consider the recognition problem associated to the evaluation of a query
q of arity k. Then

T,aE=q(x, ..., xk) iff TncFE=q(a,. .. c)

where 7, = is identical to Z but includes new constants ci, ..., ¢k that

: Toc
are interpreted as ¢; " = a(x;).

That is, we can reduce the recognition problem to the evaluation of a
boolean query.

Homomorphism

Let T = (AZ,PL,...,ct,..)and T = (A7, P7,...,c7,...) be two
interpretations over the same alphabet (for simplicity, we consider only
constants as functions).

Def.: A homomorphism from Z to J
is a mapping h: AT — A7 such that:
> h(ct) = ¢7
> (o1,...,0k) € PT implies (h(o1),...,h(ox)) € P7

Note: An isomorphism is a homomorphism that is one-to-one and onto.

Theorem
FOL is unable to distinguish between interpretations that are isomorphic.

Proof. See any standard book on logic. [J



Canonical interpretation of a (boolean) CQ

Let g be a conjunctive query  dxi,...,Xx,.conj

Def.: The canonical interpretation Z, associated with g

is the interpretation Z, = (AZe, PZa ... c%a,...), where
., Xn} U{c | c constant occurring in g},

> Afd = {xq,..
i.e., all the variables and constants in g;
» cZa =, for each constant c in g;
> (t1,...,t) € PZe  iff the atom P(ty,...,t;) occurs in g.

Canonical interpretation of a (boolean) CQ — Example

Consider the boolean query g
q(c) < E(c,y), E(y,2), E(z, c)

Then, the canonical interpretation Z, is defined as

I, = (At E*e, ct9)

where
> AI - {y7z7 C}
> EI = (C,y),(y,z),(Z, C)}

» cla = ¢



Homomorphism theorem

Theorem ([CMT77])
For boolean CQs, T |= q iff there exists a homomorphism from I to T.

Proof.

“=" Let Z |= q, let « be an assignment to the existential variables that
makes g true in Z, and let & be its extension to constants. Then & is a
homomorphism from Z, to 7.

“«<" Let h be a homomorphism from Z, to Z. Then restricting h to the
variables only we obtain an assignment to the existential variables that
makes g true in Z. ]

[llustration of homomorphism theorem — Interpretation

Consider the following interpretation Z:
» AT = {john, paul, george, mick, ny, london, 0, ...,110}
> Person” = {(john,30), (paul,60), (george, 35), (mick, 35)}
» Lives™ = {(john, ny), (paul, ny), (george, london), (mick, london)}
» Manages™ = {(paul, john), (george, mick), (paul, mick)}

In relational notation:

LT
Person™ e

name | age name city
john 30 i

JPaul 60 Jonr i
george | 35 soorge | london
mick 35 mick london
Manages”

boss emp. name

paul john

george mick

paul mick




lllustration of homomorphism theorem — Query

Consider the following query g:
q() < Person(john, z), Manages(x, john), Lives(x, y), Lives(john, y)

“There exists a manager that has john as an employee and lives in the same
city of him?”
The canonical model Z, is:

» AT = {john, x,y, z}

» john™ = john

> Person’® = {(john,z)}

> Lives™ = {(john,y), (x,y)}
> Manages™ = {(x,john)}

In relational notation:

Lives®a T
v . q
Person—¢ name | city Manages
name | age . boss | emp. name
- h john y a
john z X john
S y

[llustration of homomorphism theorem — If-direction

Hp: Z = q. Th: There exists an homomrphism h:Z, — 7.
If Z = g, then there exists an assignment & such that (Z, «) = body(q):
> «a(x) = paul
» a(z) =30
> aly) = ny
Let us extend & to constants:
» &(john) = john
h = & is an homomorphism from Z,, to Z:
> h(john™®) = john™? Yes!
> (john,z)) € Person™ implies (h(john), h(z)) € Person™?
Yes: (john,30) € Person™;
> (john,x) € Lives™ implies h(john), h(x)) € Lives™?
Yes: (john, ny) € Lives”;
> (x,y) € Lives™ implies (h(x), h(y)) € Lives™?
Yes: (paul, ny) € Lives”;
> (x,john) € Manages™ implies (h(x), h(john)) € Manages*?
Yes: (paul, john) € Manages™”.



lllustration of homomorphism theorem — Only-if-direction

Hp: There exists an homomrphism h:Z, - Z. Th: 7 = q.
Let h:Zq — 1:

» h(john) = john;
> h(x) = paul,
> h(z) = 30;
> h(y) = ny.
Let us define an assignment « by restricting h to variables:
> a(x) = paul,
> «a(z) = 30;
> afy) = ny.
Then (Z, ) = body(q). Indeed:

» (john,a(z)) = (john,30) € Person™;

> (a(x),john) = (paul, john) € Manages™;
> (a(x),a(y)) = (paul, ny) € Lives”;

> (john,a(y)) = (john, ny) € Lives”.

Canonical interpretation and (boolean) CQ evaluation

The previous result can be rephrased as follows:

(The recognition problem associated to) query evaluation can be reduced
to finding a homomorphism.

Finding a homomorphism between two interpretations (aka relational

structures) is also known as solving a Constraint Satisfaction Problem
(CSP), a problem well-studied in Al — see also [K\/938].



Observations

Theorem
T, = q is always true.

Proof. By Chandra Merlin theorem: Z, |= q iff there exists homomorph.
from Z, to Z,. Identity is one such homomorphism. L[]

Theorem
Let h be a homomorphism from I, to I,, and h' be a homomorphism
from I, to Z3. Then ho h' is a homomorphism form I, to I3.

Proof. Just check that h o h’ satisfied the definition of homomorphism:
i.e. h'(h(-))is a mapping from A7t to AZ® such that:

» W(h(ch)) =
> (o1,...,0k) € P11 implies (h'(h(o1)),...,h'(h(ok))) € PE. [

The CQs characterizing property

Def.: Homomorphic equivalent interpretations

Two interpretations Z and J are homomorphically equivalent if there is
homomorphism hz ;s from Z to J and homomorphism hs 7 from J to 1.

Theorem (model theoretic characterization of CQs)

CQs are unable to distinguish between interpretations that are
homomorphic equivalent.

Proof. Consider any two homomorphically equivalent interpretations Z
and J with homomorphism hz 7 from Z to J and homomorphism h;s 7
from J to Z.

> If 7 |= g then there exists a homomorphism h from Z, to Z. But
then ho hz 7 is a homomorphism from Z, to J, hence J = q.

» Similarly, if 7 [= q then there exists a homomorphism g from Z, to
J. But then g o hy 7 is a homomorphism from Z, to Z, hence

ITEq O



Query containment

Def.: Query containment

Given two FOL queries ¢ and 1 of the same arity,  is contained in 1),
denoted o C 1), if for all interpretations Z and all assignments « we have
that

Z,a =@ implies Z,aE

(In logical terms: ¢ = 1).)

Note: Query containment is of special interest in query optimization.

Query containment

Def.: Query containment

Given two FOL queries ¢ and 1) of the same arity,  is contained in 1),
denoted o C ¢, if for all interpretations Z and all assignments « we have
that

Z,a =@ implies Z,a

(In logical terms: ¢ = 1.)

Note: Query containment is of special interest in query optimization.

Theorem
For FOL queries, query containment is undecidable.

Proof.: Reduction from FOL logical implication. [



Query containment for CQs

For CQs, query containment g;(x) C g»(X) can be reduced to query
evaluation.

1. Freeze the free variables, i.e., consider them as constants.

This is possible, since g;(X) C go(x) iff

» Z,a = qi(X) implies Z, a |= q2(X), for all Z and «;  or equivalently
> Tz = qi(C) implies Z,, z = ¢2(C), for all Z,, z, where € are new

constants, and Z,, ¢ extends 7 to the new constants with

ctod = a(x).

2. Construct the canonical interpretation Z,, () of the CQ g1(C) on the
left hand side ...

3. ...and evaluate on Z,, () the CQ g2(C) on the right hand side,
i.e., check whether Z,, ) = ¢2(<).

Reducing containment of CQs to CQ evaluation

Theorem ([CM77])

For CQs, q1(X) C q2(X) iff Zg,(e) = g2(C), where € are new constants.

Proof.
“=" Assume that g:(x) C g2(X).

> Since Z,,(¢) = q1(€) it follows that 7,z = g2(¢).
‘<" Assume that Z, ¢ = g2(C).

» By [CM77] on hom., for every Z such that Z = g:(C) there exists a
homomorphism h from Z, (7 to 1.

» On the other hand, since Z,, (¢ = g2(¢), again by [CM77] on hom., there
exists a homomorphism A’ from Lo, (2) to Ly, (o).

» The mapping ho h’ (obtained by composing h and h) is a homomorphism
from 7,,(z to Z. Hence, once again by [CM77] on hom., T |= ¢2(¢).

So we can conclude that ¢i(¢) C g2(¢), and hence gi(X) C g2(x). [



Query containment for CQs

For CQs, we also have that (boolean) query evaluation Z |= g can be
reduced to query containment.

Let Z = (AL, PT, ... cT,..)).

We construct the (boolean) CQ g7 as follows:
> g7 has no existential variables (hence no variables at all);
> the constants in g7 are the elements of AZ;

» for each relation P interpreted in Z and for each fact
(a1,-..,ax) € P, gz contains one atom P(ay,...,ax) (note that
each a; € AT is a constant in q7).

Theorem
For CQs, T =q iff gr Cq.

Query containment for CQs — Complexity

From the previous results and NP-completenss of combined complexity of
CQ evaluation, we immediately get:

Theorem
Containment of CQs is NP-complete.



Query containment for CQs — Complexity

From the previous results and NP-completenss of combined complexity of
CQ evaluation, we immediately get:

Theorem
Containment of CQs is NP-complete.

Since CQ evaluation is NP-complete even in query complexity, the above
result can be strengthened:

Theorem
Containment q1(X) C g2(X) of CQs is NP-complete, even when q; is
considered fixed.

Union of conjunctive queries (UCQs)

Def.: A union of conjunctive queries (UCQ) is a FOL query of
the form

\/  Fyi-conji(%, )
i=1,...,n

where each conj;(X, y;) is a conjunction of atoms and equalities with free
variables X and y;, and possibly constants.

Note: Obviously, each conjunctive query is also a of union of conjunctive
queries.



Datalog notation for UCQs

A union of conjunctive queries

q = \/ Jyj.conj;(X, yi)

i=1,...,n

Is written in datalog notation as
{ a(x) « conjy(x,%1)

q(x) <« conj:,(i,f,,/)}

where each element of the set is the datalog expression corresponding to
the conjunctive query g; = Jy;.conj;(X, yi).

Note: in general, we omit the set brackets.

Evaluation of UCQs

From the definition “V" in FOL we have that:

Lo = \/ .conjj(%3)

i=1,...,n
if and only if
Z,a = Jyj.conj(X,yi) for some i € {1,...,n}.
Hence to evaluate a UCQ g, we simply evaluate a number (linear in the

size of ) of conjunctive queries in isolation.

Hence, evaluating UCQs has the same complexity as evaluating CQs.



UCQ evaluation — Combined, data, and query complexity

Theorem (Combined complexity of UCQ evaluation)
{{Z,a,q) | Z,0 = q} is NP-complete.

» time: exponential

» space: polynomial

Theorem (Data complexity of UCQ evaluation)
{{Z,q) | Z,a = q} is LoGSPACE-complete (query q fixed).

» time: polynomial
» space: logarithmic

Theorem (Query complexity of UCQ evaluation)
{{a,q) | Z,0 = q} is NP-complete (interpretation I fixed).

» time: exponential
» space: polynomial

Query containment for UCQs

Theorem

For UCQs, {q1,...,qk} C{qi,...,q,} iff foreach q; there is a q; such
that q; C q;.

Proof.

“<" Obvious.

“=" If the containment holds, then we have
{g1(S), ..., qk(S)} C{q1(S),...,q,(C)}, where € are new constants:

> Now consider 7, (#. We have 7 = gi(C), and hence
Zga) FA{q(0), .-, ()}

> By the containment, we have that 7, s = {91(C),....q,(C)}. le,
there exists a q;(C) such that Z ) = q(¢).

> Hence, by [CM77] on containment of CQs, we have g; C g;. [l



Query containment for UCQs — Complexity

From the previous result, we have that we can check

{ql,.“

gk} €44qi,...,q,} by at most k- n CQ containment checks.

We immediately get:

Theorem
Containment of UCQs is NP-complete.
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