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Conjunctive queries (CQs)

Def.: A conjunctive query (CQ) is a FOL query of the form

9~y .conj(~x , ~y)

where conj(~x , ~y) is a conjunction (i.e., an “and”) of atoms and
equalities, over the free variables ~x , the existentially quantified
variables ~y , and possibly constants.

Note:

I CQs contain no disjunction, no negation, no universal quantification,
and no function symbols besides constants.

I Hence, they correspond to relational algebra select-project-join
(SPJ) queries.

I CQs are the most frequently asked queries.



Conjunctive queries and SQL – Example

Relational alphabet:
Person(name, age), Lives(person, city), Manages(boss, employee)

Query: find the name and the age of the persons who live in the same
city as their boss.

Expressed in SQL:

SELECT P.name, P.age
FROM Person P, Manages M, Lives L1, Lives L2
WHERE P.name = L1.person AND P.name = M.employee AND

M.boss = L2.person AND L1.city = L2.city

Expressed as a CQ:

9b, e, p1, c1, p2, c2.Person(n, a) ^Manages(b, e) ^ Lives(p1, c1) ^ Lives(p2, c2) ^
n = p1 ^ n = e ^ b = p2 ^ c1 = c2

Or simpler: 9b, c.Person(n, a) ^Manages(b, n) ^ Lives(n, c) ^ Lives(b, c)
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Datalog notation for CQs

A CQ q = 9~y .conj(~x , ~y) can also be written using datalog notation as

q(~x1) conj 0(~x1, ~y1)

where conj 0(~x1, ~y1) is the list of atoms in conj(~x , ~y) obtained by equating
the variables ~x , ~y according to the equalities in conj(~x , ~y).

As a result of such an equality elimination, we have that ~x1 and ~y1 can
contain constants and multiple occurrences of the same variable.

Def.: In the above query q, we call:

I q(~x1) the head;

I conj 0(~x1, ~y1) the body;

I the variables in ~x1 the distinguished variables;

I the variables in ~y1 the non-distinguished variables.

Conjunctive queries – Example

I Consider an interpretation I = (�I ,EI), where EI is a binary
relation – note that such interpretation is a (directed) graph.

I The following CQ q returns all nodes that participate to a triangle in
the graph:

9y , z.E (x , y) ^ E (y , z) ^ E (z , x)

I The query q in datalog notation becomes:

q(x) E (x , y),E (y , z),E (z , x)

I The query q in SQL is (we use Edge(f,s) for E (x , y):

SELECT E1.f
FROM Edge E1, Edge E2, Edge E3
WHERE E1.s = E2.f AND E2.s = E3.f AND E3.s = E1.f



Nondeterministic evaluation of CQs

Since a CQ contains only existential quantifications, we can evaluate it
by:

1. guessing a truth assignment for the non-distinguished variables;

2. evaluating the resulting formula (that has no quantifications).

boolean ConjTruth(I,↵,9~y .conj(~x , ~y)) {
GUESS assignment ↵[~y 7! ~a] {

return Truth(I,↵[~y 7! ~a],conj(~x , ~y));
}

where Truth(I,↵,') is defined as for FOL queries, considering only the
required cases.

Nondeterministic CQ evaluation algorithm

boolean Truth(I,↵,') {
if (' is t 1 = t 2)

return TermEval(I,↵,t 1) = TermEval(I,↵,t 2);
if (' is P(t 1, . . . , t k))

return PI(TermEval(I,↵,t 1),...,TermEval(I,↵,t k));
if (' is  ^  0)

return Truth(I,↵, ) ^ Truth(I,↵, 0);
}

�I TermEval(I,↵,t) {
if (t is a variable x) return ↵(x);
if (t is a constant c) return cI;

}



CQ evaluation – Combined, data, and query complexity

Theorem (Combined complexity of CQ evaluation)
{hI,↵, qi | I,↵ |= q} is NP-complete — see below for hardness

I time: exponential
I space: polynomial

Theorem (Data complexity of CQ evaluation)
{hI,↵i | I,↵ |= q} is LogSpace

I time: polynomial
I space: logarithmic

Theorem (Query complexity of CQ evaluation)
{h↵, qi | I,↵ |= q} is NP-complete — see below for hardness

I time: exponential
I space: polynomial

3-colorability

A graph is k-colorable if it is possible to assign to each node one of k
colors in such a way that every two nodes connected by an edge have
di↵erent colors.

Def.: 3-colorability is the following decision problem
Given a graph G = (V ,E ), is it 3-colorable?

Theorem
3-colorability is NP-complete.

We exploit 3-colorability to show NP-hardness of conjunctive query
evaluation.
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Reduction from 3-colorability to CQ evaluation

Let G = (V ,E ) be a graph. We define:
I An Interpretation: I = (�I ,EI) where:

I �I = {r, g, b}
I

E

I = {(r, g), (g, r), (r, b), (b, r), (g, b), (b, g)}
I A conjunctive query: Let V = {x1, . . . , xn}, then consider the

boolean conjunctive query defined as:

qG = 9x1, . . . , xn.
^

(xi ,xj )2E

E (xi , xj) ^ E (xj , xi )

Theorem
G is 3-colorable i↵ I |= qG .



NP-hardness of CQ evaluation

The previous reduction immediately gives us the hardness for combined
complexity.

Theorem
CQ evaluation is NP-hard in combined complexity.

Note: in the previous reduction, the interpretation does not depend on
the actual graph. Hence, the reduction provides also the lower-bound for
query complexity.

Theorem
CQ evaluation is NP-hard in query (and combined) complexity.

NP-hardness of CQ evaluation

The previous reduction immediately gives us the hardness for combined
complexity.

Theorem
CQ evaluation is NP-hard in combined complexity.

Note: in the previous reduction, the interpretation does not depend on
the actual graph. Hence, the reduction provides also the lower-bound for
query complexity.

Theorem
CQ evaluation is NP-hard in query (and combined) complexity.



Recognition problem and boolean query evaluation

Consider the recognition problem associated to the evaluation of a query
q of arity k . Then

I,↵ |= q(x1, . . . , xk) i↵ I↵,~c |= q(c1, . . . , ck)

where I↵,~c is identical to I but includes new constants c1, . . . , ck that

are interpreted as c
I↵,~c

i = ↵(xi ).

That is, we can reduce the recognition problem to the evaluation of a
boolean query.

Homomorphism

Let I = (�I ,PI , . . . , cI , . . .) and J = (�J ,PJ , . . . , cJ , . . .) be two
interpretations over the same alphabet (for simplicity, we consider only
constants as functions).

Def.: A homomorphism from I to J
is a mapping h : �I ! �J such that:

I h(cI) = cJ

I (o1, . . . , ok) 2 PI implies (h(o1), . . . , h(ok)) 2 PJ

Note: An isomorphism is a homomorphism that is one-to-one and onto.

Theorem
FOL is unable to distinguish between interpretations that are isomorphic.

Proof. See any standard book on logic.



Canonical interpretation of a (boolean) CQ

Let q be a conjunctive query 9x1, . . . , xn.conj

Def.: The canonical interpretation Iq associated with q
is the interpretation Iq = (�Iq ,PIq , . . . , cIq , . . .), where

I �Iq = {x1, . . . , xn} [ {c | c constant occurring in q},
i.e., all the variables and constants in q;

I cIq = c , for each constant c in q;

I (t1, . . . , tk) 2 PIq i↵ the atom P(t1, . . . , tk) occurs in q.

Canonical interpretation of a (boolean) CQ – Example

Consider the boolean query q

q(c) E (c , y),E (y , z),E (z , c)

Then, the canonical interpretation Iq is defined as

Iq = (�Iq ,EIq , cIq )

where

I �Iq = {y , z , c}
I EIq = {(c , y), (y , z), (z , c)}
I cIq = c



Homomorphism theorem

Theorem ([CM77])
For boolean CQs, I |= q i↵ there exists a homomorphism from Iq to I.

Proof.
“)” Let I |= q, let ↵ be an assignment to the existential variables that
makes q true in I, and let ↵̂ be its extension to constants. Then ↵̂ is a
homomorphism from Iq to I.

“(” Let h be a homomorphism from Iq to I. Then restricting h to the
variables only we obtain an assignment to the existential variables that
makes q true in I.

Illustration of homomorphism theorem – Interpretation
Consider the following interpretation I:

I �I = {john, paul , george,mick, ny , london, 0, . . . , 110}
I

Person

I = {(john, 30), (paul , 60), (george, 35), (mick, 35)}
I

Lives

I = {(john, ny), (paul , ny), (george, london), (mick, london)}
I

Manages

I = {(paul , john), (george,mick), (paul ,mick)}
In relational notation:

Person

I

name age
john 30
paul 60
george 35
mick 35

Lives

I

name city
john ny
paul ny
george london
mick london

Manages

I

boss emp. name
paul john
george mick
paul mick



Illustration of homomorphism theorem – Query

Consider the following query q:

q() Person(john, z),Manages(x , john), Lives(x , y), Lives(john, y)

“There exists a manager that has john as an employee and lives in the same
city of him?”
The canonical model Iq is:

I �I = {john, x , y , z}
I

john

I = john

I
Person

Iq = {(john, z)}
I

Lives

Iq = {(john, y), (x , y)}
I

Manages

Iq = {(x , john)}
In relational notation:

Person

Iq

name age
john z

Lives

Iq

name city
john y
x y

Manages

Iq

boss emp. name
x john

Illustration of homomorphism theorem – If-direction

Hp: I |= q. Th: There exists an homomrphism h : Iq ! I.
If I |= q, then there exists an assignment ↵̂ such that hI,↵i |= body(q):

I ↵(x) = paul

I ↵(z) = 30
I ↵(y) = ny

Let us extend ↵̂ to constants:

I ↵̂(john) = john

h = ↵̂ is an homomorphism from Iq1 to I:
I

h(johnIq ) = john

I? Yes!
I (john, z)) 2 Person

Iq implies (h(john), h(z)) 2 Person

I?
Yes: (john, 30) 2 Person

I ;
I (john, x) 2 Lives

Iq implies h(john), h(x)) 2 Lives

I?
Yes: (john, ny) 2 Lives

I ;
I (x , y) 2 Lives

Iq implies (h(x), h(y)) 2 Lives

I?
Yes: (paul , ny) 2 Lives

I ;
I (x , john) 2 Manages

Iq implies (h(x), h(john)) 2 Manages

I?
Yes: (paul , john) 2 Manages

I .



Illustration of homomorphism theorem – Only-if-direction

Hp: There exists an homomrphism h : Iq ! I. Th: I |= q.
Let h : Iq ! I:

I
h(john) = john;

I
h(x) = paul ;

I
h(z) = 30;

I
h(y) = ny .

Let us define an assignment ↵ by restricting h to variables:

I ↵(x) = paul ;
I ↵(z) = 30;
I ↵(y) = ny .

Then hI,↵i |= body(q). Indeed:

I (john,↵(z)) = (john, 30) 2 Person

I ;
I (↵(x), john) = (paul , john) 2 Manages

I ;
I (↵(x),↵(y)) = (paul , ny) 2 Lives

I ;
I (john,↵(y)) = (john, ny) 2 Lives

I .

Canonical interpretation and (boolean) CQ evaluation

The previous result can be rephrased as follows:

(The recognition problem associated to) query evaluation can be reduced
to finding a homomorphism.

Finding a homomorphism between two interpretations (aka relational
structures) is also known as solving a Constraint Satisfaction Problem
(CSP), a problem well-studied in AI – see also [KV98].



Observations

Theorem
Iq |= q is always true.

Proof. By Chandra Merlin theorem: Iq |= q i↵ there exists homomorph.
from Iq to Iq. Identity is one such homomorphism.

Theorem
Let h be a homomorphism from I1 to I2, and h0 be a homomorphism
from I2 to I3. Then h � h0 is a homomorphism form I1 to I3.

Proof. Just check that h � h0 satisfied the definition of homomorphism:
i.e. h0(h(·))is a mapping from �I1 to �I3 such that:

I h0(h(cI1)) = cI3 ;

I (o1, . . . , ok) 2 PI1 implies (h0(h(o1)), . . . , h0(h(ok))) 2 PI3 .

The CQs characterizing property

Def.: Homomorphic equivalent interpretations
Two interpretations I and J are homomorphically equivalent if there is
homomorphism hI,J from I to J and homomorphism hJ ,I from J to I.

Theorem (model theoretic characterization of CQs)
CQs are unable to distinguish between interpretations that are
homomorphic equivalent.

Proof. Consider any two homomorphically equivalent interpretations I
and J with homomorphism hI,J from I to J and homomorphism hJ ,I
from J to I.

I If I |= q then there exists a homomorphism h from Iq to I. But
then h � hI,J is a homomorphism from Iq to J , hence J |= q.

I Similarly, if J |= q then there exists a homomorphism g from Iq to
J . But then g � hJ ,I is a homomorphism from Iq to I, hence
I |= q.



Query containment

Def.: Query containment
Given two FOL queries ' and  of the same arity, ' is contained in  ,
denoted ' ✓  , if for all interpretations I and all assignments ↵ we have
that

I,↵ |= ' implies I,↵ |=  

(In logical terms: ' |=  .)

Note: Query containment is of special interest in query optimization.

Theorem
For FOL queries, query containment is undecidable.

Proof.: Reduction from FOL logical implication.
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Query containment for CQs

For CQs, query containment q1(~x) ✓ q2(~x) can be reduced to query
evaluation.

1. Freeze the free variables, i.e., consider them as constants.
This is possible, since q1(~x) ✓ q2(~x) i↵

I I,↵ |= q1(~x) implies I,↵ |= q2(~x), for all I and ↵; or equivalently
I I↵,~c |= q1(~c) implies I↵,~c |= q2(~c), for all I↵,~c , where ~

c are new
constants, and I↵,~c extends I to the new constants with
c

I↵,~c = ↵(x).

2. Construct the canonical interpretation Iq1(~c) of the CQ q1(~c) on the
left hand side . . .

3. . . . and evaluate on Iq1(~c) the CQ q2(~c) on the right hand side,
i.e., check whether Iq1(~c) |= q2(~c).

Reducing containment of CQs to CQ evaluation

Theorem ([CM77])
For CQs, q1(~x) ✓ q2(~x) i↵ Iq1(~c) |= q2(~c), where ~c are new constants.

Proof.
“)” Assume that q1(~x) ✓ q2(~x).

I Since Iq1(~c) |= q1(~c) it follows that Iq1(~c) |= q2(~c).

“(” Assume that Iq1(~c) |= q2(~c).

I By [CM77] on hom., for every I such that I |= q1(~c) there exists a
homomorphism h from Iq1(~c) to I.

I On the other hand, since Iq1(~c) |= q2(~c), again by [CM77] on hom., there
exists a homomorphism h

0 from Iq2(~c) to Iq1(~c).

I The mapping h � h0 (obtained by composing h and h

0) is a homomorphism
from Iq2(~c) to I. Hence, once again by [CM77] on hom., I |= q2(~c).

So we can conclude that q1(~c) ✓ q2(~c), and hence q1(~x) ✓ q2(~x).



Query containment for CQs

For CQs, we also have that (boolean) query evaluation I |= q can be
reduced to query containment.

Let I = (�I ,PI , . . . , cI , . . .).
We construct the (boolean) CQ qI as follows:

I qI has no existential variables (hence no variables at all);

I the constants in qI are the elements of �I ;

I for each relation P interpreted in I and for each fact
(a1, . . . , ak) 2 PI , qI contains one atom P(a1, . . . , ak) (note that
each ai 2 �I is a constant in qI).

Theorem
For CQs, I |= q i↵ qI ✓ q.

Query containment for CQs – Complexity

From the previous results and NP-completenss of combined complexity of
CQ evaluation, we immediately get:

Theorem
Containment of CQs is NP-complete.

Since CQ evaluation is NP-complete even in query complexity, the above
result can be strengthened:

Theorem
Containment q1(~x) ✓ q2(~x) of CQs is NP-complete, even when q1 is
considered fixed.
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Union of conjunctive queries (UCQs)

Def.: A union of conjunctive queries (UCQ) is a FOL query of
the form

_

i=1,...,n

9~yi .conj i (~x , ~yi )

where each conj i (~x , ~yi ) is a conjunction of atoms and equalities with free
variables ~x and ~yi , and possibly constants.

Note: Obviously, each conjunctive query is also a of union of conjunctive
queries.



Datalog notation for UCQs

A union of conjunctive queries

q =
_

i=1,...,n

9~yi .conj i (~x , ~yi )

is written in datalog notation as

{ q(~x)  conj 01(~x , ~y1
0)

...
q(~x)  conj 0n(~x , ~yn

0) }

where each element of the set is the datalog expression corresponding to
the conjunctive query qi = 9~yi .conj i (~x , ~yi ).

Note: in general, we omit the set brackets.

Evaluation of UCQs

From the definition “_” in FOL we have that:

I,↵ |=
_

i=1,...,n

9~yi .conj i (~x , ~yi )

if and only if

I,↵ |= 9~yi .conj i (~x , ~yi ) for some i 2 {1, . . . , n}.

Hence to evaluate a UCQ q, we simply evaluate a number (linear in the
size of q) of conjunctive queries in isolation.

Hence, evaluating UCQs has the same complexity as evaluating CQs.



UCQ evaluation – Combined, data, and query complexity

Theorem (Combined complexity of UCQ evaluation)
{hI,↵, qi | I,↵ |= q} is NP-complete.

I time: exponential
I space: polynomial

Theorem (Data complexity of UCQ evaluation)
{hI, qi | I,↵ |= q} is LogSpace-complete (query q fixed).

I time: polynomial
I space: logarithmic

Theorem (Query complexity of UCQ evaluation)
{h↵, qi | I,↵ |= q} is NP-complete (interpretation I fixed).

I time: exponential
I space: polynomial

Query containment for UCQs

Theorem
For UCQs, {q1, . . . , qk} ✓ {q01, . . . , q0n} i↵ for each qi there is a q0j such
that qi ✓ q0j .

Proof.
“(” Obvious.

“)” If the containment holds, then we have
{q1(~c), . . . , qk(~c)} ✓ {q01(~c), . . . , q0n(~c)}, where ~c are new constants:

I Now consider Iqi (~c). We have Iqi (~c) |= qi (~c), and hence
Iqi (~c) |= {q1(~c), . . . , qk(~c)}.

I By the containment, we have that Iqi (~c) |= {q01(~c), . . . , q0n(~c)}. I.e.,
there exists a q0j (~c) such that Iqi (~c) |= q0j (~c).

I Hence, by [CM77] on containment of CQs, we have qi ✓ q0j .



Query containment for UCQs – Complexity

From the previous result, we have that we can check
{q1, . . . , qk} ✓ {q01, . . . , q0n} by at most k · n CQ containment checks.

We immediately get:

Theorem
Containment of UCQs is NP-complete.
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