
Checking UML class diagrams instantiations

Giuseppe De Giacomo

Dipartimento di Ingegneria Informatica, Automatica e Gestionale
Sapienza Università di Roma

Outline

1 Instantiations of a UML class diagram

2 Instantiations of a UML class diagram without ISAs

3 Instantiations of a UML class diagram with ISAs

Giuseppe De Giacomo (Sapienza) Checking UML class diagrams instantiations 1 / 23

Outline

1 Instantiations of a UML class diagram

2 Instantiations of a UML class diagram without ISAs

3 Instantiations of a UML class diagram with ISAs

Giuseppe De Giacomo (Sapienza) Checking UML class diagrams instantiations 2 / 23

UML Class Diagram

An UML class diagram

Captured by a finite set of logical axioms that describe universal properties
(i.e., properties of all objects belonging to classes/associations).

Represents intensional knowledge

Corresponds to schema level information in database terms

Corresponds to a set of constraints on class and association memberships

Describes the semantics of the objects

Giuseppe De Giacomo (Sapienza) Checking UML class diagrams instantiations 3 / 23

UML class diagram instantiation

An UML class diagram instantiation, aka object diagram, describes properties of
single objects or relationships between them.

Assigns an extension to all classes, associations and attributes:
I Classes are instantiated by sets of objects, i.e. unary relations;
I Associations and attributes by binary or n-ary relations, involving classes;
I Types are instantiated by sets of values, and are typically predefined: String is

the set of all strings, Integer is the set of all integers, an so on;
I Attributes are instantiated by binary relations, involving Types.

Represents extensional knowledge.

Corresponds to instance level information in database terms.

Corresponds to a database in databases (though satisfying constraints!)

Describes actual data

Giuseppe De Giacomo (Sapienza) Checking UML class diagrams instantiations 4 / 23

UML class diagram instantiation

We are going to formalize and study UML class diagram instantiations in two
steps.

first, we consider the case in which we have no ISA (or generalization) in the
UML class diagram:

I in this case, the UML class diagrams constructs act as constraints that must
be satisfied in the instantiation for it to be correct.

Then we consider the presence to ISAs (and generalizations)
I In this case, we assume that the instantiation will be “partial” in that we do

not explicit instantiate superclasses of subclasses. (Similarly association
subsetting.); Notice this is what all Object Oriented Languages, i.e., Java,
C++, etc., do.

I In order to process such “partial” instantiations we need first to complete
them using ISAs and Generalizations, this amount in a very simple form
(polynomial) of reasoning.

I Once completed through ISAs (and generalization), we can use all constructs
as constraints that the completed instantiation must satisfy.

Giuseppe De Giacomo (Sapienza) Checking UML class diagrams instantiations 5 / 23

Outline

1 Instantiations of a UML class diagram

2 Instantiations of a UML class diagram without ISAs

3 Instantiations of a UML class diagram with ISAs

Giuseppe De Giacomo (Sapienza) Checking UML class diagrams instantiations 6 / 23

Instantiations of UML class diagram without ISAs

Instantiation of UML class diagrams without ISAs
In this case the instantiation of the diagram is a first order interpretation of the FOL
theory corresponding to the diagram:

I = (ObjI ,CI
1 , . . . ,C

I
n

,AI
1 , . . . ,A

I
m

,TI
1 , . . . ,T

I
` , a

I
1 , . . . , a

I
k

) where

ObjI is the set of objects, all of which must appear in some class C
i

, i.e.,
ObjI = CI

1 [· · · [CI
n

. Notice:the actual domain of interpretation �I is
ObjI [TI

1 [· · · [TI
` .

For each class C and hence predicate C(x) we have a set (unary relation)
CI ✓ ObjI .

For each association A and hence predicate A(x , y), we have a binary relation
AI ✓ ObjI ⇥ ObjI , similarly or n-ary associations/predicates

For each type T and hence predicate T (x) we have a set (unary relation) of values
TI . Notice: the interpretation of types is fixed (i.e. for strings StringI = StringJ

is the set of all strings).

For each attribute a binary predicate a(x , y), we have a binary relation
aI ✓ ObjI ⇥ TI (where T is the type returned by attribute).

Giuseppe De Giacomo (Sapienza) Checking UML class diagrams instantiations 7 / 23

Example 1

Giuseppe'De'Giacomo'''''''''''''''''''''''''''''Proge0azione'del'So6ware'–'Analisi''''''''''''''' 1'

Example(1(

b1:(Book(

/tle=(“zen(and(the((
art(of(motorcycle((
maintenance”(

Book(

Title:(string(
InstanceAof(

Alphabet

B(x), t(x , y), String(x)

UML Class Diagram Axioms

8x , y .t(x , y)! B(x) ^ String(y)
8x .B(x)! 1]{y | t(x , y)} 1

Instantiation

I = (ObjI ,BI , StringI , tI)

BI = {b1}
tI = {(b1, ”zen”)}
StringI = all strings
ObjI = {b1}

After some examples, we will stop using object diagrams
and directly use instantiations as FOL interpretations

Giuseppe De Giacomo (Sapienza) Checking UML class diagrams instantiations 8 / 23

Example 2

Giuseppe'De'Giacomo'''''''''''''''''''''''''''''Proge0azione'del'So6ware'–'Analisi''''''''''''''' 2'

Example(2(

b1:(Book(

Title=(“The(Adventures(
(of(Sherlock(Holmes(”(

Book(
Title:(string(Instance_of(

b1:(Book(

Instance_of(

b2:(Book(

Title=(“The(Adventures(
(of(Sherlock(Holmes(”(

Instance_of(

Title=(“The(Memories(
(of(Sherlock(Holmes(”(

dis/nct(
objects(

error(

Alphabet

B(x), t(x , y), String(x)

UML Class Diagram Axioms

8x , y .t(x , y)! B(x) ^ String(y)
8x .B(x)! 1]{y | t(x , y)} 1

Instantiation

I = (ObjI ,BI , StringI , tI)

BI = {b1, b2}
tI = {(b1, “ash”), (b2, “ash”), (b1, “msh”)}
StringI = all strings
ObjI = {b1, b2}

Is this instantiation correct? NO!

The second axiom is violated by
b1: each x in B must have only one
y in t.

Giuseppe De Giacomo (Sapienza) Checking UML class diagrams instantiations 9 / 23

Instantiations of UML class diagram without ISAs

In this setting, let � be (the set of FOL axioms corresponding to) the UML class
diagram (notice there are no ISA assertions) and I an instantiation.

Correctness of the instantiation

(All axioms in) � acts as constraints over I.

check I |= �

if I |= � then I is a correct instantiation of the UML class diagram �

Otherwise, I is not correct, and has to be discarded!

Remember: checking I |= � means checking if all axioms in � evaluate to true in

the interpretation I.

Giuseppe De Giacomo (Sapienza) Checking UML class diagrams instantiations 10 / 23

Example 3

Giuseppe'De'Giacomo'''''''''''''''''''''''''''''Proge0azione'del'So6ware'–'Analisi''''''''''''''' 6'

Example(of(associa/ons(

Person(City(bornIn(

lives(

a:(Person(
bornIn(

lives(

c1:(City(
bornIn(

lives(

c2:(City(b:(Person(

InstanceAof(InstanceAof(InstanceAof(

1..1(

0..*(

0..*(

0..*(

Alphabet

P(x),C(x), b(x , y), `(x , y)

UML Class Diagram Axioms

8x , y .b(x , y)! P(x) ^ C(y)
8x .P(x)! 1]{y | b(x , y)} 1
8x , y .`(x , y)! P(x) ^ C(y)

Instantiation

I = (ObjI ,PI ,CI , bI , `I)

PI = {a, b}
CI = {c1, c2}
bI = {(a, c1), (b, c2)}
`I = {(a, c1), (b, c1)}
ObjI = {a, b, c1, c2}

Is this instantiation correct? Yes!

All axioms are true in I.

Giuseppe De Giacomo (Sapienza) Checking UML class diagrams instantiations 11 / 23

Example 4

Giuseppe'De'Giacomo'''''''''''''''''''''''''''''Proge0azione'del'So6ware'–'Analisi''''''''''''''' 9'

Exercise:(find(errors(

Person(City(

bornIn(
1..1(0..*(

p:(Person(c:(City(

bornIn(

e:(City(q:(Person(
bornIn(

d:(City(

f:(City(r:(Person(

bornIn(

bornIn(
s:(Person(

InstanceAof(

InstanceAof(

InstanceAof(InstanceAof(InstanceAof(InstanceAof(InstanceAof(

InstanceAof(

Alphabet

P(x),C(x), b(x , y)

UML Class Diagram Axioms

8x , y .b(x , y)! P(x) ^ C(y)
8x .P(x)! 1]{y | b(x , y)} 1

Instantiation

I = (ObjI ,PI ,CI , bI)

PI = {p, q, r , s}
CI = {c, d , e, f }
bI = {(p, c), (q, c), (r , e), (r , f)}
`I = {(a, c1), (b, c1)}
ObjI = {p, q, r , s, c, d , e, f }(= PI [CI)

Is this instantiation correct? NO!

For both s and r the second
axiom is false:

s is not born anywhere

r is born in two cities e, f

Giuseppe De Giacomo (Sapienza) Checking UML class diagrams instantiations 12 / 23

Querying instantiation of UML class diagram without ISAs

If the instantiation is correct with the UML class diagram we can query it using
FOL queries being in fact a FOL interpretation.

Querying

if I |= �, then compute q over I as in FOL ignoring � – like in for relational
databases (NB no ISAs for now).

Otherwise, querying I is meaningless, since I is NOT and instantiation of
the UML class diagram �.

Notice that the constraints � that form the UML class diagram play no role in the

evaluation, once we are assured that the instance is correct with respect �.

Giuseppe De Giacomo (Sapienza) Checking UML class diagrams instantiations 13 / 23

Example 5
Let’s consider again Example 3.

Giuseppe'De'Giacomo'''''''''''''''''''''''''''''Proge0azione'del'So6ware'–'Analisi''''''''''''''' 6'

Example(of(associa/ons(

Person(City(bornIn(

lives(

a:(Person(
bornIn(

lives(

c1:(City(
bornIn(

lives(

c2:(City(b:(Person(

InstanceAof(InstanceAof(InstanceAof(

1..1(

0..*(

0..*(

0..*(

Alphabet
P(x),C(x), b(x , y), `(x , y)
UML Class Diagram Axioms
8x , y .b(x , y)! P(x) ^ C(y)
8x .P(x)! 1]{y | b(x , y)} 1
8x , y .`(x , y)! P(x) ^ C(y)
Instantiation
I = (ObjI ,PI ,CI , bI , `I)
PI = {a, b}
CI = {c1, c2}
bI = {(a, c1), (b, c2)}
`I = {(a, c1), (b, c1)}
ObjI = {a, b, c1, c2}

The instantiation is correct so we can
query it. For example we may ask:

q(x)! 9z , y .`(x , z) ^ `(y , z) ^ x 6= y

The answer in this case would be x =
a, x = b.

Notice in querying we ignore the UML
class diagram axioms and consider
only the instantiation, exactly as we
do for databases. Querying is done
by evaluating q over I

Instead, asking queries to Example 4,
which is not a correct instantiation,
is meaningless!

Giuseppe De Giacomo (Sapienza) Checking UML class diagrams instantiations 14 / 23

Outline

1 Instantiations of a UML class diagram

2 Instantiations of a UML class diagram without ISAs

3 Instantiations of a UML class diagram with ISAs

Giuseppe De Giacomo (Sapienza) Checking UML class diagrams instantiations 15 / 23

Complete Instantiation of UML class diagram ISAs

ISAs and complete instantiation

Given a complete instantiation ISAs (and hence the ISA part of generalizations)
can be considered as additional constraints of the form 8x .A(x)! B(x) requiring
that each object in the extension of the subclass A is also in the extension of the
class B .

Hence in case of a complete instantiation there is no di↵erence in the treating
UML class diagram with or without ISAs.

Giuseppe De Giacomo (Sapienza) Checking UML class diagrams instantiations 16 / 23

Example of ISA and complete instantiation

Professor

CollegeworksFor

Faculty

I: FacultyI = { john, mary, paul }
ProfessorI = { john, paul }
CollegeI = { collA, collB }
worksForI = { (john,collA),(mary,collB) }

For each class and association we have a complete extension in the instantiation I.
It is easy to check that I is a correct instantiation with respect to the UML class
diagram!

Since the instantiation is correct we can query it, for example:
Query: q(x) 9y .Professor(x) ^ College(y) ^ worksFor(x , y)

Answer: { john }

{

Giuseppe De Giacomo (Sapienza) Checking UML class diagrams instantiations 17 / 23

Instantiations of UML class diagram with ISAs

However, often in presence of ISAs the instantiation is NOT complete:

For every object it is assumed that the instantiation state explicitly which are
the most specific classes it is instance of.

Then, the fact that the objects belongs also to all superclasses is only
implicitly assumed.

Typical examples are instantiations in virtually all object-oriented
programming languages, e.g., Java, C++, C], Objective C, etc.

Giuseppe De Giacomo (Sapienza) Checking UML class diagrams instantiations 18 / 23

Instantiations of UML class diagram with ISAs

This incomplete instantiations require some automated reasoning to be supported
by the system in order correctly answer to instanct-of operators.

Incomplete instantiation and reasoning

The form of automate reasoning is pretty simple and is based on “modus ponens”:

If a is an instance of A (ie, A(a) is true in I) and A ISA B (i.e.,

8x .A(x)! B(x)), then a is also an instance of B (ie, B(a) is true in I).

Similarly for subset constraints between associations (ie,
8x , y .P(x , y)! R(x , y)).

In other words, the instantiation is (virtually) completed first by using all ISAs and
then it is used as usual.

Giuseppe De Giacomo (Sapienza) Checking UML class diagrams instantiations 19 / 23

Example of ISA and incomplete instantiation
I: FacultyI : {mary} – incomplete!

ProfessorI : { john, paul }
CollegeI : { collA, collB }
worksForI : { (john,collA),(mary,collB) }

Professor

CollegeworksFor

Faculty

This instantiation is incomplete!

We know that mary belongs to Faculty and that john and paul belong to
Professors.

However, since we have that Professors ISA Faculty (ie,
8x .Professors(x)! Faculty(x)): we have (by reasoning - modus ponens) that john
and paul belong also to Faculty.

So, the completed instantiation I is: FacultyI = {mary,john, paul}
ProfessorI = { john, paul }
CollegeI = { collA, collB }
worksForI := { (john,collA),(mary,collB) }

Notice that the answer to the query q(x) Faculty(x) of the complete instantiation is
correctly: {mary, john, paul}, while over the incomplete one would be wrongly: {mary}.

Giuseppe De Giacomo (Sapienza) Checking UML class diagrams instantiations 20 / 23

Instantiations of UML class diagram with ISAs
To complete an incomplete instantiation we apply a chase procedure:

Chase of ISAs and subset constraints

Input: partial instantiation I and UML class diagram �
Output: completed I

I
old

= ;;
I
new

= I;
while (I

new

and I
old

are di↵erent) do {
I
old

:= I
new

;
for each (8x .A(x)! B(x) in �) do

for each (a 2 AI
new) do

BI
new := BI

new [{a};
similarly for each subset constraint 8x , y .P(x , y)! R(x , y) in �

}
I := I

new

;
return I

In other words the chase applies in all possible ways all ISA and subset constraints (the
order of application is not relevant since each of the application grows the instantiation
monotonically) and returns the resulting completed instantiation.

In other words, the instantiation is (virtually) completed first by using all ISAs and then
it is used as usual.

Giuseppe De Giacomo (Sapienza) Checking UML class diagrams instantiations 21 / 23

Exercise
Faculty

Professor

AssocProf

Dean isHeadOf

College
1..*

1..1

0..*

worksFor

1..*

{disjoint}

isAdvisedBy

1..1

0..*

<subset>

UML class diagram

8x.Professor(x) ! Faculty(x)
8x.AssocProf(x) ! Professor(x)
8x.Dean(x) ! Professor(x)
8x.AssocProf(x) ! ¬Dean(x)

8x, y.isHeadOf(x, y) ! worksFor(x, y)
· · ·

Instantiation

AssocProfI : {john, bill}
DeanI : {mary}
ProfessorI : {helen}
CollegeI : {coll1}
isHeadOfI : {(mary, coll1)}
worksFor:{(john, coll1), (bill, coll1), (helen, coll1)}

1 Complete the instantiation by chase of ISAs and subset constraints.

2 Is the (completed) instantiation correct with respect to the UML class diagram?

3 If so, answer the following queries:

q1(x) : Faculty(x)
q2(x , y) : worksFor(x , y)
q3(x) : Dean(x) ^ AssociateProf(x)
q4(x) : Professor(x) ^ 8y .College(y)! worksFor(x , y)

Giuseppe De Giacomo (Sapienza) Checking UML class diagrams instantiations 22 / 23

Another exercise

Giuseppe'De'Giacomo'''''''''''''''''''''''''''''Proge0azione'del'So6ware'–'Analisi''''''''''''''' 11'

Exercise:(find(all(errors(

Student(MScProgram(

StudentNo:(int(
Age:(int(

Name:(string(

ErasmusStudent(

From:(string(

enrolled(1..1(

City(

Name:(string(

s:(ErasmusStudent(

From=(“Netherlands”(

c:(MScProgram(

Name=(“MSE”(
enrolled(

lives(1..1(

t:(Student(

StudentNo=(546723(
Age=(21(

enrolled(
d:(City(

Name=(“Rome”(lives(

f:(MScProgram(

Name=(“AIRO”(

v:(ErasmusStudent(

StudentNo=(1234(
Age=(20(
From=(“Netherlands”(

lives(

enrolled(enrolled(

1 Generate the UML class diagram formalization in FOL and the incomplete
instantiation reported in the object diagram.

2 Complete the instantiation by chase of ISAs and subset constraints.
3 Is the (completed) instantiation correct with respect to the UML class

diagram?
4 If not change the (initial) instantiation to make it correct with respect to the

UML class diagram.
Giuseppe De Giacomo (Sapienza) Checking UML class diagrams instantiations 23 / 23

