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Chapter 1

Preliminaries

In this chapter we review the background material which is necessary before em-
barking on the study of the main topic of this hook: the semantics of programming
languages. In the first section we try to make a clear distinction between the syn-
tax and the semantics of languages. In the second section we discuss abstract and
concrete syntax definitions and emphasise that to give a semantics to a programming
language we require, a priori, a definition of its abstract syntax. Induction is the
subject of the remainder of the chapter. In the main body of the book we will use
inductive definitions extensively and these final sections give a thorough introduction
to them. The third section is devoted to a general but informal introduction to this
form of definition. In particular we give a number of examples of inductive definitions
for well-known relations and we show how, in general, induction may be used to prove
properties of inductively defined objects. In the fourth section we treat a particular
case, called structural induction, and in the final one we examine the relationship
between inductive definitions and proof systems.

1.1 Introduction

The definition of a programming language consists of at least two parts, the syntax
and the semantics. The syntax is concerned with the form of expressions which
are allowed in the language or, more precisely, with the sequences of symbols which
will be accepted by a compiler/interpreter for the language. On the other hand the
semantic definition could, for example, describe the effect of executing or evaluating
any syntactically correct expression or program or it could describe how to execute
or evaluate them.

In natural languages there is also this distinction between syntactic and semantic
issues. The expression home to went he is not an English sentence as it violates the
rules of English grammar, i.e. the syntactic rules of English. On the other hand, the

expression the fish answered the walk is syntactically correct. It consists of a noun
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phrase, the fish, followed by a verb, answered, followed by an object phrase, the walk.
Yet it is not English because it is semantically incorrect: it does not make sense.

For programming languages the syntax is usually defined formally using BNF
notation or some kind of grammar. Most books on a particular programming language
will include a section, usually at the end, which will have a formal definition of the
allowable expressions in the language. But the semantics of the language, if given at
all, is completely informal. At most it might consist of a couple of English sentences
beneath the BNF definitions of the various syntactic categories in the language. For
example, when introducing as a new kind of command, the expression

While b Do C,
the English phrase giving the semantics might say something like

to execute this command you execute the command C'repeatedly so long
as the expression b is true.

In this book we will show that it is possible to give a precise account of the seman-
tics of languages in much the same way as BNF descriptions give precise accounts of
their syntax. The book is introductory and therefore we will not see formal semantic
definitions for any “real” language. such as Ada or Pascal, although attempts may be
seen in the literature. In fact, the entire subject is not very well developed and there
is not even a general consensus on the best method to use. Using any of the proposed
methods it is still very difficult to define the semantics of a non-trivial language. You
may well ask: why bother?

The first simple answer is to help the users of the language. At the moment it is
relatively straightforward to use the definition of the syntax of a language to decide
which form of expression can be placed in a given context in a program. When one
is relatively unfamiliar with the language, the syntactic definitions are very useful in
this way. Without them one would have to submit trial expression to a compiler and
wait for the result — a very time-consuming and inefficient solution. With respect
to semantic issues, this is exactly what one must do, without a formal semantics.
In fact, to discover the general behaviour of a program you might have to submit it
to the compiler an infinite number of times! And what if the compiler were imple-
mented incorrectly? Indeed, how does the compiler writer know that the compiler is
a correct implementation of the intentions of the language designer? This points to a
different but equally important role of a formal semantics: a machine- and compiler-
independent standard definition of the language against which implementations might
be judged. Anyone who has attempted to transfer a large program from one site to
another, with a different compiler, will be aware of the problem caused by the lack
of standardised definitions. The program rarely works because the compilers rarely

match. A standard formal semantics would provide a machine-independent standard
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for compiler writers; any proposed compiler would have to agree with this formal
standard.

Returning to the perspective of the user of the language, would it not be nice to
be able to turn to the end of the reference manual and use the semantic definition to
deduce the behaviour of your proposed program? It could also be used to improve
on programs with whose behaviour you are already satisfied. For example, in many
programming languages

If true Then C1 Llse C2
will have exactly same effect as
Ct

and, therefore, we can systematically replace all occurrences of the former with the
latter. Without a formal semantics one can only say that the semantic identity of
these two statements seems reasonable. With a formal semantics we could actually
prove that they are equivalent and therefore put our reasoning on a much more secure
basis. This is a very simple example but, in many cases, it is far from clear if one
statement can be substituted for another and the existence of a formal semantics is
essential. Take the following pairs of statements:

CL;(If b Then C2 Else C3)
If'b Then (C1;C2) Else (C1;C3)

and

(If b Then C2 Else C3);C1
If'b Then (C2;C1) Else (C3;C1)

Are they both pairs of semantically equivalent statements and can each be freely
replaced by its partner in any program? The answer depends on a number of factors
which would be made apparent by a formal semantics. In order to improve, or in
general modify, programs with any degree of assurance, we must be able to justify
the semantic equivalence of pairs of statements such as these. Indeed. in one pro-
posed method of program development one starts with a very inefficient but obviously
correct program and, by a series of syntactic transformations, transforms it into an
efficient program which is still correct. The allowable transformations are given by
pairs of statements such as those above, and the consistency of the entire program
development method depends on having a formal semantics with which to check these
transformations.
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1.2 Concrete and Abstract Syntax
A very simplified structure of the use of a typical compiler is as follows:

INPUT : sequence of symbols/program
=== parser —
parse tree/internal representation
=== code generation =
compiled program
=== erecution =
ouTPUT

The input is a linear sequence of characters which the user hopes is a syntactically
correct program. The parser analyses this string, checks that it is syntactically correct
and outputs a parse tree, or possibly some more general internal representation, either
of which will describe the structure of the program to be executed. This first section
is concerned only with syntactic issues and is governed by the syntactic definition of
the language. The remaining phases are the concern of the semantic definition. So,
the semantic definition should determine the effect of the execution of a program,
given that it is syntactically correct and given a parse tree for the program or, more
generally, a structural description of the program. The important point is that a
semantic definition does not concern itself with assigning meanings to sequences of
symbols; rather it assigns meanings to structural descriptions of programs. These
descriptions will be given in terms of what we call abstract syniaz.

Let us recall BNF syntax definitions. These:

o specify the sequences of symbols accepted by a parser for the language

and
e determine the structure of the accepted sequences.

They are concerned with allowable sequences of symbols, the so-called concrete syntax
of the language. The following is an example of a BNF definition for a subset of

arithmetic expressions:

<exrp > u= < num> | <erp > <op> < exp>
<op> u= + | — | x| div

< num > u= < digit > | < digit > < num>
<digit> == 0|1]2|3|4|5]6]|7]|8]09.

The terminal symbols are +, —, %, div,0,1,2,3,4,5,6.7.8,9 and the non-terminals
< exp >, < op >,< digit >,< num >. Any sequence of symbols generated from
< exp > is a syntactically correct expression, i.e. a valid expression. However, this is

(S8
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Figure 1.1: Parse trees for 4 «2 — 1

not a good BNF description as it specifies two different structures or parse trees for
certain sequences of symbols. For example, 4 x 2 — 1 has the two possible parse trees
which are given in Figure 1.1. The first interprets it as

< exp >< op >< exp >

where the first < eap > is 4 % 2, < op > is — and the second < exp > is the numeral

1. The second parse tree also interprets it as
< exp >< op >< exp >

but in this case the first < exp > is the numeral 4, < op > is * and the second
< exp > is 2 — 1. Thus this BNF description could not be used as part of a formal
definition of the language of arithmetic expressions as the semantic component would
not know which parse tree to use to assign a meaning to 4+ 2 — 1. If it used the first
it would obtain the meaning 7 whereas the second would lead to 4. A correct BNF
definition, where each sequence of symbols in the language is assigned a unique parse

tree, is :
< erxp> un= < lerm > ‘ < exp > < lowop > < term >
< lerm > u= < num > | < term > < highop >< num >
< num > = < digit> | < digit > < num >
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Figure 1.2: The unique parse tree for 4 %« 2 — 1

<lowop> u= 4+ | —
< highop > == x | div.

In this case 4 x 2 — 1 has only one parse tree, which is given in Figure 1.2: it is
interpreted as an expression of the form

< exp >< lowop >< term >

where < lowop > is —, < lerm > is the numeral 1 and < exp > is 4 * 2.

In contrast to BNF definitions, abstract definitions are only designed to specify the
structure of expressions allowed in the language. In particular they are not concerned
with acceptable strings of symbols nor with assigning to each such sequence of symbols
a unique structure or parse tree. Instead they describe the set of allowable parse trees
for the language.

A very simple definition of the abstract syntax of arithmetic expressions is given in
Figure 1.3. It consists of two parts. The first enumerates the syntactic categories and
introduces a particular symbol which will be used in the second part to stand for an
arbitrary object of that category. In this example there are three different syntactic
categories, Frp, the principal one for expressions and two auxiliary categories, Op for
operators and Num for numerals. The expression

ein Erp

simply means that e will be used as a meta-variable for the syntactic category Fap, i.e.
will be used as a typical element of Frp. Similarly, op will designate a typical element
from Op and n a typical element from Num. The second part gives an explanation

1.2. CONCRETE AND ABSTRACT SYNTAX

-1

1. Syntactic categories
e in Krp
op in Op
n in Num

2. Definitions

op u= + | — | * | div

!

e u=n| € ope”

Figure 1.3: Abstract for Eup

of the structure of objects in the different categories, using a BNF-like notation. For
example, it says that every expression is of one of the two forms:

1. n,ie. an element of Num

2. a structure which contains three components represented by €', op, e” respec-
tively. Because of the use of meta-variables it is assumed that both ¢’ and ¢”

are also elements from Fxp and op is an element from Op.

It also says that the category Op is very simple. It consists of four ele-
ments, +, —,*, div, i.e. the elements have essentially no structure. Finally, it
says nothing about the structure of elements in the category Num. This just
means that, whatever use will be made of this abstract syntax, the struc-
ture of the elements of Num will not play a role. It is best to view
these as definitions of allowed parse trees. So the first possibility says that
|

is a possible parse tree for an expression, where n is any element from the syntactic
category Num, while the second admits

e op e

"

where it is assumed that ¢’ and ¢” also represent allowable parse trees for expressions
and beneath op there is an admissible parse tree for the syntactic category Op. Note
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that the actual definition used to describe the structure of the elements in Fzp is
identical to the erroneous BNF definition for arithmetic expressions. This may be
confusing but they are being put to very different uses. One determines the kinds of
parse trees which arise when dealing with expressions, i.e. abstract syntax, whereas
the other erroneously attempts to assign to each arithmetic expression a parse tree,
i.e. attempts to define a concrete syntax. In this book we will never be concerned with
concrete syntax. All the BNF-like definitions used will form part of a description of
an abstract syntax of a language and therefore will be used to describe the allowable
parse trees of that language. Initially the reader might welcome a more graphical
representation of these definitions but one quickly gets accustomed to interpreting
our linear definitions, such as

ex=n | € op e

as definitions of parse trees. Also, by and large, we will not use a graphical nota-

tion to describe actual parse trees. Instead we will represent a parse tree such as

N

"

for example, by the linear expression e op ¢’. Of course, this will in general lead to
ambiguities. However, this will not occur very often and when it does we will explain
the intended structure of the expression, often using brackets.

Two further examples of abstract syntax definitions are given in Figure 1.4 and
Figure 1.5. The first is an extended version of arithmetic expressions. The new
syntactic categories are boolean expressions, BEzp, variables, Var, boolean variables,
BVar, and boolean operators, BOp. The structure of both kinds of variables is ignored
and BOp simply consists of two constants. An arbitrary expression may now have
one of four different structures, the new possibilities being a variable or of the form
If be Then €' Else ", where it is assumed that be is a boolean expression and both
¢’ and ¢” are expressions. There are five different possibilities for the structure of a
boolean expression, all of which by now should be easy to understand. Note, however
that the two syntactic categories Fxp and BFEzp are not independent of each other.
Using what should be a self-expainatory notation for the parse trees of this language
one possible parse tree for the syntactic category BFExp has the form

FEqual

5/\51
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1. Syntactic categories
e in Krp
be in BExp
x in Var
bz in BVar
opin Op
bop in BOp

n in Num

2. Definitions

e u= x| n|e op & | If be Then € Lise "

be u= bx | T | F | Not be' | Equal(e,e’) | be' bop be”
op = + | — | x| div
bop = And | Or

Figure 1.4: Abstract syntax of extended Fxp

where ¢ and ¢’ are parse trees from the category Erp. Similarly we may form a parse
tree in Kap from a parse tree from BExp, be, and two from Fap, e and ¢’ by

f‘f
be o et

The second example gives the abstract syntax for a simple imperative program-
ming language, called While. The principal syntactic category is Program. However,
according to the definitions, a program simply consists of a block followed by a period.

W

In turn, a block consists of a declaration followed by which, in turn, is followed

by a command. There are five different possible structures for a command, including
one of the form

begin B end

where B is an arbitrary block. A declaration consists of a sequence of basic decla-

rations, each separated by “;”. The basic declarations can have one of two different

@,
)

structures, a variable declaration or a procedure declaration; the latter consists of
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1. Syntactic categories

pin Program Iin Id

B in Block x in Var

D in Dec bz in BVar

C' in Command op in Op

e in Fp bop in BOp
be in Bloxp nin Num

2. Definitions

p == B.

B D;C

D == war x| bvarbx | procedure I :C | D', D"

C o= skip | x:=e | C;C" | If be Then C' Else C" | I

| While be Do C' | begin B end

e n= x| n| ¢ ope | If be Then ¢ FElse ¢

be n= bx | T | F | Not be | Equalle,e') | be' bop be"
op = + | — | * | div
bop = And | Or

Figure 1.5: Abstract syntax of While

the name of the procedure, an identifier, together with the body, which must be a
command.

These abstract syntax definitions are a concise and readable manner for conveying
a large amount of information concerning the syntax of programming languages. They
will be used throughout the text.

1.3 Induction

The main mathematical tool we will use is induction, in a variety of forms. Let us
recall the most basic form — mathematical induction. To prove a property, say P(z),
of all natural numbers two separate statements must be proved:

1. Prove P(x) is true of 0, i.e. P(0). This is known as the base case.

2. On the assumption that P(k) is true, prove P(k 4 1). This is known as the
inductive case.
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If both can be shown then we can conclude P(r) is true for every natural number n.
As a simple example, consider the property P(z) which asserts that the sum of the
first n natural numbers is n(n + 1) div 2,

O+14+...... +n=mn(n+1) div 2.
To show that P(x) is true of all natural numbers we must show:

1. P(0): i.e. 0 =0(0+1) div 2, which is trivially true from the definition of integer
division div.

2. P(k+ 1) assuming (k). P(k+ 1) is the statement
O+ 14.+hk+(k+1) =+ 1)k+2) div 2
which is what we must show. Now
O+14+...+k+(E+1)=0+14+...+k)+(E+1).
Since we assume P(k) to be true, we have
O+ 1 4. +k=k(k+1) div 2.
Then we have

O+14+...+k+(k+1) = klk4+1) div 2 + (k+1)
= k(k+1) div 2 + 2(k+1) div 2
= (k(k+1)+2(k+1)) div 2
(k+2)(k+1) div 2.

In other words, we have derived P(k + 1).

From 1 and 2 we may now conclude that 0+...4+n =n(n+1) div 2 for every natural
number n. Of course most people know that this is a property of the natural numbers
but we have simply used it as a vehicle for explaining mathematical induction.

We will rephrase mathematical induction as a form of induction which is more
generally applicable. The set N of natural numbers satisfies the following conditions
or rules:

e 0eN
e ifre Nthenx+1€eN.

Many other sets also have these properties. Examples are the set of integers (positive
and negative), the set of rational numbers and the set of real numbers. However,
these properties have special significance for N; N is the least set which has both
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these properties. This is so obvious that it is difficult to prove. What we mean is
that if X is any other set with these properties then N C X. To prove this we
use mathematical induction to show that n € X for every natural number n. More
precisely we use mathematical induction to show the property £(n) is true for every
natural number n where P(z) is defined by

Ple)if e e X.

The base case, 0 € X, is trivially true because X satisfies the first property . The
fact that X satisfies the second property means that the inductive step is also true:
k € X implies £+ 1 € X. We can therefore conclude that n € X for every natural
number n, i.e. N C X.

So, from mathematical induction we can show that N is the least set satisfying the
above two properties. But the converse is also true: If we define N to be the least set
which satisfies them, then we can derive mathematical induction. Suppose we know
that for a particular property P(z), P(0) is true, and under the assumption that
P(k) is true, we can prove P(k+1). Then let X be the set of numbers which satisfies
P(z),i.e. X ={k|P(k) istrue}. X satisfies both the properties above and, since
N is the least such set, we have N C X, i.e. P(n) is true for every natural number
n. In other words, by defining N as the least set satisfying a number of conditions,
we automatically get a form of induction for proving properties of elements of N. In
this case the form of induction coincides with mathematical induction. In general we
will define many sets, relations, etc. as the least ones satisfying a set of conditions or
rules. Each such definition will give us a form of induction, called Rule induction, for
proving properties of the sets, relations, etc. For this reason these ave called inductive
definitions.

As an example of an inductive definition, consider the set of even natural numbers,
EV. 1t satisfies the conditions or rules:

1.0e vV
2. ke EV implies k+2 € KV

and, although many other sets also satisfy them, one can prove (again, using math-
ematical induction) that £V is the least set satisfying them. However, let us just
define EV to be the least set which satisfies these two conditions. What form of Rule
induction do we get for EV from this definition? Suppose we wish to show that P(z)
is true of every element in EV. Let X = {a | P() is true}. So we wish to show
that EV C X. Now EV is the least set satislying the conditions 1 and 2 above and
therefore to show FV C X it is suflicient to show that X also satisfies them. The

two conditions translate to:

e 0 € X, ie P(0)is true
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o k€ X implies k + 2 € X, i.e. P(k) is true implies P(k + 2) is true.

So, if we can show both of these statements we can conclude EV C X, ie. P(k)is
true for every element of E'V. This form of induction is called Rule induction for £V
since it uses the defining rules or conditions of E'V.

As an example of the use of this definition of KV let us show that 2n € EV for
every natural number n. Let P(k) be the property

2k e LV.

So we want to show that P(k) is true for every natural number k. For this reason
we use the instance of Rule induction associated with the inductive definition of N.
There are two clauses in the definition of N and therefore it is necessary to prove the

corresponding two statements of the property P. We must show:
e P(0)is true, ie. 2x 0 € EV
e assuming ’(k), i.e. assuming 2k € KV, prove P(k + 1), 1.e. 2(k+1) € LV.

The first statement is trivial since 2 x 0 is 0 and, by the definition of EV, 0 € £V
The second requirement is also straightforward. We can assume 2k € EV. By the
defining property of EV we therefore have that 2k +2 € EV, ie. 2(k+ 1) € EV.
We have now shown that P satisfies the two defining properties of N and therefore
by Rule induction it follows that P(n) is true for every natural number n.

This proof only used the fact that the set £V satisfied the two properties, namely
0 € BV andifa € EFV then 242 € EV, and so the proof would actually work for any
set. which has these properties. Although F'V has the characteristic of being the least
set satisfying this property, this fact was not necessary in the above proof. Let us
now see an example where it is necessary. We will prove that if n € £V and m € £V,
then n +m € £V. This is a statement about all elements of the set £V as opposed
to all natural numbers and, therefore, it is appropriate to use the induction principle
for 'V, i.e. Rule induction based on the definition of EV, rather than mathematical
induction or the Rule induction based on the definition of the natural numbers. Let

P(z) be the property
for every m € EV, 2+ m € EV.

We prove that P(x) is true for every x € EV, thereby showing that n € EV and
m € EV impliesn +m € EV.

ing to the inductive definition of £V, in order to prove P’(z) for every x € EV it
is suflicient to prove:

1. P(0), ie. for every m € KV, 0+ m € LV

2. P(k+2), assuming P(k), i.e. under the assumption that £+ m € EV for every
m, prove k +2 4+ m € EV for every m.
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The first requirement is immediate since 0 + m = m. The second requirement is also
immediate from the defining property of EV. We know from the inductive assumption
that £+ m € EV. From the definition of £'V we therefore have that k+m+2 € £V,
e, k+24+4me LV,

Note that both these proofs of the induction requirements are essentially trivial.
The power comes from the induction principle associated with E'V, Rule induction.
This is frequently the case. Having set up a statement which one wants to prove
as an instance of Rule induction, the proof of the induction requirements are often
straightforward. However, it is not always easy to recognise the required instance of
induction.

We now introduce a more descriptive notation for inductive definitions. Each rule
in such a definition has the form

if premises then conclusions.
We will write this in the form

premises

conclusions

Thus the inductive definition of the natural numbers consists of the two rules

ke N
0eN k+1eN

Note that in the first rule there is nothing above the line as there is no premis in the
condition. The inductive definition for E'V is very similar:

ke bV
0ecEV k+2c BV

We hope that this notation will make the definitions more readable and that the
corresponding form of Rule induction will be more apparent.

As another example, we define a relation DIV over the natural numbers, but
instead of writing < x,y > € DIV we simply write 22 DIV y. The defining rules for

DIV are:
n DIV k

n DIV 0 n DIV (n+ k)

Here it is assumed that n and k range over arbitrary natural numbers. What is the

set defined inductively by these conditions, i.e. the least set satisfying these rules?

One can check that it is essentially a definition of the predicate “x divides y”, i.e.
DIV ={<n,m >|for some k,nxk=m}. (How?).

From this inductive definition we get another instance of Rule induction, an inductive
proof method for proving properties P(z,y) for every pair (z,y) such that @ DIV y.
The first rule gives the requirement

1.3. INDUCTION 1

(&3

P(n,0)
and the second gives the requirement
P(n. k) implies P(n,n + k).
Let us use this inductive method to prove the property
ife DIVy and x € EV theny € EV.
Here P(z,y)is “z € EV implies y € EV”, and we must derive two statements:

1. P(n,0),i.e. ifn € EV then 0 € EV

2. P(n.k) implies P(n,n + k).

The first is trivially true since 0 € EV by the definition of E'V. For the second let
us try to show that P(n,n + k) is true, i.e. n € EV implies n + k € EV. Suppose
n € EV. We are working under the assumption that P(n,k) is true and therefore
k € V. We have already shown that @ +y € EV whenever & € FV and y € IV
and therefore we can conclude n + k € FV.

Therefore P(z,y) is true for every < x,y > in DIV, i.e. @ DIV y implies that if
x € BV then y € EV.

One must be a little careful in giving inductive definitions. One can easily write
down definitions which make little or no sense. For example, take the single rule

neX
n+3eX

The set inductively defined by this rule is the empty set ¢ I The set ¢ satisfies this
condition for if n € ¢ then also n + 3 € ¢. This is vacuously true because no number
is in ¢. Since ¢ satisfies the condition it also clearly is the least set to do so, since it
is contained in every other set.

To avoid having the empty set as the set defined inductively by a set of conditions,
you must ensure that there is at least one condition which has no premis. This
provides the base case.

One can get into worse trouble. Consider the following three rules:

neX nt+2eX
0e X n+2eX ng X

This set of rules cannot define any set inductively. For example, suppose S is this
set. Then by the first rule 0 € S. By the second 2 € S and by the third 0 ¢ 5. We
cannot have a set that both contains 0 and does not contain 0. So S cannot exist.
The problem arises because we used negative statements in the defining rules. Lo
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ensure that we don’t run into inconsistences like this we will always use only positive
statements in these inductive definitions. Apart from this restriction we will be fairly
informal about their format.

A somewhat more detailed exposition of Rule induction may be found in Chapter
4 of [Win93] and a thorough exposition of the mathematical foundations are given in

[P.AS3].

1.4 Structural Induction

Many of our inductive definitions will be for sets of objects which are either completely
syntactic in nature or have sufficient amount of structure to them that they can be
considered to be at least partially syntactic. The resulting Rule induction in these
cases is called structural induction. We explain this by using as an example lists of
natural numbers. To emphasise their structure we use the notation for lists from the
programming language ML, : [| is the empty list and the infix operator :: represents
prefixing by a natural number. So, if n is a natural number and [ is a list n :: [ is a
new list whose first element is n and remainder is the original list /. The set of all

natural number lists may be defined inductively using the two rules

1€ Lists(N)
[l € Lists(N) n il € Lists(N)

The associated inductive proof method is :

to prove the property P(«) true of all natural number lists it is sufficient to:

e prove P([]) is true

e assuming P() is true, prove P(n ::{) is also true.
This form of induction is called structural induction as it uses induction on the list
structure of the objects. Intuitively the defining rules for Lists(N) stipulate that every
list has a certain structure: either it is [] or it has the more complicated structure
n [, where [ is a list and n a natural number. [] is a simple constructor for lists
which has no component. The list n :: [ is formed by applying the constructor n :: _to
the component list /. The inductive proof method proceeds by examining the possible
structure of an arbitrary list. Tf it is [], then P([]) must be established; if it is n =z I,
then P(n :: ) must be established for every n, on the assumption that P is true of
the component in the structure, i.e. P(I).

Let us look at an example of the use of this structural induction. For an arbitrary

{in Lists(N) let maxz(l) be the largest element in [ (or 0 if [ is empty), sum(/) the

sum of its elements and len(1) its length. We show that for every I in Lisi(N)
sum | < mazx [ * len [.

Let P(z) be this statement, i.e. sum(z) < maz(x) * len(z). We must show both of
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1. P([]), i.e. sum(]]) < maa([]) * len([]),

which is trivial since sum ([]) = 0.

2. P(n ::1) assuming P(I) is true.
Now sum(n :: I) = n+ sum(l). Because we may assume P({) to be true sum(l) <
max(l) * len(l). So sum(n :: 1) < n+ max(l) * len(l). Now n < maa(n :: [) and
max(l) < maz(n :: 1) and therefore this may be rewritten as

IA

sum(n :: 1) maz(n :: 1) + maz(n = 1) x len(l)
max(n 1) = (1 + len(1))

max(n 1) * len(n 2 1)

since len(n :: 1) = 1 + len(I).

In general, structural induction applies to sets defined using a set of constructors.
The general form of the inductive method states that to prove P(z) for all elements
in such a structurally defined set S, it is sufficient to prove the following:

for each constructor C'(,...,_), assuming £(s1),..., L (sx) is true, show
that P(C(s1,...,s;)) is also true.

In the case of Lists(N) there are two constructors [], with no components and n :: _
with one component. To be more accurate there is a constructor of the second form
for each natural number n. Each constructor gives rise to one clause in the statement
of the inductive proof method.

Abstract syntax definitions may be looked upon as inductive definitions and, more
particularly structurally defined sets, because they define objects which are purely
syntactic in nature. We choose as our last example the set of arithmetic expressions
defined by the abstract syntax definition given in Figure 1.3. Another way of stating
this is to say that Fap is the set defined inductively by the two rules

e € Exp, e’ € Fxp
n € Frp e op ¢ € Frp

where it is assumed that n ranges over the numerals Num and op over Op. Here
there are two constructors or, more strictly, two classes of constructors. We have
the trivial constructor n with no components, for each numeral n in Num, and for
each opin Op the constructor - op _with two components. The associated inductive
proof method, structural induction for Exp, is the following: to show P(z) for every
element of Fzp it is necessary to:

1. show P(n) is true for every n in Num

2. assuming P(e) and P(¢') is true, show P(e op ¢’) is also true for each op in
Op.
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To give an example of the use of this structural induction, let Ocount(e) be the
number of operator symbols in the expression ¢ and Neount(e) the number of numeral
symbols. We show that for every e in Kap, Ocount(e) < Ncount(e). Using structural
induction there are two statements to prove:

1. OCount(n) < Necounl(n) for every numeral n.
This is trivial since OCount(n) = 0 and Neount(n) = 1.

2. OCount(e op €') < Neount(e op €') assuming that OCount(e) < Necount(e)
and OCount(¢') < Neount(¢'). Now

OCount(e op ¢') = 1+ OCount(e) + OCouni(e')
< Neounl(e) + Neount(e')

using the inductive hypothesis.

1.5 Inductive Relations and Proof Systems

Let us consider the definition of the set or relation DIV given in Section 1.3. It
consists of two conditions, which we now name:

RuleB - ——55

n DIV k

Rule] ————————
e n DIV (n+k)

This defines a relation DIV, namely the least relation satisfying these rules. They
may also be used as rules to prove that a pair of natural numbers are related via DIV.
For example, suppose we want to know if 3 DIV 9 is true or false. This cannot be
because of RuleB since all conclusions to this rule are of the form & DIV0 and 9 is
different from 0. It might be a consequence of Rulel if it were the case that 3 DIV 6,
for in this case we could apply the rule to obtain 3 DIV 346, 1i.e. 3 DIV 9.

This line of reasoning can be summed up by

it 3 DIV 6 then 3 DIV 9 by Rulel.

Now we can examine the statement 3 DIV 6 and see if we can deduce it from the
rules. Once more it cannot be because of RuleB since 6 #£ 0. But it could be a result
of an application of Rulel to 3 DIV 3. Tf we were assured of 3 DIV 3, then Rulel
would imply 3 DIV 6. So, combining this piece of reasoning with that above, we
obtain

1. 1f3 DIV 3 then

1.5. INDUCTIVE RELATIONS AND PROOF SYSTEMS 19

2.3 DIV 6 by applying Rulel to 1
and so
3.3 DIV'9 by applying Rulel to 2.

Once more we can examine the hypothesis 3 DIV 3 and conclude that if we were
assured of 3 DIV 0 then another application of Rulel would give the required

3 DIV 3. This would then give the sequence of deductions:

it 3 DIV 0 then

.3 DIV 3 by applying Rulel to 1, and so
.3 DIV 6 by applying Rulel to 2, and so
.3 DIV 9 by applying Rulel to 3.

The final hypothesis, 3 DIV 0, is an instance of RuleB which has no premis. So the
entire line of reasoning, now based on no hypothesis, can be written as

. 3 DIV 0 by RuleB

. 3 DIV 3 by applying Rulel to 1
. 3 DIV 6 by applying Rulel to 2
. 3 DIV 9 by applying Rulel to 3.

S —

ISQEES

This is a proof of the statement 3 DIV 9 from the two rules RuleB and Rulel. In
general the rules of an inductive definition give rise to a Proof system, i.e. a method
for generating proofs. A proof in a proof system is a sequence of statements

Sk

such that each statement is a result of applying one of the rules of the proof system to
statements earlier in the sequence. This means that S; must be the result of applying
a rule which has no premis. It also implies that if the set of rules contains none which
has no premis then there are no proofs from these rules. T'he proof above is said to
be a proof of the final statement, S, which, in turn, is called a theorem of the proof
system generated by the rules, or is a consequence of the corresponding set of rules.
Returning to our previous example, we can now say that 3 DIV 9 is a theorem of
the proof system determined by the inductive definition of DIV or is a consequence
of the rules RuleB and Rulel.

Can we prove 4 DIV 77 Well, we cannot apply RuleB to derive it since 0 # 7.
We may be able to apply Rulel to derive it if we were assured of 4 DIV 3. So the

potential proof would look like
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1. if 4 DIV 3 then
2.4 DIV 7 by applying Rulel to 1.

How can we go about deriving a proof of 4 DIV 3 from these rules? Once more we
cannot apply RuleB because 0 # 3. But, also, we cannot apply Rulel since 4 DIV 3
cannot be made to match any instance of this rule. Any potential match would have
to match n to 4 and there is no natural number & such that 4 + & is 3. The result
is that we cannot prove 4 DIV T using these two rules. Because of this we can
conclude that 4 DIV Tis not actually true. We can come to this conclusion because
there is a close link between the relation determined by an inductive definition and
the theorems which can be proved in the corresponding proof system.

Consider an arbitrary inductive definition, i.e. set of rules (which use only positive
statements) and let L be the least relation satisfying them. Let P, be the relation
generated by the proof system; that is, assuming L is a binary relation, < n,m >€ Py,
if there is a proof of n L m in the proof system generated by the inductive definition.
First note that this relation £, satisfies the rules since proofs are constructed by
applying them. Since L is the least relation satisfying the rules, it follows by Rule
induction that L. C Pp. To prove the converse, suppose < n,m >€ Pp,. Then there is
a proof of n P, m using the rules. One can prove by mathematical induction on the
length of this proof that < n,m >& X for any relation X which satisfies the rules,
and in particular that < n,m >€ L. So P, C L,i.e. P = L.

This means that when we use a set of rules to inductively define a relation this
relation is completely determined by the statements which can be derived in the
corresponding proof system. This is not of great significance when giving inductive
definitions of well-known relations such as DV and £V. But in future chapters we will
give inductive definitions of relations which have no characterisation other than these
inductive definitions. In these cases the link with the proof system corresponding
to the inductive definition is crucial as it enables us to deduce whether or not two
objects are related. In fact the only way of understanding these kinds of relations is

by investigating the proof systems associated with their inductive definitions.

Questions

Q1 Use mathematical induction on m to show:
e the sum of the squares of the first m natural numbers is m * (rm + l)(?m, +
1) div 6
e n DIV mx*n for every m € N
e n DIV limpliesn DIV m x| for every m € N.

Q2 Use the inductive definition of E'V in Section 1.3 to prove n € EV implies n*k €
EV for every k € N.
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Q3 Use the inductive definitions of DIV and EV in Section 1.3 to prove

e n DIV m,n DIV m/impliesn DIV m + m’
e n DIV m,m DIV kimpliesn DIV k.

Q4 Let REM be the ternary relation defined by:

< x,y> REM rifristhe remainder when y is divided by @, i.e. if 0 <7 < @
and y = kx + r for some &k > 0. (Note that = cannot be 0.)

Give an inductive definition of REM.

Q5 Use the inductive definition of Question 4 to prove:

<ax,y> REM rimpliesr < x
o © DIV yimplies <2,y > RFEM 0 whenever « > 0
o <z,y> REM rimpliesz DIV (y —r)

<z,y> REM r,<z,y> REM r' impliesr =171".

Q6 For any two non-zero natural numbers n,m a common divisor of n,m is any
number & which divides exactly into both of them, i.e. there exists some z, 2’
such that n = z % k and m = 2’ « k. The number k is the greatest common
divisor of n,m written k = ged(n,m) if it is a common divisor and, for any
other common divisor, &', k' < k. Give an inductive definition of the relation
ged.

QT For any relation R over a set X, i.e. R C X x X let R*, its reflexive transitive
closure, be defined by < #,y >€ R* if there exists ng,...,ns in N, for £ > 0,
such that @ = ng,y = ng and < ngyny >€ R for all 0 < ¢ < k. Give an
inductive definition of R*.

Let A C X be such that if <2,y >€ R and € A then y € A. Show that this
property is also true of R*, i.e. if < 2,y >€ R* and x € A then y € A.

Q8 Complete the proof outlined at the end of Section 1.5 that £p C L.



Chapter 2

Arithmetic Expressions

In this chapter we examine a very simple language and use it to explain what we
mean by a semantic theory. The language is for a subset of arithmetic expressions
over numerals which are meant to represent natural numbers. The abstract syntax
has already been given in Figure 1.3 but for convenience is repeated in Figure 2.1.
Here there are three syntactic categories, Fap, the principal one, and the two auxiliary
ones, Op and Num. We are not interested in exactly how elements of Num are defined
but one could imagine a grammar for sequences of digits. However, from our point of
view they may be considered as tokens, objects requiring no further analysis. There
are four possible operators in the syntactic category Op corresponding to four natural
operations on numerals, and expressions are formed in the usual way using numerals
and these operators.

Intuitively the semantics of this language is well-understood, even if only infor-
mally. The meaning of an expression is a numeral, that is every expression corresponds
to a value or numeral and we all know how to calculate it. But how do we formally
say which numeral corresponds with each expression? That is. how do we explain in
a precise manner the correspondence between expressions and numerals 7 This is not
much of a problem for this simple language but as the language gets more complicated
the correspondence will no longer remain clear. In the following sections we use this
language, whose semantics is very clear to everyone, as a vehicle to explain different
methods for assigning meanings to languages. In later chapters we will apply some
of these methods to more complicated languages.

2.1 Concrete Operational Semantics

One method of describing how to calculate the value of expressions would be to write
a compiler or interpreter for the language. Then each time you wanted the value of
an expression you simply apply the interpreter or run the code which is returned by
the compiler. In this section let us examine how we might do this. A compiler has

(8]
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1. Syntactic categories
e in Krp
op in Op
n in Num

2. Definitions

op u= + | — | * | div

e == n|eope

Figure 2.1: Abstract Syntax for Fxp

to work on a machine and therefore before designing the compiler we must decide
on an appropriate machine. For the sake of argument let us choose what 1 will call
a STACK-machine. This consists of a stack on which values (i.e. numerals) can
be stored and an unspecified arithmetic unit for doing simple calculations on these
values. To perform these calculations we assume that the machine also contains the
usual kind of locations or variables. T'here are only three operations on the stack:

Push : Num* STTACK — STACK
Pop : STACK — STACK
Top : STACK — Num.

The operation Push takes a numeral n and a stack s and returns a new stack, the
result of putting the numeral n on top of the stack s. Pop takes a stack and pops
the top element from it, if it exists. The result is again a stack containing all the
elements of the original stack except the topmost one. Finally Top simply reads off
the top element of the stack, if it exists, without affecting the stack. Executing Top
or Pop on an empty stack causes a run-time error.

A program for this machine consists of a sequence of instructions for manipulating
the STACK and doing some arithmetic on the values. We will not be very specific
about the exact form they take but we use SProg to denote the set of sequences of
instructions, i.e. the set of programs. Intuitively a program starts on the machine
with the empty stack, performs the sequence of instructions and finally halts. The
resulting value is then taken to be the element on top of the stack. A compiler for

the language of expressions will be represented as a function
COMP: Exp — SProg.

It takes an expression exp and returns a program COMP(exp) for the STACK-



24 CHAPTER 2. ARITHMETIC EXPRESSIONS

machine. The intended value of the expression, its meaning. is then obtained by
running this program on the STACK-machine. COMP is defined by structural induc-
tion on expressions and for convenience we use Applys(op) to denote the sequence of
instructions which:

1. takes the first two elements from the stack

2. sends them to the arithmetic unit where the operation corresponding to the
symbol op is applied to them and finally the result is replaced on top of the
stack.

Assuming that the arithmetic unit knows about all of the arithmetic operators
Applys(op) can simply be written as:

z := Top;

Pop

y 1= Top;

Pop

z = Ap(op, x,y);

Push z

Since there is only one stack in the machine there is no need to write the stack ar-
gument for the operations Push, Pop and Top. We use Ap(op,z.y) to denote the
application of the operation corresponding to the symbol op to the values in the
locations & and y. We are assuming that the arithmetic unit can carry out these op-
erations. We should emphasise that all of these operations are integer operations and
for simplicity we assume that they always return an answer. Moreover we are keeping
the language extremely simple and therefore only have numerals corresponding to the
non-negative integers or natural numbers. So we take the symbol div to represent an
approximation to integer division, restricted to our collection of numerals. T{ m is 0
then n div m returns 0 for every n, and otherwise it returns the largest numeral k&
such that n x k is less than or equal to n. Similarly — represents an approximation to
subtraction over our numerals. So if m is greater than n, n — m returns the numeral
0. This is discussed more fully in Section 2.4.

The definition of the compiler may now be given by structural induction on ex-

pressions:
COMP (n) = Push(n)
COMP(cop ¢') = COMP(e); COMP(¢'); Applys(op).

How good is this a method for defining the meaning of expressions? It certainly
works, at least if you own a STACK-machine. The compiler COMP assigns to each
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expression e a sequence of instructions for the stack machine, COMP(e). To find the
meaning of e you simply run the sequence of instructions COMP(e) on the STACK-
machine. However, to be effective you must also be able to implement the compiler on
a machine. But, much more importantly, most of the detail of the S7TACK-machine
and the compiler and how they work is completely immaterial to our understanding
of how to evaluate an expression. The essential point is that the value of a numeral
n is itself and to evaluate ¢ op ¢’ you first evaluate ¢ then evaluate ¢’ and finally
apply the calculation corresponding to op to the two results. This is what happens
when the compiled code is run on the STACK-machine but it is also a general recipe
which applies to a large number of machines; the simplicity of this recipe is lost in the
details of how the STACK-machine works and the definition of the compiler. Indeed
the compiler is simply an implementation of this recipe on the STACK-machine. A
compiler for a different machine would reimplement this recipe in a form suitable
for the new target machine. However, the essence of our intuitive semantics for this
language is captured by this recipe.

2.2 Evaluation Semantics

Instead of giving the meaning of an expression in terms of a specific compiler for
a specific machine let us instead formally axiomatise our intuitions about how one
would in general go about evaluating an expression. We define a relation

evalsto: Kxp — Num.

For an expression e evalsto(e) gives its intended meaning, the numeral to which it
should evaluate in any correct implementation on any machine, including the STACK-
machine.

The definition of evalsto is an inductive definition. Its defining properties are:

Rule 1 for every numeral n,n evalsto n

Rule 2 if e evalsto v and €' evalsto v’ then e op € evalsto Ap(op,v,v').

As with the definition of the compiler we are assuming that we know that each of the
symbols +, —, %, div stands for the appropriate operation on numerals, and moreover
that we know how to perform these operations. So Ap(op,v,v’) is the numeral which
results from applying the operator corresponding to the operator symbol op to the
two numerals v, v’. It should be emphasised that Ap(op,v,v’) is a numeral and not
some instruction in a language.

These two rules are very simple to understand and capture the essence of how we
go about calculating the value of expressions without excessive detail. In fact, these
rules constitute an inductive definition of a relation evalsto from FEzp to Num. In

choosing to focus on this relation we have decided that the value of an expression
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Rule CRm @——
n—n

e — v

Rule OpR e =

e op ¢ = Ap(op,v,0')

Figure 2.2: Evaluation semantics for fap

e is to be a numeral and the relation evalsto gives the value we would expect from
evaluating an expression. The definition of evalsto is quite abstract. It gives some
information but very little on how the evaluation takes place or what kind of machine
is used; it only gives the expected value.

Instead of using evalsto let us introduce the more graphic symbol = to denote
the evaluation relation. Then the two rules constituting the inductive definition of
evalsto may be rephrased as in Figure 2.2. Here we use the notation for inductive
definitions in Chapter 1.

It is our first example of an inductive definition of a relation which has no other
formal characterisation. At this point the proof system corresponding to these con-
ditions will come in useful. Let us see how to use it to calculate the value of the
expression 3 x4 + 8 div 4 — 2. The rules are given in terms of the abstract syntax
of £zp and therelore in order to apply them we need to view this expression not as a
sequence of symbols but as a parse tree. As such it is ambiguous so let us use brackets
to show its actual structure: (3x4)+ (8 div (4—2)). This indicates that it is parsed

as
e op e

7"

where ¢ is the expression 3 * 4 and ¢’ the expression 8 div (4 — 2). In this case the
only rule which is applicable is Rule OpR and in order to apply it we need to know

8 div (4—2) = 77.
Then an application of the Rule OpR would lead to the proof:
1.If8%x4 =7

2. and 8 div (4 —-2) =77
3. then (3+4)+8 div (4—2) = Ap(+num,?,??) by Rule OpR to 1, 2.
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In the last line +pnu, represents the operation on the numerals corresponding to
addition on the natural numbers.

However, for this to be an actual proof, we need to be able to fill in proofs for the
two statements

3x4 =7

8 div (4—2) = 17.
Let us consider the first one. This is parsed as e * ¢/ where ¢ is 3 and ¢’ is 4. So the
rule which applies to it is Rule OpR once more. But in order to apply it we need to
resolve

3 =

4 = 7"

Luckily both of these are quite easy as they are direct applications of the first rule
Rule CR. So the complete proof for 3 x4 — 7 is:

1.3 = 3 by Rule CR
2.4 = 4 by Rule CR
3.83x4 = 12 by Rule OpR to 1, 2.
When we plug this in to the partial proof for deriving the value of 3x4+8 div (4—2)

we obtain a more complete proof, which is, however, still partial:

1.If8 div (4—2) =77

2.3 = 3 by Rule CR
3.4 = 4 by Rule CR
4.3+4 = 12 by Rule OpR to 2, 3

5. then 3x4+4 8 div (4—2) = Ap(+num,12,7?) by Rule OPR to 1, 4.

To continue trying to deduce the value of 3 x4+ 8 div (4 — 2) we mhust tackle
8 div (4—2) =1

The expression 8 div (4 — 2) is parsed as ¢ div €' where e is 8 and €’ is 4 — 2 and
the only applicable rule is once more Rule OpR. This requires the evaluation of

8§ =7

4-2 =77
The first is a straightforward application of the Rule CR whereas the second requires

more analysis; in the end, two applications of Rule CR are needed and one of Rule
OpR. Putting these together we obtain an evaluation of 8 div (4 — 2):



28 CHAPTER 2. ARITHMETIC EXPRESSIONS

1.4 = 4 by Rule CR

2.2 = 2 by Rule CR
3.04-2 = 2 by Rule OpR to 1, 2
4.8 = 8 by Rule OpR

5.8 div (4—2) = 4 by Rule OpR to 3, 4.

Inserting this into the partial derivation for 3 + 4 + 8 div (4 — 2) we obtain the
following complete proof:

1.4 = 4 by Rule CR
2.2 = 2 by Rule CR
3.04-2 = 2 by Rule OpR to 1, 2
4.8 = 8 by Rule CR
5. 8div(4—2) — 4 by Rule OpR to 3, 4
6.3 = 3 by Rule CR
7.3%x4 = 12 by Rule OpR to 1, 6
8. (83%4)+8div(4—2) = 16 by Rule OpR to 5, 7.

So the result is 16.

Every expression can be evaluated in the same way and it is easy to see that
one could write code in virtually any implementation language for carrying out the
evaluation procedure based on these two rules. The important point is that we have
captured the essential aspects of the evaluation procedure without any undue bias
towards a particular implementation detail; it is at a relatively abstract level. This
also helps when we wish to prove properties of the evaluation. For example, let us
prove that every expression will evaluate to at most one value. This is not apparent
from the definition of = but it certainly is a property we would expect of any
evaluation mechanism.

Theorem 2.2.1 For cvery e in Erp, ife = n and ¢ = n' thenn =n'.

Proof As pointed out in Section 1.4 Exp is defined inductively and therefore one
can prove properties of expressions in Fzp by induction— structural induction. Let

P(x) be the property that a has at most a unique value:
Ifr = mand 2 = k then m = k.

We wish to prove P(e) for every e € Erp and, by structural induction, it is sufficient
to prove:

1. P(n) for every numeral n

2. P(e' op ") for every operator symbol op, on the assumption that P(e') and
P(e") are true.
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Let us first consider P(n). If n = m, then the only way it can be proved using
the rules, Rule CR and Rule OpR. is by an application of Rule CR. This implies that
n = m, since the only possible conclusion to an application of this rule is of the form
n = n. By a similar argument n = k and, therefore, m = k.

We now show P(e’ op e) on the assumption that P(e’) and P(e”) are true. The
only way of deriving ¢/ op ¢’ = m is by an application of Rule OpR, and to
apply this we need to have already derived ¢ = m’ and ¢/ = m" for some

numerals m’ and m”. In this case m must be m’ opy,,, m”, where op is the

Num
function on numerals corresponding to the symbol op. Applying the same reasoning

to e op ¢ = k, we can see that k must have the form k' op

k", where
¢ = Kk and ¢ = k" Now we can use the fact that P(¢’) and P(¢") are
true. T'his means that m’ = k' and m” = k” from which it follows immediately that

m=k. m|

Num

This does not actually state that every expression can be evaluated to a value;
it simply says that any resulting value must be unique. However, we would expect
every expression to have a value and we can prove that this is indeed a property of

our abstract evaluation mechanism = . We prove another theorem.
Theorem 2.2.2 For every e in Exp there exists some n in Num such that e — n.

Proof Once more we use structural induction on Fxp. This time the required
property P(z) is

for some k € Num,z = k.
To show that P(e) is true for every e in Erp we must show:
1. P(n) for every numeral n
2. P(e’ op €"), on the assumption that both P(e’) and P(e”) are true.

The first case is trivial. The required k is simply n since we can apply Rule CR to
obtain n = n. In the second case we can assume, by induction, that ¢/ = k' and
1"

e" = k" for some numerals k', k”. Then the required k is Ap(opy ., k', k") since
we can apply Rule OpR to ¢/ = k" and ¢” = k" to obtain ¢’ op ¢” = k. O

The inductive definition of = is particularly simple because the language
FEzp is simple. Essentially we have one inductive clause for each of the methods for
constructing expressions in Fap. Il we extend the syntactic category Eap by adding
new methods for constructing terms we must also add corresponding inductive clauses
to the definition of = . We may also wish to extend the language by adding new
syntactic categories. In such cases it may be necessary to define how terms in the new
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syntactic categories are to be evaluated. For example, if we have a syntactic category
of boolean expressions it would be natural to introduce a new kind of expression into
Ezp of the form If be Then e Else ¢', where be is a boolean expression. To evaluate
this expression we need to be able to evaluate boolean expressions.

In general, to define how terms in a syntactic category, Cal, are to be evaluated
we must first decide the appropriate set of values, Val(Cat), and then define an
evaluation relation from Cat to Val(Cat). In our simple example the only syntactic
category of interest is Liap. Here the set of values, Val(Eap), was taken to be Num, the
set of numerals. If we extended the language to include boolean expressions, BEap,
we would have to decide on Val(BExp). We will see more examples of this in later
chapters.

In the literature this form of operational semantics, what we call Evaluation se-
mantics, is often refered to as Natural Semantics. Alternative expositions of it may
be found in [NN92, Win93] and non-trivial uses of it may be found on the website
of the CROAP project, http://wuw.inria.fr/Equipes/CROAP-fra.html, a major
project for developing software tools.

2.3 Computation Semantics

In the previous section we saw how to define a very abstract form of evaluation relation
from expression to values, = . For each expression e it defines the resulting value.
But it says practically nothing about how the evaluation takes place. For example,
the inductive definition tells us that

(10 —8) + (5 div 2)x4 = 10

without telling us anything about how a computation which produces the required
value 10 might proceed. In Section 2.1 we have seen one specific and detailed way
in which such a computation might be carried out. But this is one of many possible
implementations and, from the point of view of an explanation, it is full of extraneous
detail. We should be able to explain in more abstract terms what an actual com-
putation which carrries out the evaluation would look like. The key is contained in
the proof of this statement above. By examining it we see that, for example, 10 — 8
must be evaluated, 5 div 2 must be evaluated, etc. We can see that the evaluation
could proceed step by step, each step corresponding to part of an overall computation
necessary to evaluate the complete expression to its corresponding value. In the case
of our particular language each step corresponds to the application of an arithmetic
operator.

Instead of inductively defining the overall evaluation relation = we define a one-
step relation — . A computation consists of a sequence of simple operations each
application of which takes one step. The exact nature of these operations will depend
on the language in question and sometimes also on the target machine on which the
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Rule 1

n op n' — Ap(op,n,n’)

e — €
Rule 2L / - ;
e op e — ¢ ope

/ "

Rule 2R ¢ ¢

—
! 1"
e ope — e op e

Figure 2.3: Computation semantics for Ezp

computation is being performed. For Frp a computation proceeds by performing the
operations corresponding to the operator symbols occurring in the expression being
evaluated, in some particular order, and as the computation proceeds the expression
is gradually simplified. So we interpret ¢ — ¢’ to mean that in one step of the
computation e is simplified to e¢’. This is a very different kind of relation than —- .
The relation —— takes an expression and produces another expression, namely
whatever remains to be evaluated. On the other hand, = takes an expression and
produces a numeral, the result of the entire computation. The difference is emphasised

by what we call the type of a relation. The type of — is given by
—: Fap— FEap

whereas that of = is given by
= Lap — Num.

In future when we introduce a new inductively defined relation we will always give its
type as this is a convenient method of emphasising a simple but important property

of relations, namely what kind of arguments they take and return. So
R:X+—Y

means that £ is a relation between X and Y. Mathematically R is subset of X x Y
and we say that it takes its arguments in X and produces results in Y. An inductive
definition of — is given in Figure 2.3. The first rule simply says that a computation
may proceed by applying an arithmetic expression to values:

nopn’ — Ap(op,n,n’).

The second rule states that we may proceed to compute the value of ¢ op ¢ by
trying to compute the value associated with e or with ¢/. Note that this is much
more abstract, or less detailed than the specific computation scheme in Section 2.1;
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for example it does not describe which of the arguments should be first evaluated
whereas in Section 2.1 the leftmost argument is always evaluated before the second.

Let us consider an example: the expression (10 — 8) + (5 div 2) * 4. Let us
assume that this is parsed as e + €’ where e is (10 — 8) and €' is (5 div 2)*4. So we
could apply either Rule 2L or Rule 2R. Suppose we want to apply the latter. Then
we would need some expression 7 such that

(5 div 2)x4 — 7.
We could then apply the rule to obtain

(10— 8)+ (5 div 2) x4 —s (10 —8) + 7.
So let us look at how to derive

(5 div 2)x4 — 7.

In this case there is only one possible rule to apply, Rule 2L, and to apply it we need
to know the expression 77 such that

5 div 2 — 7.
Then we could apply Rule 2L to obtain
(5 div 2) — 77 %4.

The resolution of 5 div 2 —— 7 comes from an application of Rule 1 since both 5
and 2 are numerals. Therefore an application of the rules to (5 div 2)* 4 gives the
proof:

1.5 div 2 — 2 by Rule 1

2. (5 div 2) x4 — 2% 4 by Rule 2L applied to 1.
This gives us the required subproof with which to finish the derivation from the
expression (10 — 8) + (5 div 2) * 4 and we obtain:

1.5 div 2 — 2 Rule 1

2. (5 div 2) x4 — 2x4 Rule 2L applied to 1

3. (10—8)+(5 div 2)x4 — (10 —8) + (2% 4) Rule 2R applied to 2.
So using these rules we have shown that

(10 —8) + (5 div 2)x4 — (10 —8) 4 (2 4).

That is, in one step of the computation the term (10 — 8) + (5 div 2% 4) reduces to
the term (10 — 8) + (2% 4). A further step in the computation could be

(10— 8) + (2%4) —> (10— 8)+8.
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The only possible further step is
(10-8)+8 — 2+8
and the final step is
2+8 — 10.

Each of these individual steps can be derived from the rules in Figure 2.3. So the
overall computation is

(10—8)+(5 div 2)¥4 — (10—8)+(2%4) — (10—8)+8 — 248 — 10.

In four steps the expression (10 — 8) + (5 div 2) x4 is reduced to the value 10. Of
course, there are many other possible computations. For example, we can prove

(10-8)+ (5 div 2)x4 — 2+ (5 div 2)+4
and
24+ (5 div 2)x4 — 2+ (2x4).
Continuing with this term we get, the overall computation
(10—-8)+ (5 div 2)x4 — 2+ (5div2)*x4 — 2+(2x4) — 248 — 10.

This is a different computation from (10 — 8) + (5 div 2) * 4 which leads to the
same result 10. Although there are many possible computations, all lead to this
same result. Let us introduce some notation for these computations consisting of a
sequence of individual steps as allowed by — . We use —* to denote the reflexive
transitive closure of — | i.e. ¢ — ¢ if for some k > 0 there exists expressions
€0, €1, - - -, €} such that

c=cy — Cly...,Ch1 — e =c.

Note that for any numeral n,n —* n although n — n is not true. If —
represents one computation step carried out on some hypothetical machine, —*
represents the result of carrying out an arbitrary number of steps (possibly zero). The
normal application would be to run the machine to completion, i.e. until no further
computation steps are possible. An expression e is called canonical if it gives rise to
no computation, i.e. if e — ¢’ for no expression ¢’. Then complete computations
end in canonical terms. Luckily in our language canonical expressions are exactly the

numerals.
Theorem 2.3.1 The expression e is canonical if and only if e ts in Num.

Proof Here there are two statements to prove:
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1. every numeral n is canonical
2. if the expression e is canonical then it is a numeral.

The first is straightforward. If we examine the rules defining — we see that
each of them applies only to expressions of the form e op e€'. In particular, they
cannot be applied to expressions of the form n. So for no ¢’ does n — ¢/, i.e. n is
canonical.

The second statement is only marginally more complicated. We prove the contra-
positive statement, namely that if e is not a numeral it is not canonical, by structural
induction on e. If it is not a numeral it must have the form ¢ op ¢” for some
expressions ¢’,¢”. If either of these, say ¢’ is not a numeral then it is not canoni-
cal, i.e. there is an expression [’ such that ¢/ — f’. Then by Rule 21, we have
e — [" op ¢” and so by structural induction e is not canonical. Otherwise both
¢ and €” are numerals, say n’, n” respectively and so we can apply Rule 1 to obtain
e — Ap(op,n’.n") which again means that ¢ is not canonical. O

This means that if we run the hypothetical machine, of which —— represents
one computation step, to completion on any expression we obtain a numeral. We can
take this result as the value or meaning of the expression. This semantics may be

represented by a new relation
~ : Kzp — Num
defined by
¢ ~ nife —* n.
As we have seen above
(10 — 8) + (5 div 2) x4 ~ 10.

This kind of operational semantics is much more detailed than that of the previous
section. It gives some detail of the kinds of computations which one would expect of
an implementation although it still gives very little information about how they are
to be effected. They could be done on a STACK-machine or equally well on a wide
variety of other machines.

For our simple language Fxp we now have two different semantic theories, one
represented by = and the other by — and the derived ~» . Luckily they both
agree. We can show:

Theorem 2.3.2 For every e € Exp,e = n if and only if ¢ ~ n.

Proof Once more there are two statements to prove:
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1. ¢ = nimpliese ~ n
2. the converse ¢ ~» n impliese = n.

We prove the first one by structural induction on terms. There are two cases to

consider:
¢ ¢ is n. As we have already noted, for any numeral n,n ~ n.

e cise op ¢". Then for some n’,n"” we must have ¢ = n’,¢" = n”

and n = Ap(op,n’,n”) because the only way to derive ¢ op ¢ = nis

to use Rule OpR. By induction we may assume ¢/ ~ n’ and ¢/ ~ n”.
Then ¢ op ¢" =* n’ op €" by repeated application of Rule 2L.. Also

* ’

by repeated application of Rule 2R we obtain n’ op ¢’ =* n’ op n’.
Putting these two sequences of derivations together we get ¢/ op ¢’ =~
n’ op n”. We can now apply Rule 1 to obtain n’ op n” — Ap(op,n’,n"),
i,e. n’ op n” — n. By applying this reduction to the end of the sequence

7

of reductions in ¢/ op ¢’ =—* n’ op n” we obtain ¢/ op ¢’ —* n, ie.

¢ op ¢ ~ n.

The converse is less straightforward. We show that if ¢ — ¢ and ¢/ = n
then e = n. This is sufficient to establish e ~ nimpliese = n. (Why 7) We
prove this result by structural induction on e. Again there are two possibilities: e is
n or ¢ has the form f op g. The first cannot be the case since if ¢ — ¢’ then ¢ is
not canonical and therefore cannot be a numeral. So e must be f op ¢g. What form
can the derivation e — ¢’ take? There are three possibilities:

1. ¢’ is f op g where Rule 2L was applied to f — [’
2. ¢ is f op ¢ where Rule 2R was applied to g — ¢

3. f is the numeral n’, ¢ is the numeral n” and Rule 1 was applied so that ¢’ is
Ap(op,n’,n").

Consider the first case. Here ¢’ is /' op ¢ and assuming f' op ¢ = n we
must show f op ¢ = n. If f/ op ¢ = n then there must be numerals n’ and
n” such that f/ = n’ and ¢ = n”. We now have that f{ — f"and f/ = n”
and so by structural induction we may assume f = n’. By applying Rule OpR we
then have e = n.

The second case is symmetrical with f and ¢ replacing each other. So con-
sider the third and final possibility. We assume ¢/ = n, which means that n
is Ap(op,n’,n") and we must show that ¢ = n. But by Rule CR, / = n’ and
g = n” and so applying Rule OpR we obtain the required e (= f op g) =
Ap( op ,n',n") (=n). O
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This theorem states that for the language Ezp both the Evaluation semantics
and the Computation semantics agree. We could go further and also show that the
Concrete semantics given in Section 2.1 is also in agreement. This would amount
to showing that ¢ = n if and only if whenever we compile the expression e to
obtain the program Comp/(e) for the STACK-machine when Comp(e) is executed it
will always terminate with the value n on top of the stack. However, this is not
particularly straightforward and therefore the topic will not be pursued.

In the literature this form of operational semantics is often called structural opera-
tional semanlics because the inference rules are usually given relative to the stucture
of the terms or programs of the language. The primary reference is [Plo81] although
again alternative, and more detailed, expositions may be found in [NN92, Win93].

2.4 Denotational Semantics

When doing calculations, either by hand or on a computer, we usually have in our
minds some mental picture or model of the objects we are manipulating. For example,
when calculating 2 + 4 we are certainly not interested in the actual symbols 2 and 4,
which are nothing more than arrangements of very small black dots on white paper,
or electrical charges stored in some device. The symbol 2 is simply a physical repre-
sentation of an abstract entity, the natural number whose representation in Fnglish
is “two”, in the language Fxp is the numeral 2 and which we have been representing
in ordinary text as 2. Where does this entity exist, can we ever see it, manipulate it
directly or squeeze it? These are all philosophical problems which we would like to
avoid. People have argued for quite a long time about whether numbers even exist.
But for our purposes we can simply say that most cultures, including ours, have built
up over centuries a conceptual model of the natural numbers. This consists of a set
of objects referred to in English by “one”, “two”, “three”. ..., in French by “un”,
“deux”, “trois”, ... and in mathematical notation by 1, 2, 3, .... Whether or not
they exist in any real sense is immaterial. We are all very familiar with the natural
numbers and how to reason about them; we know how to apply functions such as
addition, subtraction, multiplication, etc., to natural numbers to obtain new natural
numbers.

This discussion brings us to our final view of the semantics of our simple language
Exp: expressions in this language are simply representing these abstract objects called
natural numbers. This is certainly true of the subset of Fzp consisting of the numerals,
Num. Numis the infinite set of symbols 0, 1, 2, etc., each of which represents a natural
number. Let us use IV to represent this set of abstract objects, the natural numbers.
Then there is a natural mapping or interpretation {rom the set of symbols, Num, to
the set of corresponding abstract objects N. It maps the symbol 0 to the number 0,
the symbol 1 to the number 1 and so on. This mapping is so natural that in everyday
language we tend to ignore it or we may not even realise it is there. But for our
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purposes it is essential to bring it out into the cold light of day and examine it. We
will use [ to refer to this mapping:

I: Num — N.

This function maps the numeral n to the natural number n, i.e. n is the natural
meaning of the symbol n. We will sometimes use the notation ny to denote the result
of applying the mapping I to the numeral n. Of course ny is simply n but the notation
serves to emphasise the role of the mapping 7.

Just as there is a natural meaning of the symbols 0,1, 2, ..., there is also a natural
meaning for the symbols +, %, —, div. In themselves these, again, are nothing more
than black strokes on white paper, but you and | know that when we use the symbol
+ we are using it to represent an abstract ohject, namely the mathematical function
called “addition on the natural numbers”. Tt might also be used to represent other
kinds of addition, such as “addition on the real numbers” but in the present context
it should be obvious that it represents “addition on the natural numbers”.

What is a function? There are many possible answers but we can take a function
f from a set A to a set B to be a collection of ordered pairs, i.e. a subset of A x B,

which satisfies the conditions:
o totality: for every a € A there is some b € B such that (a,b) € [
¢ uniqueness: for every a € A there is at most one b € B such that («,b) € f.

For example, addition is a function from (N, V) to N and consists of the ordered pairs

((0* U)‘U)‘((U7 1)7 1)7 ((171)72)7((1‘0)‘1)’((07 2)72)" tet

Again, let us use I to refer to this natural association between the familiar symbols
+, —, *, div, and the abstract functions over the natural numbers they represent. We
use the symbol op; to represent the function over the natural numbers which I as-
sociates to the symbol op. So 47 is the actual function of addition over the natural
numbers, *; is the function multiplication and —j is the function subtraction, again
over the natural numbers. It is an approximation to the usual subtraction function
in that n —; m is the natural number 0 whenever m is greater than or equal to n.
Finally, div; is the somewhat less well-known function approximating integer division
discussed before; n divy m is the largest natural number & such that m *; k is less
than or equal to n; if m is 0 by convention this is taken to be 0.

What have we done so far? It is tempting to say nothing because all we have
done is to elucidate the standard, intuitive and natural associations of all of the
symbols used in the definition of the language Frp. More formally, we have provided
a mathematical interpretation for the language. T'his consists of:

1. a space of meanings; in this case the set of abstract entities, N, called natural

numbers



38 CHAPTER 2. ARITHMETIC EXPRESSIONS

2. a meaning in this space for every constant in the language; in this case the
constants are the numerals Num and we associate with the numeral n the
corresponding natural number n; that is for every constant n, ny is the natural
number n

3. an association between the operator symbols op and actual functions over the
space of meanings, op;: here op is a symbol whereas op; is an abstract object,
namely a function. In this case we interpret the function symbols +, *, —, div,
as the natural corresponding functions addition, multiplication, subtraction and
division over N.

This interpretation of the symbols used in Kzp may be extended to all terms in the
language. For example, to interpret the term 142 we first interpret the two argument
symbols 1,2 to the natural numbers 1 and 2, we then interpret the function symbol
+ to the addition function +; over the natural numbers, apply it to the numbers 1,2
and obtain the number 3. More generally, to interpret the expression e op €”:

1. first interpret the expressions e, ¢’ to natural numbers n,n’, say,

2. then interpret the function symbol op to some function f over the natural
numbers,

3. the meaning of the expression ¢ op ¢’ is then the natural number f(n,n’).

Let us introduce some notation for these concepts. Given the interpretation [ we
obtain a meaning function from Fzp to N. We use [...J; to denote this function; so
for every expression e, [e]; is a natural number, the meaning of e. The function [...];
is defined by structural induction:

[[n}][ = ny

leop €lr = opr(lelr [€1r)-

This assigns to every expression a meaning:

Theorem 2.4.1 For every expression e there exists some natural number k such that

[[6][: k.

Proof The proof is by structural induction on terms. We must prove two state-
ments:

1. for every numeral n there exists a natural number k such that [n]; = &

2. assuming that there are natural numbers &' and k" such that [¢']; = &’ and
[¢"]1 = k" then there is a natural number k such that [¢/ op €"]; = k.
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If we show these two statements then we will have proved the theorem. The first is
immediate as the required & is simply n, i.e. n;. The second is also straightforward.
The required k is simply &' op; k”. Remember op; is a total function which takes
two natural numbers and returns a natural number. ]

We have now completed our description of the denotational semantics of Frp. It
is called a denotational semantics because it views the language as a set of expressions
for denoting abstract objects, in this case the natural numbers. In general, to give a
denotational semantics to a language we must design an interpretation for it. This
consists of:

1. for each syntactic category Cat a corresponding set of abstract objects Cat,

2. in order to interpret expressions we must also associate with each method of
constructing an expression in the syntactic category Cat an appropriate abstract
function over the set of corresponding abstract objects C'at;.

Using these two associations we can then define a meaning function [...];: Cat —
Caty for each syntactic category in the language. The function [...J; is defined, as
above, by structural induction over terms.

How do we decide on an appropriate set of abstract meanings? In the case of Fup
it is quite straightforward as we have a natural understanding of these expressions
as denoting natural numbers. With more general languages it is often quite difficult.
Programs will often denote functions of some kind, from input values to output values,
but as the language gets more complicated it is often far from clear what set of
functions should be taken as the space of meanings. Often in these cases we have a
better intuition about the operational semantics than about a “correct” denotational
semantics.

We can also try to check that both semantic views of the language, the operational
and denotational, are in harmony with each other. Let us examine this question for
the language Frp. The operational semantics is entirely concerned with symbols. It
associates with each expression e a numeral n, namely the unique numeral n such that
¢ = n. However, this indirectly also associates with each expression e a natural
number, namely the unique natural number n; such that ¢ = n. That is, to find
the natural number associated with an expression e we first evaluate it to a numeral
by finding the numeral n such that e = n and then interpret this numeral n as a
natural number n, i.e. n;. This natural number coincides with that obtained from
the denotational semantics:

Theorem 2.4.2 For every e in Fxp, e = n if and only if [e]r = n.

Proof Here there are two statements to prove: if e = n then [e]; = n and
conversely if [e]; = n then ¢ = n. Let us consider the second. We suppose that



40 CHAPTER 2. ARITHMETIC EXPRESSIONS

[el: = n and prove by structural induction on terms that ¢ = n. There are two
cases to consider:

1. When ¢ is some numeral k.
In this case [e]7 is k and by the first defining condition of = , Rule CR, we
can conclude k = k.

2. When e has the form ¢’ op €.

In this case we may assume by structural induction that ¢/ = k' where
[¢l; = K and ¢ = K" where [¢"]; = k”. By the definition of [...J, n is
k' op; k" Also by applying Rule OpR we obtain e = Ap(op, k', k”). Now
we are assuming that the Apply mechanism works correctly; when it is applied
to a symbol and two numerals it returns the proper numeral, i.e. when applied
to op it acts on numerals in the same way as the corresponding function op;
acts on natural numbers. This means that &' op; &” = Ap(op, k', k).

The converse statement, ¢ = n implies [e]; = n has a similar proof by structural
induction on terms and it also relies on the fact that the Apply mechanism correctly
models the natural functions associated with the operator symbols. The proof is left
to the reader. O

So hoth approaches to the semantics of Fzp result in essentially the same meaning
for expressions. If this turned out to be false what conclusions could we draw? In the
case of Fzp we would have to conclude that the operational semantics is incorrect.
This is because we have a firm understanding of the language Fap in terms of the
natural numbers and mathematical functions over them. We would have to change
the operational rules to reflect that understanding. With more complicated languages
the answer is no longer clear-cut. As mentioned above, for programming languages we
often have a clearer intuition of the operational nature of programs and the problem is
to find an abstract space of meanings for programs which reflects this understanding.

This completes our exposition of the different approaches to the semantics of
programming languages. The language we used, Frp, is extremely simple and its
meaning is well known to everybody. We have used such a simple language so as to
concentrate on explaining the methods used to give semantics to languages in general.
At one extreme we have the first operational approach, called Concrete operational
semantics, where the language is compiled or interpreted into some simpler machine
language. Often the machine in question is a hypothetical or abstract machine with
a very simple architecture and a limited number of simple instructions. This kind of
semantic description is often of great value to an implementer as it contains lots of
detail and suggestions about implementation issues. The second approach, Evalua-
tion semantics, is of less value to an implementer as it takes a higher-level view of
the evaluation of expressions. This level of description in general leads to a better
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understanding of the constructs of the language without undue reference to exter-
nal considerations. The approach of Computation semantics lies somewhere between
the first two approaches. It avoids implementation details and discussion of machine
instructions but it describes the individual computation steps necessary to evaluate
an expression and the correct temporal ordering between them. The more abstract
approach to semantics is taken to the extreme in denotational semantics. Here we
view the language simply as a method for expressing objects in an abstract model. In
particular, all reference to ideas of computation is omitted. This level of description
is most appropriate for analysing programs or more generally investigating a range
of properties of programs. For example, we can easily argue that the two expressions
(7410)+2 and (9+4)—2 evaluate to the same value. Moreover, the argument does not
involve any reasoning about possible computations: [(9*4) — 2], = [(7 + 10) = 2],
follows by well-known properties of the mathematical functions addition and sub-
traction. In general when using denotational semantics to reason about programs the
arguments are usually concerned with abstract mathematical objects. On the other
hand, if an operational semantics is used, these arguments involve reasoning about
properties of computations. These are usually much more difficult, particularly as
the language concerned gets more complex. However, the disadvantage of the deno-
tational approach is that it gives very little help to anybody who wishes to implement
the language.

There are a resonable number of textbooks which deal with denotational seman-
tics. A good place to start is with [NN92, Win93] and more advanced material may
be found in [Sch88, Gun92].

The remainder of this book will concentrate on operational semantics. We give a
series of examples of semantic descriptions of simple programming languages mainly
using the approach of Evaluation semantics and Computation semantics. The prin-
cipal aim is to explain these approaches more fully through examples and hopefully
to convince the reader that they are not only useful but also widely applicable. The
text is mainly descriptive. For each example language we first give its abstract syntax
and outline informally, in English, the intended semantics. This is then followed by a
formal semantics using either Evaluation or Computation semantics. Indeed we will
see that for some languages the distinction between these two levels of descriptions
is not very clear-cut.

We do not put these formal descriptions to any great use; they serve simply as
examples of formal and precise descriptions of the semantics of programming lan-
guages which could be used by designers, implementers or programmers. However,
to indicate how these formal descriptions might be used we will usually use them to
prove one or two simple properties of the programming language in question. These
properties include well-definedness, i.e. every program or expression returns a result
or determinacy, i.e. every program returns at most one result. Since in each case the
definition of the formal semantics is in terms of inductive definitions, all these proofs
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use induction of some form or another. Q9 Prove Theorem 2.3.2 for the Evaluation and Computation semantics of Question
8.

Questions

Q1 What is the program for the STACK-machine which results from compiling the
expression (7 4+ 9) % (3 — 5)7

Q2 Design an interpreter for the language Fxp to run on a STACK-machine. Here
the machine has two components S,C where S is a stack for holding values
and C is the control part for holding the expression to be evaluated, or, more
generally, a list of expressions. To evaluate an expression you start the machine
in the configuration < ¢, e > where ¢ is the empty stack. It should finish in the
configuration < n, ¢ >, where n is the value of the expression e. (Here we are
using ¢ to represent both the empty stack and the empty list) One rule for the
functioning of the machine is

<s,e op € >= < s,ecop>
where . denotes concatenation. What are the other two rules?

Q3 Write e ~ n if whenever the machine is started in the configuration < ¢,e > it

terminates in the configuration < n,e >. Prove that ¢ = n implies ¢ ~+; n.
Q4 Prove the converse to Question 3, e ~+y n impliese = n.

Q5 In the Computation semantics for Frp the evaluation of e op ¢’ can proceed by
evaluating e or ¢’ or even interleaving their evaluations. In most compilers ex-
pressions are evaluated in a left-to-right manner only. Define a one-step relation
—r for Frp which implements this strategy. As an example, the following
should not be allowed:

(142)*(3+4) —,r(14+2)x7

Q6 Show that — g is deterministic, i.e. if e — g ¢’ and ¢ — g €”, then ¢’ and

e” coincide.

Q7 Prove e = n if and only if ¢ ~+1p n where ~s R is defined in the same way
as ~+ but using — . in place of — .

Q8 Suppose that the application of some of the operators can give rise to errors. In
other words, Ap(op,v,v’) can either return a numeral or a new constant error.
This might happen, for example, if division by zero is undefined or subtraction
of a number by a larger number is not allowed. Redesign both the Evaluation
semantics and the Computation semantics to take this into account.



Chapter 3

A Simple Functional Language

In this chapter we develop an Evaluation semantics for a simple functional language.
We take as a starting point the language for arithmetic expressions from the previous
chapter. We gradually add new features until, at the end of this chapter, we will have
defined the entire language. Each time we introduce a new feature we will extend the
abstract syntax and add appropriate rules to the inductive definition of the evaluation
relation.

3.1 Variables

We first add variables to the language. The new abstract syntax is given in Figure 3.1.
It is identical to that for Ezp except for one new syntactic category of variables, Var.
As with numerals we are not interested in their structure; they are considered as
tokens and consequently we do not include a definition of their structure. We call the
resulting language Kap2.

To evaluate an expression with variables we must know what values the variables
stand for. For example (x*y)—a evaluates to 0 when @ is 0 and y is 6, but to 1 when
is Land g is 2. In an implementation (or a Concrete operational semantics) we wonld
have to say precisely how this association of values to variables is implemented. At
our more abstract level it is sufficient to say that such an association or environment is
simply a function from the set of variables Var to the set of values Num. We use Greek
letters such as p to denote these functions and write p: Var — Num to emphasise
that it is a function from Var to Num; also p(x) denotes the numeral associated
with the variable x. Finally, we let KNV denote the set of all these associations or
environments. An actual implementation of the language would have to decide how
environments are to be stored, accessed and updated. The details of these mechanisms
do not shed much light on the meanings of these expressions and therefore we are
justified in abstracting away from them.

Now the problem is to specify the value to which an expression evaluates given
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1. Syntactic categories
e in Krp2
op in Op
n in Num
x in Var

2. Definitions

+ | = | * | div

op

e u= x| n| € ope

Figure 3.1: Abstract Syntax for Exzp2

Rule CR —/—————
pFn = n

Rule VwR ———————
e et pba = p(x)

phe = v
Rule OpR phe =
pbe op ¢ = Ap(op,v,0)

Figure 3.2: Evaluation semantics for Exp2

a particular environment. As we have already seen the set of values appropriate for
expressions is the set of numerals, i.e. Val(Exzp2) = Num. Technically the type of
the evaluation relation is given by

= : ENV +—— FEzp2 +— Num.

In a given environment an expression will evaluate to a numeral. We will write this as
pF e = vand it may be read “given the environment p the expression e evaluates
to the value v.” Since in this case values are always numerals we could also write
p e = n but we will tend to use instead p = ¢ = v in order to emphasise the
role of values. The definition of the semantics of the new language is very simple; it
is obtained by adding one extra clause to that of the previous chapter. The entire
inductive definition is given in Figure 3.2.

The first rule, Rule CR, simply says that a numeral evaluates to itself in any
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pb(xy)—(2%2)=6
(OrR)
pl—::r*yﬁ‘l’l/ phax2=6
/( Opm\\ /( Opﬁ\
phy=4 phz=3 pFz=3 pF2=2
(VarR) (VarR) (VarR) (CR)

Figure 3.3: A proof tree

environment. The second says that to evaluate a variable you look up its value in the
environment. The third is as before: to evaluate e op ¢ you first evaluate e and ¢’
in the same environment and then apply the function associated with the symbol op.
Notice that the environment never changes. When calculating the value of e in p all
subexpressions are evaluated in the same environment p .

Let us consider an example. We will evaluate (z # y) — (2 * 2) in an environment
p , where p(z) is 3 and p(y) is 4. Rather than going through the long process of
discovering the application of the Rules CR, VarR and OpR which will lead to the
particular v such that p - (2 *y) — (¢ *2) = v we simply give the resulting proof:

l.pF2 = 2 by Rule CR
2.pka = 3 by Rule VarR
3.pFax2 = 6 by Rule OpR to 1, 2
4. pFy = 4 by Rule VarR

5. phaxy = 12 by Rule OpR to 2, 4

6. pF(z*xy)—(z+2) = 6 by Rule OpR to 3, 5.

This is a “bottom-up” presentation of the proof of p - (x *y) — (z *2) = 6
in that it shows how the proof is gradually built up. However it is usually much
more understandable and instructive to read these proofs in a “top-down” or goal-
oriented fashion, namely starting with the conclusion and working through the layers
ol assumptions necessary in order to arrive at the conclusion. We urge readers to
read these proofs in this “top-down” fashion; they should certainly be constructed in
this manner. In fact the most understandable way of presenting these proofs is using
proof trees. The proof tree corresponding to this proof is given in Figure 3.3. At
the top of the tree is the theorem to be proved and the structure of the tree reflects
the structure of the proof with the sub-trees reflecting the history of the derivation.
However, as proofs get long it becomes difficult to present them in this style on one
page but the reader is encouraged to think in terms of proof trees rather than our

linear presentations of them.
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We can show, as in the previous chapter, that, in a given environment, every
expression has a unique value.

Theorem 3.1.1 for every environment p:
1. for every expression e in Fxp2if pbe — n and pke = n’ then n = n’
2. for every expression ¢ in Frp2 there exists a numeral n such that pte¢ = n.

Proof The proofs are very similar to those of the corresponding results for the
language Fxp in the previous chapter. We examine the second one only. As with the
corresponding Theorem 2.2.1 for Ezp the proof is by structural induction but this
time there are three cases in place of two. The required property, P(e), is essentially

the same:
there exists a numeral n € Num, such that pF e = n.
We must show:
1. P(k) for every numeral k
2. P(x) for every variable ©
3. P(¢/ op €”), on the assumption that both P(e’) and P(e”) are true.

The first case is trivial as the required numeral is k itself. The second case is also
trivial: the required numeral n is p(z) since we can apply Rule VarR to deduce
pFa = p(a). The third case is identical to the corresponding case of the proof of
Theorem 2.2.1 for Fup. O

We can also show that the value of an expression ¢ in an environment p depends
only on the value assigned by p to those variables which actually occur in ¢; if we
change the value of p at other variables the value of e remains the same. Intuitively
this can be seen to be true because in any proof of p - ¢ = v any application of Rule
VarR to variables which do not occur in e are superfluous and may be eliminated. The
shortened proof will still be a proof of p - ¢ = v. Indeed in a natural construction
of the proof these superfluous rules would never even be introduced. We will now
prove this fact formally. For any two environments p, p’ and any set of variables X
we say p =x p’ if for every variable z in X p(z) = p/(x), i.e. the values corresponding
to all the variables in X must be the same in both environments. They may of course
be different for variables which are not in X. Note that if X is the empty set then
=x equates all environments while if it is the set of all variables Var then p =x p
only il p and p' are exactly the same environments.

Let Var(e) denote the set of all variables which occur in e. (How would you
formally define Var (e) 7). Then the property we prove of our operational semantics

188
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Theorem 3.1.2 If p =var(e) p' then pt- e = n implies p' - e = n.

Now p =vap(e) p implies p’ =var(e) p and so if we can prove this theorem we will have
shown that

If p=vare) ¢/ then p-e = nifand onlyif p' e = n.

Proof As usual the proof is by structural induction. We wish to establish the
property P(e):

pFe = nimpliesp’Fe — n
for every expression e in Fzp2 and therefore we must establish:

1. P(k) for every numeral k.
Suppose p = k = n. The only rule which can be used to derive this statement
is Rule CR and therefore k = n. Using Rule CR again we get p' -k = n.

2. P(z) for every variable
Suppose p -2 = n. Then n must be p(x) since in this case Rule VarR must
have been applied. We can also apply it to obtain p' - @ = p'(z). Now since
@ € Var(e) we have p(x) = p'(z) and so p' -z = n.

3. P(e op ¢) for every operator op assuming P(e) and P(e) are true.
Suppose p e op ¢ = n. Then there exists two values v and v’ such that
pFe = ov,pke¢ = o and nis Ap(op,v,v'). By induction we have
that p' Fe = vand p'F ¢ = v’ and by applying Rule OpR we obtain
pheope = n. i

At this stage the reader should be aware that our approach to defining the seman-
tics of expressions does not depend very much on the specific set of operators chosen.
We have used the four operators +, —, *, div as examples and more operators could
easily be added. We simply have to assume that the Apply mechanism, modelled by
the relation Ap is capable of interpreting the new symbols correctly. For the moment
we will continue to use our very specific language for expressions but in later chapters
we will be less concerned with the precise collection of allowed operators.

3.2 Local Variables

In this section we add the concept of local variables or local declarations to the
language. This is a very common feature of many programming languages. In the
new expression

let =7 in (y+a)*(z+a)
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1. Syntactic categories
ein Krp3
op in Op
n in Num
x in Var

2. Definitions

op + | = | x| div

e = n|a| e ope | let x=¢ ine

Figure 3.4: Abstract Syntax for Kap3

intuitively we mean that the expression (y + ) * (z + 2) is to be evaluated on the
understanding that the value of x is the numeral 7. Of course we also need values
for y and z and they will be obtained from the environment in which the overall
expression is to be evaluated.

The new abstract syntax is just a slight extension of the previous one: it is obtained
by adding a new kind of expression for local declarations of variables. The entire
syntax of the extended language Fxp3is given in Figure 3.4.

To formalise the operational semantics we introduce some notation for modifying
environments. If p is an environment, x a variable and v a value, then we use p[v/z]
to denote a new environment. It is almost the same as the environment p. At the
variable , p evaluates to p(z) whereas p[v/z] evaluates to v; at every other variable
y different from x, p and p[v/z] evaluate to the same value, namely p(y). Formally
given p: Var — Num, the new function p[v/z]: Var — Num is defined by

v if yis @

plo/al(y) = {

ply) if y is not z.

The operational semantics of the new language can now be defined by adding one
extra rule:
phe = v
Rule LocR plofalF e = o'
pblet x=¢ in ¢ = o
The new rule says that to evaluate the expression let @ = ¢ in ¢’ in an environment

p you first evaluate e in the environment p to v and then evaluate ¢’ in the environment
plv/a], i.e. the environment which associates v with a and is the same as p at every
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other variable. This corresponds with our intuition. In let @ = e in €' we evaluate
¢’ in the normal environment, except that we associate with the variable z the value
of e.

As an example let us evaluate let @ =7 in x*y+ (v div y) in an environment
p where p(z) = 3 and p(y) = 2. The following is the resulting derivation:

1l.pF7T = 7 by Rule CR

2. p[T/elbae = 7 by Rule VarR

3. p[7/2]lFy = 2 by Rule VarR

4. p[T/2]Fax div y = 3 applying Rule OpR to 2, 3
5. p[T/2]Fzxy = 14 applying Rule OpR to 2, 3
6. p[T/z|Fe*xy+ 2 divy = 17 Rule OpR to 4, 5
T.pklet 2=7 in e+xy+ (¢ div y) = 17 Rule LocR to 6, 1.

As another example, let us evaluate the expression let y =2+ 3 in y*y+ x in an
environment p where p(z) = 2 and p(y) = 3 as follows:

1l.pF8 = 3 by Rule CR

2. pb2 = 2 by Rule VarR
3.pFba+3 = 5 applying Rule OpR to 1, 2
4. pl3lylF e = 2 by Rule VarR

5 p[3/ylty = 5 by Rule VarR

6. p[3/ylFy*xy = 25 applying Rule OpR to 5, 5
T.pBlylFyxy+2 = 27 applying Rule OpR to 4, 6

8. pklet y=a+3 in yxy+a = 27 applying Rule LocR to 3, 7.

Notice that in both examples the value of the local variable (2 in the first example
and y in the second example) in the original environment p had no effect on the
evaluation. The introduction of the [let ... construction introduces a number of
subtleties into the role of variables which we now investigate. One question is to
determine the variables on which the value of an expression depends.

In the previous section we saw that the value of an expression e in the language
Ezp2 only depended on Var (e), the variables occurring in e; we proved p =y () ¢/
implies that p F ¢ = n if and only if p' F ¢ = n. We now prove a similar
result for the language Fap3. However, this time the set of variables on which the
value depends is smaller than Var(e). TFor example, in the expression considered
above, let y = x+ 38 in y*y-+ x, the value does not depend on the value of y
although y occurs in the expression. Instead it depends on the variables which occur
in the expression but which are not “bound” by any local declaration such as y in
let y= ... in .... These are called the free variables of an expression, I'Var (€),
and are defined as follows:

L. FVar(n)= ¢
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2. FVar (z) = {=}
3. FVar (e op €)= FVar(e)U FVar (¢')
4. FVar(let e =¢ in ') = (FVar (') — {x}) U FVar (e).

These four clauses define F'Var for every expression e since e must be of one of
the four forms considered. Notice that y is not a free variable of the expression
let y=ax4+38 in y*y+ x; the only free variable is . The bound or local variables
of e, BVar (€), on the other hand are defined by:

1. BVar (n) = ¢

2. BVar(z) = ¢

3. BVar (e op ¢') = BVar (¢) U BVar (¢')

4. BVar (let x =€ in ¢)= BVar(e)U BVar (¢') U {z}.

Although it may seem strange, variables may be both free and bound in an expression.
For example, this is the case with y in let y =y + 4 in e. This represents the fact
that two occurrences of y play different roles in the expression. The first occurrence
of y is a bound occurrence where it plays the role of a dummy variable; it indicates
that all (free) occurrences of y in e should in fact refer to y + 4. This occurrence
of y could be replaced by another variable without affecting the value of the overall
expression provided that the same change of variable was carried out in e. The second
occurrence of y, in y + 4, is a genuine free occurrence. This means that as the value
of y varies the value of the overall expression let y =y + 4 in e will also vary.

We can now prove that the value of an expression depends only on the values
associated with its free variables. More specifically we prove that we may change the
value of any variable not in F'Var (e) without changing the value of e.

Theorem 3.2.1 For cvery cxpression e in Exp3 if p =pvare) p then pbe = n
implies p' e = n.

Proof The proof is by structural induction on e and the property we wish to

establish for every expression e in Fap3is P(e):

for any two environments p and p', il p =FVar(e) pthen pFe = n
implies p' - e = n.

Since expressions can now be any one of four forms there are four cases to consider:
1. P(k) for every numeral k

2. P(xz) for every variable ©
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3. P(¢' op €") for every operator op assuming both P(¢’) and P(e”) are true
4. P(let @ =¢' in ¢") assuming both P(¢’) and P(¢”) are true.

The first three cases are identical to the corresponding cases of the corresponding
proof of Theorem 3.1.2. So we concentrate on the final one, when ¢ is of the form
let x=¢ in €. Suppose pbF let @ =¢ in ¢” = n. This must have been
established with Rule LocR. So there must be a value »’ such that p ¢ = o/
and p[v'/z] F ¢ = mn. Now FVar (¢) C FVar (e) and so we may assume
that p =pvare) p. By induction we now have that p' - ¢ = o'. It may
not be that #Var (¢”) C FVar (e) because x might be in FVar (¢”) and not in
FVar (e). owever p[v'/z] =y p'[v'/ ] since both environments associate the value
o' with . So p[v'/z] =(syurvare) p/[v'/2] and since FVar (e") € FVar (e) U {z}
we have that p[v'/z] =pvaeen) p'[v'/z]. So from pv'/z] F ¢” = n we deduce
p'[v'/2] F ¢” = n by induction and therefore we may apply Rule LocR to obtain
pElet x=¢ in ¢ = n. |

This theorem states that the value of an expression depends only on the values
associated by the environment to its free variables. In the remainder of this section
we will explore further the roles of free and bound variables and in particular their
effect on substitution. Tt may be skipped by the uninterested reader.

The value associated with variables which only appear bound play no role in the
evaluation. In fact if we are careful we may change local variables without affecting
the meaning of expressions. For example, the expressions let y =3 in yxy+
and let 2 =3 in z*z+ x have exactly the same value. The exact value depends
on the value of x, i.e. the value associated with = by the environment. For example,
if # is 10 the value of the expression is 19 while if it is 5 its value is 14. In fact,
the y in let y =3 in y*y+ x can be changed to any variable other than x
without affecting the meaning of the expression. However, if we change it to x we
get a different value: pF let @ =3 in x*xa+a = 12 regardless of the value
associated by p to x. This is because x is a free variable of the original expression
let y =38 in y+y+a and substituting « for the bound variable y turns a free variable
into a bound variable. In general changing a free variable into a bound variable will
change the value of an expression. So one may only replace the local variables in an
expression if the replacement does not interfere with the free variables. This clash
in the roles of variables is usually avoided by defining a notion of substitution which
takes this problem into account.

We use ¢[e’/z] to denote the result of substituting the expression ¢’ for @ in the
expression e. In fact this is a very poor description as the substitution should take
into account the peculiarities of free and bound variables. In particular, as we have
just discussed, we do not want free variables in e’ to be bound or captured in the
resulting expression. Also we do not want to substitute ¢’ for every occurrence of x in
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e, only for the free occurrences. The value of e depends only on these occurrences and
not the bound occurrences and, therefore, the latter should be ignored. For example,
substituting y 4+ 4 for « in

(let =83 in z+y)+z
should result in
(let z=83 inza+y)+y+4
rather than
(let 2=3 iny+4+y)+y+4.
The formal definition of e[¢’/z] may be given by structural induction on e:
1. zld/z]=¢
2. yle//z] = y if v and y are different
3. n[e//z] =n

4. (e1 op eq)[e'/x] = eq]e![x] op eale’/x]

ot

(et x=ey in e)[e/z] = let @ = (e]c/2]) in ey
6. (let y=re¢1 in ex)|e'/a] = let y=(er]e’/z]) in (ex]e'/z]) if
y & Fvar(€)

(let y=e1 in e)[efa] = let z= (e1]€//x]) in ((eaz/y])]e'/x]) ify € FVar(e
where z is any variable not in FVar (¢/) U FVar (e3).

-~

Notice that in the last case the resulting expression will depend on the particular
variable z chosen. It is often best to choose a z which does not occur at all in ey, as
in the following examples:

1. (let w=a+4 in vxy)lyx3/a]=lel v =(y+3)+4 in xx*y
2. ( let x=y+4 in y+ :1:)[:1: + 2/];] =lel w=ao+2+4 in 2+2+w

3. (let y=(let y=2+3 in y*xz) in z+y)lz+y/z]= let w
=(let z=ax2+y+38 in zx(z+y)) in z+y+w.

This definition of substitution is not particularly straightforward and is much
more difficult than normal textual substitution. However, it is the correct form of
substitution for the language with local declarations as it respects the roles of local
and free variables. That it is the natural form of substitution may be seen from the
following property:



54 CHAPTER 3. A SIMPLE FUNCTIONAL LANGUAGE

pFele//z] = v if and only if there is a value v’ such that p F ¢/ = v’
and plv'/z|F e = w.

We may also restate in a natural fashion the fact that we may change the local

variables in an expression without changing its value:

pblet w=¢ in ¢ = vitandonlyifpk lel y=re¢ in ('[y/x]) =
v for every y ¢ FVar (¢').

These two results are set as questions at the end of the chapter. Unfortunately they
cannot be proved by structural induction. This is because substitution is not a purely
structural operation on expressions. Sometimes it is necessary to change the structure
a little; bound variables may have to be changed and consequently changes are made
to components to compensate. In the seventh clause of the definition the result of
substituting e’ for  changes the bound variable of e and also the component es. So
in general results have to be proved by induction on the size of expressions rather
than their structure.

The reader should also be able to prove the standard results about this semantics,
determinacy and well-definedness : relative to a given environment p every expression
has a unique value.

3.3 Boolean Values

We now extend the syntax by introducing a new syntactic category for boolean ex-
pressions, BExp. 'I'wo new constants are introduced, 1" and F', and intuitively we
expect boolean expressions to evaluate to one of these constants in the same way
as expressions from FExp evaluate to numerals. In order to differentiate between the
two different kinds of expressions in future we will refer to the latter as arithmetic
expressions and the former as boolean expressions. To complete the language we also
introduce boolean variables. The abstract syntax for this new extension is given in
Figure 3.5.

The syntax for expressions is the same as before except that we have one new
construct If be Then ¢ Flse ¢”. Intuitively to evaluate such an expression you
first evaluate the boolean expression be; if it is true evaluate ¢’, otherwise evaluate
¢”. Boolean expressions are formed in the usual way with the boolean connectives
And, Or and Not. In addition we have the expression Fqual(e,e’) which intuitively
evaluates to 1" if ¢ and ¢’ evaluate to the same value and F' if they evaluate to different
values. Note that ¢ and ¢’ must be arithmetic expressions. This is reflected in the
fact that we use the meta-variables e, ¢’ rather than be, be’ in Equal(e,e’).

As explained in Section 2.2 each new significant syntactic category requires a cor-
responding set of values in order to extend the Evaluation semantics to that cat-
egory. For arithmetic expressions the appropriate set of values is the numerals,
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1. Syntactic categories
e in Krpj
be in BExp
op in Op
bop in BOp
nin Num
x in Var
bz in BVar
2. Definitions
op = + | — | x| div
bop = And | Or
e n=n | x| ope | let x=¢ ine" | If be Then ¢ FElse ¢
be = bx | T | F|be' bop be" | Not be' | Equal(e,e)
Figure 3.5: Abstract syntax for Frp/
ie. Val(Exp) = Num. For boolean expressions it is natural to take the corre-

sponding set of values to consist of simply the two boolean constants ' and /', i.e.
Val(BExp) = {T, I'}. So every boolean expression will either evaluate to T or to F.
We will often refer to {7, F'} as the boolean values and Num as the arithmetic values.
Of course the evaluation will now depend not only on associating arithmetic values
with arithmetic variables but also boolean values with the boolean variables. So we
generalise FNV to be the set of functions

p: VarU BVar — Num U {1, '}

which are “type - respecting”, i.e. p(z) is in Num whenever x is in Var and p(ba) is

in {T, '} whenever ba is in BVur. The evaluation relation now takes one of the forms
phre =4 v
reducing an arithmetic expression e to an arithmetic value v in Num or

pbe =p bv
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Rule CRh @ ——M———
pFn =, n

Rule VwaR ——M—————
pFa =4 pla)

phbe =5 T
Rule IfR phe =4 v
pb If be Then e Else ¢ =>4 v

pFbe =5 F
phe =4 o
pIf be Then e Else ¢ =>4 v

phre =4 v
Rule OpR phe =4 v
pbe op e =4 Aplop,v,v)

phe =4 v
Rule LocR plofa] b e =4 v
pblet x=¢ in ¢ =4 v

Figure 3.6: Evaluation semantics for Expf: =4

reducing a boolean expression be to a boolean value bv in {1, £'}. The types of these
relations are given by

= 4: ENV — Ezpf +— Num and =p:ENV — Blzp— {T,F}.

They are axiomatised in Figure 3.6 and Figure 3.7.

Most of the rules are the same as before. In Rule CR there are two new boolean
constants 7" and F. Rule OpR is also unchanged except that in addition to the
arithmetic operators we have the two boolean operators And and Or and we assume
that the Apply mechanism interprets these as the usual boolean functions. That is

T ite=Tandy=T

I otherwise

Ap(And, z,y) = {

and

F' otherwise.

Ap(()r,xyy):{T fe=Tory=1T
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Rule CR _ _

e pFT =5 T pELI =g I
Rule VarR

e vl pbbr =5 p(bx)

phe =4 v phre =4 v
Rule EqR pbed =4 v phe =4 v
pF Equalle,¢') =5 T p b Equalle.d') =5 F

if v is different from v’

plbe =5 b
Rule BOpR pbbe! =5 b
pFbe bop be! =5 Ap(bop,buv,bv')

pHbe =5 T pkbe =5 F

Rule NotR
e ne F Not be —p F F Nol be —>5 T
p p

Figure 3.7: Evaluation semantics for Fxpj: =5

The rule for local declarations in arithmetic expressions remains unchanged. Rule
IfR is for evaluating the conditional expressions, If be Then e FElse ¢'. 1t says
that the result of evaluating this expression is the value of e if be evaluates to T
and the value of ¢’ if it evaluates to I'. The rule for evaluating Fqual(e,e’) is also
straightforward. The result is always either 7" or F', being 7' if ¢ and ¢’ evaluate to
the same arithmetic value and #' if they give different values. Finally we have the
obvious rule for evaluating Not be . This could also have been handled as part of
Rule OpR using the boolean function of one argument

Not : Val(BEwp) — Val(BExp)

defined by Ap(Not,T) = F, Ap(Not, F) =1

Note that the definitions of =, and =g are intrinsically intertwined. In
Rule EqR a conclusion involving =g depends on premises involving =4 while
in Rule IfR a conclusion involving =4 depends on a premis involving =g . This
means that neither of these relations can be defined independently, in isolation from
the other. So both sets of rules should be considered as one inductive definition which
simultaneously defines two relations =—4 and —p .

As an example of the use of these rules let us evaluate the expression
If Equal(z,y) Then z FElse x+y in an environment p where p(z) = 0,p(y) = 1
and p(z) = 2.
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l.pbaz =4 0 Rule VarR
2. pFy =4 1 Rule VarR
3. pF Fqual(x,y) =5 F RuleEq to 1,2
4.opFa+y =4 1 Rule OpR to 1, 2
5. pk If Equal(z,y) Then z Else x+y =>4 1 Rule IfR to 3, 4.

To show that this new abstract evaluation mechanism makes sense, we must prove
two results:

1. for every p and e in Frpj there exists some value v such that pFe =4 v
2. pFe =4 vand pFe =4 o imply v =o',

The first statement says that every arithmetic expression can be evaluated to
some value and the second says that this value is unique. As usual we would prove
these statements by structural induction on terms. But a problem arises due to the
interdependence of =>4 and =g . For example, in the proof of the first statement
when we are considering the case when e has the form If b Then ¢ Flse ¢/, we
will need to know if b evaluates to a boolean value. We will not be able to assume
this by induction as the inductive hypothesis is only about arithmetic expressions.
So we need to prove statements not only about =4 but also =g . The correct
statement of the theorems are:

Theorem 3.3.1

1. For every arithmetic expression ¢ in Exp4 and every environment p there exists
some numeral n such that pFe =4 n

2. for every boolean expression be in BExp and every environment p there exists
some boolean value bv such that p - be =y bv.

Theorem 3.3.2

1. For every arithmetic expression e in tap and every environment p iof p F
e = 4 vandpbe =4 vV thenv =1

2. for every boolean expression be in BEzp and every environment p if p = be =g
bv and pF be =>p bv’ then bv = bv'.

Both these theorems are now proved by structural induction and in each case the
statements abont =4 and ==p are proved simultaneously. So, for example, in
the first theorem when we are examining the case If be Then e Else €' we will be
able to assume by induction that either be =g T or be =5 F. Similarly when
examining the case of the boolean expression Equal(e, ¢') we will be able to assume
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that for some arithmetic values v.v', e =>4 v and ¢/ =4 v'. The details of the
proofs are left to the reader. They are very similar to the corresponding proofs in the

previous sections.

3.4 Function Definitions

As a final extension to the language we add user-defined function definitions. The
idea is to introduce a new syntactic category of function or procedure names and
to associate with the name a body or definition. For example, take the squaring
function. We use Square as the name of the function and its definition is given by:

Square(x)—= x * z.

On the left-hand side we have Square(x), which consists of the name of the function
Square and a list of formal parameters. In this case the list is of length 1 namely (z).
The definition is on the right-hand side and consists of an expression constructed in
the usual way.

We call such a definition a declaration as it declares the meaning to be associ-
ated with the name Square. Now, in the course of evaluation, if we come across an
occurrence of Square, we can use this declaration to make sense of it. Consider, for
example, the evaluation of the expression Square(3) in the context of this declaration.
We want the value which results from applying the function whose name is Square to
the value 8. The declaration gives us the current interpretation of Square and it is
therefore natural to say that the value of Square(3) is exactly the value of

in an environment where the formal variable x is bound to the numeral 3.

1f we apply our existing rules for evaluating expressions to this expression in this new
environment we see that its value is 9.
This is the basis for a very simple rule for handling user-defined functions: when-

ever we have a declaration of the form
Fla)—e
then the evaluation rule

phe = v
plv'/elFe = v
pEF() = v

captures the intended meaning of the definition. This is exactly the rule which we
applied informally above to evaluate the expression Square(3). It is a very powerful
rule as it applies not only to simple function definitions such as Square but also defi-
nitions of functions which use their own name in their definitions, so-called recursive
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definitions. For example, take the factorial function. We use Fac as the name of the
function and its definition is given by:

Fac(a)<= If Equal(z,0) Then 1 Else =+ Fac(a —1).

This consists of an expression constructed in the usual way except that in addition the
name of the function may also be used. Let us now see, at least informally, how a rule
such as the above may be used to evaluate an expression involving Fae. Consider the
expression Fac(2) in the context of this declaration. We want the value which results
from applying the function whose name is Fac to the value 2. The declaration gives
us the current interpretation of Fac and, as with the user-defined function Square

above, it is natural to say that the value of Fac(2) is exactly the value of

If Equal(z,0) Then 1 Else v+ Fac(z — 1)
in an environment where the formal variable z is bound to the numeral 2.

On applying our existing rules to this expression in this new environment we see
that its value is exactly the value of

2 % Fac(1)

because Fqual(z,0) evaluates to the boolean value F. Now, to find the value of this,

we must first have the value of Fuc(1). This once more coincides with the value of
If Equal(z,0) Then 1 FElse xx* Fac(zx —1)

evaluated this time in an environment where the formal parameter z is bound to the
numeral 1. This in turn coincides with the value of

1% Fac(0)

because once more Equal(x,0) evaluates to F in this environment. With one more
application of our new rule for function definitions, Fuc(0) evaluates to 1 because
the definition of Fac is interpreted in an environment where z is 0. So 1 * Fac(0)
evaluates to 11, i.e. 1. Substituting back into the above expressions we see that
Fac(2) evaluates to 2.

After this informal introduction to function definitions let us now see how to
extend the syntax of the the existing language Fap4 with declarations. The resulting
language is called Fpl, shorthand for “a Functional programming language ”. We will
allow mutually recursive definitions such as

Fi(ar, ... o)< €
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1. Syntactic categories

p in Prog op in Op
D in Dec bop in BOp
e in Exp n in Num
be in BEap xin Var
Fin FunVar b in BVar

2. Definitions

p u= <e D>
D u= F(zy,..,zp)=c¢ | F(zy,...,ap)<=¢€, D
op == + | — | = | div
bop == And | Or
e n=n|a | ope | let x=¢ in " | If be Then ¢ Else " |
F(ey,...,e), where arity(F) =k
be == bz | T | F | be' bop be” | Not be | Equal(e,e')

Figure 3.8: Abstract syntax for Fpl

and state a little more formally the required extensions to the definition of the eval-
uation relation. The abstract syntax is given in Figure 3.8.

We assume a new syntactic category of function names which we call FunVar. We
are not particularly interested in how they are constructed, in the same way that we
are not, interested in the set of variables Var. We just assume that they exist and
use upper case letters such as F, G as typical examples or sometimes strings of letters
such as Fae, Div, etc. However, each function name we define expects a specific
number of arguments. For example, Fuc only expects one, whereas a function Rem,
which calculates the remainder of one number when divided by another, takes two.
Accordingly, each function name has associated with it a number, greater than or
equal to zero, called its arity. If arity(F) is k, then when forming expressions F must
be applied to exactly k arguments, i.c. F(eq,...,¢,) is an expression only when n is
k. This restriction cannot be expressed directly in the language for abstract syntax
definitions; we simply append a condition to the appropriate clause of the definition
of expressions. This is the only new clause in the definition of expressions. The
same restriction holds when defining declarations. A declaration is simply a list of
definitions each of the form
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Fzy,...,zp)=e.

This is said to be a definition of the function name F') and e is said to be the body
of the definition where, of course, k is the arity of the function name F. Finally, a
program consists of an expression together with a declaration, < e, ) >. Intuitively
the declaration ) supplies the definitions of all the function names in e. However, a
priori we have no guarantee that this is so as it cannot be enforced using our grammar
rules. Instead we must make a further restriction on the syntax, stipulating that for
any program < e, ) >:

1. every function name in e has a corresponding definition in D
2. every function name occurring in ) has exactly one definition in D).

We will only consider programs which satisfy these restrictions.

Let us now turn our attention to the evaluation rules. The evaluation of expres-
sions will still require an environment p, to give a meaning to the variables which
appear in expressions. The evaluation of arithmetic expressions will depend on a dec-
laration to provide a context for the new function symhbols which they may contain.
For this reason we need to further parametrise the arrow = with respect to not
only environments but also declarations. Now

Dipbe =4 v

means that, in the environment p and assuming that D provides a definition for all
the relevant function symbols, the arithmetic expression e evaluates to the arithmetic
value v. Technically the evaluation arrow now has the type

=,4: Dec — ENV — Ezp — Num.

This complication, introduced by declarations, applies also to boolean expressions
because although the new function names may only appear in arithmetic expressions
these arithmetic expressions may be used to form boolean expressions. For example,
Fqual(F'(e),G(e')) is a boolean expression and may only be evaluated if we have
declarations associated with the function names # and . So the new type of =5
is:

=p5: Dec — ENV +— BExp+—— {T.F}.

These new relations will then provide a means of evaluating programs, all of which
are of the form < e, D >. We can say that

phE<e,D>= v whenever D,p F ¢ =4 v.

The rules for =4 are given in Figure 3.9. As one expects, all of the rules from
the previous section are inherited and there is only one addition, Rule FunR:
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Dipke =4 v,1 <<k
D.ploi/xi, ... ,opfzg] e =4 v
Dypb Fleq,....ex) =>4 v
whenever F'(21,...,25) <= € occurs in D

This has already been explained intuitively: to evalnate F'(eq, ..., ez), first evaluate
the parameters and then evaluate the body of the definition of /' in an environment
in which the formal parameters are bound to the values of the actual parameters.
As an alternative, one could leave the parameters unevaluated and simply substitute
them directly into the body of the definition. Our choice is called the call-by-value
parameter-passing mechanism whereas the alternative is called call-by-name. Tt is

defined formally by the rule

Dvp}_e[tl/wlv"'vek/xk] AV
D,pk Fler,...,e) =4 v
whenever F(zy,...,x;) <= e occurs in D

However, we will only use the call-by-value Rule FunR given in Figure 3.9. The
definition of = for £plis identical to that for Exp4, given in Figure 3.7.

As an example consider the program < Rem(3,5), D > where D is the declaration

Rem(z.y)<= If Equal(z,y)
Then O
Else If Equally — z,0)
Then y
Flse Rem(x,y — )

and let p be any environment. This function calculates the remainder on dividing y
by x and uses the fact that y — x evaluates to 0 whenever y is less than or equal to
z. Recall that we only have numerals corresponding to the natural numbers and — is
interpreted as the approximation to subtraction on the natural numbers as explained
in Section 2.1. We show how to derive

D,pF< Rem(3,5), D > = 2.
The derivation is quite complicated and the reader is encouraged to discover it directly

in a top-down or goal-oriented fashion. Otherwise the derivation below will not be
very intelligible. For convenience we let ¢; denote the expression

If Equally — «,0) Then y Else Rem(z,y — x).
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1. D,p[8/x,5/y][3/z.2/y]F O =4 O Rule CR

2. D,p[3/x,5/y][8/z.2/ylFy =4 2 Rule VarR

3. D.p[8/x,5/y][8/x,2/ylF &z =4 3 Rule VarR

4. D,p[8/x,5/y][8/x,2/ylFy—a =4 O Rule OpR to 2, 3
5. D,p[8/x,5/yl[3/x,2/y|lF Fqually — 2,0) =5 T Rule EqR to 1, 4
6.  D.,p[8/x,5/y][8/z.2/y]lFer =4 2 Rule IfR to 5, 2

7. D,p[3/x,5/y][8/x.2/y] F Fqual(z,y) =5 F Rule EqR to 2,3

8. D,p[3/x,5/y“3/x 2/ylke =4 2 Rule IfR to 6, 7

9. D,p[8/e,5/ylFx = 3 Rule VarR

10. D,p[8/x,5/ylFy =4 5 Rule VarR

11. D, p3/x,5/ylFy—a =4 2 Rule OpR to 9. 10
12. D,p[3/z,5/y]F Rem(z,y —2) =>4 2 Rule FunR to 9, 11, 8
13. D.p[3/z,5/y]F0 =4 0 Rule CR

4. D,p[8/x,5/y] F Equal(y — 2,0) =5 F Rule EqR to 11, 13
15. D,p[8/x,5/ylF e =4 2 Rule IfR to 12, 14
16. D,p[3/z,5/y]F Equal(z,y) = F Rule EqR to 9, 10
17. D,p[3/z,5/ylFe =4 2 Rule IfR to 15, 16
18. D.,pF3 =4 3 Rule CR

19. D,pF5 =4 5 Rule CR

20. D,pt Rem(8,5) =4 2 Rule FunR to 18, 19, 17
21. D,pt< Rem(3,5),D > = 2 Rule for programs.

This extension to the language changes drastically its character. In Fxp/ we are
assured that in an environment every expression evaluates to some value. This is no
longer the case.

For example, consider the program < F(1), 1 > where D is the declaration

F(z)e= F(z +1).

Does there exist a value v such that D,p - F(1) =, v? Intuitively such a v
cannot exist because, regardless of the environment, in order to calculate F(1) we
need to calculate F'(2) which, in turn, needs F(3), which needs F'(4), etc. So the
calculation cannot start anywhere.

More formally, we can show first that if D,p F F(1) =4 v then for every n
in Num: D,pF F(n) =4 v. The only way to derive D,p - F(1) =, v is to
use the Rule FunR. This can only be applied if we can derive D,p - F(2) =>4 v.
This in turn can only be derived using Rule FunR, which requires a derivation of
D,pF F(3) =4 v. Continuing we see that the existence of a derivation D,p +
F(1) =4 v necessarily entails a derivation of D,p - F(n) =4 v for every n
in Num. Now consider the length of the alleged derivation of D,p F F(1) =4 v.
Suppose it involves k£ > 0 steps. The last step to be applied is Rule FunR to D, p
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F(2) =4 wv. So the derivation of D,p - F(2) =4 v requires k — 1 steps.
Similarly the derivation of D, pt F(3) =4 v requires k — 2 steps. Continuing we
see that D, pt F(k+1) =>4 v requires no steps, i.e. it must be an instance of a
rule with no premises. This is patently false, as demonstrated simply by examining
all the possible rules. Tt follows that the supposed derivation of D, p - F(1) =4 v
does not exist.

This example shows that some expressions, or more accurately some programs,
may not yield an actual value. However, we can still show determinacy, i.e. that at

most one value will ever be produced by a program in a given environment.

Theorem 3.4.1 For every environment p and every program p, p - p = v and
pFEp = v implyv="1".

With the previous more simple languages this property was proved using structural
induction on expressions. In our extended language this is no longer possible. Note
that in order to prove the theorem it is sufficient to prove the corresponding result

for expressions:
D.pbe =4 vand D,pk e =>4 v implies v ="

Suppose we tried to use structural induction on terms to prove this statement. We
would eventually have to consider the case when e has the structure £'(eq, ..., ¢) for
some function symbol I and expressions ey, ..., er. By induction we could assume
that each e; evaluates to a unique value. But in order to conclude that the application
of Rule FunR must consequently lead to a unique value, we must also be able to
assume that e evaluates, in the modified environment, to a unique value, where the
function symbol F is defined in the declaration D by F(x1,...,2;)<= €. But this
assumption cannot be made since the expression “e” is not a sub-expression of the
expression we are considering, “F(ey,...,ex)”. In general it bears no relation to it
and may in fact be much more complicated than the sub-expressions ey,...,ex. So,
in order to prove the theorem, we need a new form of induction. Luckily the relations
—p and =4 are defined inductively in exactly the same way as EV and DIV in
Chapter 1 and therefore they have associated with them an instance of Rule induction.
Let us briefly recall this proof method. Suppose P(z,y) is a property and we wish to
establish

¢ =4 v implies P(e,v).
Then it is sufficient to consider each condition defining =4 ,

premis

conclusion
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and assuming P is true of the premis, prove that P is also true of the conclusion.
That is, it is sufficient to show that P is preserved by each of the defining conditions
of =4 . We use this proof method to establish the uniqueness result.

This proof method often looks very mysterious and, when used, it seems as if we
are “getting something for free”. The trick is to think of a suitable property P which,
on the one hand, implies the required result and, on the other, is preserved by each
of the rules. Most of the effort goes into finding the property P; once it is found
checking that it does indeed satisfy the conditions is often virtually automatic. The
next theorem is a typical case in point.

Theorem 3.4.2
1. For every p, if D,ptbe =g bv and D,ptF be =g b, then bv = b’
2. for every p, if Dypke =>4 vand D,pke =>4 v thenv="1".

Proof
Both results are proved simultaneously by Rule induction. Let Pg(p, be,bv) be
the condition for boolean expressions:

for every bv’ D pt be =5 bv' implies bv' = bv
and P4(p,e,v) be the same condition for arithmetic expressions:
for every v/ D,pt ¢ =>4 v’ implies v’ = v.

We show that these predicates are preserved by the defining conditions of =g and
—>, and therefore we can conclude

D.ptbe =5 bv implies Pg(p,be,bv)
and

D,pte =4 v implies P4(p,e,v).
If we spell out these results they mean

D,pkbe =5 bvand D,pt be =5 b’ imply bv = b’
and

Dpke =4 vand D,pke =4 v imply v=1

which is what we are required to show.

We must show that Pg is preserved by the eight conditions in the definition of
—>p and that P4 is preserved in the seven conditions in that of =4 . Most of
these are trivial as soon as we decipher what exactly is required and we examine only

a representative sample.

1. Rule EqR. Let us consider one of this pair of rules, say when 1" is produced:
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Dpbe =4 v
Dvp Fe =4 V
D,pt Equalle,e’) =5 T

There are two premises, D,pbFe =4 v, D,pF¢ =4 v and one conclusion,
D,ptF FEqual(e,¢’) =5 T . So we assume P4(p,e,v) and Pa(p,¢’,v) and we must
prove Pg(p, Bqual(e, '), 1), i.e. D,p F Equal(e,e’) =—>p bv' implies bv’ = 1'. So
suppose D, p F Equal(e,e’) =5 bv’. Rule EqR must have been used to derive this
statement. So there must be two arithmetic values w,w’ with D;p Fe =4 w
and D,pF ¢ =4 w'. But Py(p,e,v) implies that w = v while P4(p, ¢/, v) implies
w' = v also. This in turn implies that bv’ = T', by Rule EqR.

The remaining cases for =g are equally straightforward. Now let us consider
two cases for =4 .

2. Rule LocR:
Dpke =4 v
D,pv/z]Fe =4 v

Dypk let z=¢ in e =4 v

Here there are two premises, D.p b e =>4 v and D,plv/z] F ¢ =4 ', and
one conclusion, D,p b let 2 =¢ in ¢ =>4 w'. Therefore to show that the rule
preserves the property p we assume Py(p,e,v) and Py(p[v/z],€¢’,w’) and prove that
Pui(p, let © =€ in ¢, w')is a consequence, i.e D,pk let z=¢ in ¢ =4
implies v = w'. So suppose D,p F let v =¢ in ¢ =4 . To derive this
Rule LocR must have been used. So there must be some value, w say, such that
D.pkFe =4 wand plw/z]F ¢ =4 v'. By Pa(p,e,v) we have that w = v and
therefore plv/x] F e/ =>4 v'. Now Pa(p[v/z],¢',w’) in turn implies v’ = w'.

3. Rule FunR:
Dipke =4 v, 1 <1<k

D.ploi/xy, ... ,opfzg] e =4 v
D,opb Flen,....ex) =4 v

It is this case which requires us to use the more complicated form of induction rather
than structural induction. Here there are (k + ]) premises and one conclusion; we
may assume Py(p,e;,v;),1 < i < k, and Pa(p[vi/z1,...,vx/2x]. €,0) and we have

’

to prove Pa(p, F(er,...,ex).v). So suppose D.p b F(ey,...,e) =4 v'. We

have to show that v/ = v. Since Rule FunR has to be applied to conclude this,
there must be values vf,... v, such that D,p F ¢ =4 o/,1 < i < k, and
plvtfee, .. v fer) F e =4 v Now Pa(p,ei,v;) implies v] = v; for each i,1 <

i <k, and so plvi/z1,..., 0 z] F e =4 V. But now Pa(plvi/ai,. .. vn/2s], €,0)
implies v’ = v. O
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This finishes our exposition of an Evaluation semantics for Fpl, a simple yet pow-
erful functional programming language. It contains many of the features common
to modern functional languages such as local declarations and user-defined fuctions.
Admittedly these functions are first-order in that they may only take as arguments
data values or constants. In more realistic languages they may also take functions as
arguments and even return them as results. This extension may be accommodated
within our framework but the topic is somewhat outside the scope of this introductory
text. The interested reader may pursue it in [Kah87].

Further Reading: A language very similar to Fpl, called REC is given an Evaluatin
semantics in Chapter Nine of [Win93]. But the reader should be warned about the
difference in notation. For us arrows such as = tend to be used for Evaluation
semantics while in [Win93] — is used, sometimes with subscripts and superscripts to

distinguish different variations.

Questions

Q1 Use the Evaluation relation in Section 3.3 to evaluate the following expressions,
assuming an environment p such that p(a) = 1,p(y) = 3 and p(bz) = T.

let = (let x=2+2 in x%x2) in y*xux

If Equal(z, let =1 in y+ )
Then y+ 2
Flse If ba
Then let x =x*y in x*y
FElse let y=axxy in y*y

Q2 Evaluate the expression U(2) in Fpl using the declaration

U(z)<= If Equal(z,0)
Then O
Else 14+ U(z —1)

Q3 Give an example of a declaration D such that D,p ¢ =4 k for for some
expression e and some numeral k if we use call-by-name but D,pFe =4 k
for no k if we use call-by-value.

If “call-by-value” and “call-by-name” are interchanged, can a similar declaration
be found?

Q4 For the language Exp3 show that if y ¢ FVar(e) then p[v'/y] F ely/2] = vif
and only if p[v'/z]Fe = wv.
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Use this to deduce that pF let 2 =€ in ¢ = vifandonlyif pt let y =
e in (c'ly/z]) = v for every y & FVar(¢).

Q5 Again for the language Fxp3 prove p b ¢[v’/z] = v il and only if p[v'/2] F
e — 0.

Q6 Generalise the previous question by showing that p F e[¢//2] = v if and only
if there is a value v’ such that pF e’ = v" and p[v'/z]F e = v.

Q7 Prove that for the language Fxpj p b= If T Then e Else ¢ =4 v if and
onlyif plbe =4 v.

Q8 Extend the abstract syntax of Fplso that user-defined functions may take a mix-
ture of arithmetic and boolean expressions. Extend the Evaluation semantics
appropriately.

Q9 In the extended language of Question 8 let D be the declaration

TF(bx,y,z)<=If bz
Then x FElse y

Is it true that for all expressions be,e, e, the terms IF(be,e,e’) and
If be Then e FElse ¢ always yield the same results? That is, D,p F
1F(be,e,e’) =>4 vilandonly if D,pF If be Then e Else ¢ —>4 v?

Q10 Suppose D contains the declaration F'(z)<= €'. Is it true that for every e the
two expressions F'(e) and let x = e in €' always yield the same results?

Q11 A declaration D is called closed if in every definition of the form
F(z1,...,2t)<= e the body ¢ only uses variables from the list z1, ..., ;. Show
that Question 5 generalises to the language Fpl, i.e. D,p F efv'/z] = v if
and only if D, p[v'/2] F e = v provided D is closed.

Give a counterexample to this statement when D is not closed.

Q12 Show that the statement in Question 6 does not in general hold for the language
Fpl.

Q13 The Evaluation rules for local declarations, given in Section 3.2, implement
static binding or define-time binding. In the evaluation of let © =€ in €

during the evaluation of €’ the value associated or hound to x is the value of e

obtained using the global environment. An alternative, called dynamic binding

is to assoclate with a the value of e obtained using the environment prevailing

when z is required during the evaluation of ¢’. For example, if we evaluate

let x=a+y in (let y=2 in a+y)
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with respect to an environment p, such that p(z) = 10, p(y) = 20, then using
static binding we obtain 82 whereas dynamic binding yields 14. Design an
Evaluation semantics for £zp3 which uses dynamic binding.

Hinl. Expressions should not be evaluated with respect to environments but
functions from Varto Frp3.

QUESTIONS 71

Rule CR _
e DipFn =, n

Rule VarR

Doplka =4 p(a)

Dpkbe =5 T
Rule IfR D.pFe =4 v
D,pt If be Then e FElse ¢ =4 v

D,pkbe =p F
Dipke =, o
D,pt If be Then ¢ Else ¢ =>4 V'

Dipke =4 v
Rule OpR Dpke =4 v
Dipbe op ¢ =4 Aplop,v,v)

DypFke =4 v
Rule LocR D.plv/zlF e =4 v
Dipk et x=¢ in ¢ =4 V'

Dipke =4 0,1 <i<k
Rule TunR D, plvi /2, ..., ve/2p] b e =4 v
Dipk Fley,...,ep) =>4 v
whenever F(aq,...,2;) <= e occurs in D

Figure 3.9: Evaluation semantics for #pl




Chapter 4

More Languages

In this chapter we give an Evaluation semantics for a selection of different languages,
each of a different style. All of the languages considered are simpler than the major
popular programming languages which are in use today, such as PASCAL, FOR-
TRAN, PL/1. Our selection is designed to emphasise the versatility of our method of
giving an operational semantics while at the same time keeping the languages under
investigation relatively simple; each language we examine raises particular problems
which require solutions within our general framework. In the first language there are
two innovations. The first is that programs no longer evaluate to values; they evalu-
ate to finite sequence of values. The second is that programs use a primitive form of
state. The second language pursues the idea of calculating sequences which may now
be infinite. In the final section we examine a more standard language which works
entirely with states; here a program is in effect a sequence of commands to update
a state or memory. In each case we give an Evaluation semantics for the language
and show its determinacy and well-definedness  if they have these properties. The
precise formulation of what these mean will vary from language to language.

4.1 Using a Calculator

Consider a very simple calculator for evalualing arithmetic expressions (again!). Tt
can do simple arithmetic calculations, print answers and it has a single memory cell.
It has the following buttons:

1. ON — for switching on the machine
2. OFF  for switching off the machine
3. n — for each numeral n from 0 to 9

4. IF — for making conditional computations

It

. TOTAL  for printing the value of the expression punched in
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6. LASTANSWER — gives the value of the previous calculation

7. 4, %, —, div — the usual arithmetic operators

8. (,) — for disambiguating expressions.

A typical example of the use of the calculator might be:

PRESS: ON

PRESS: (4 +12)*2

PRESS: TOTAL (the calculator prints 32)

PRESS: 1+ LASTANSWER

PRESS: TOTAL (the calculator prints 33)

PRESS: IF LASTANSWER 41,0, 2 + 4

PRESS: TOTAL (the calculator prints 6)

PRESS: OFF

So, to use the calculator, you first switch it on and then you punch in an expression
followed by TOTAL. Fach time TOTAL is pressed the value of the expression is
printed on the screen. Pressing the LASTANSWER hutton gives the value previously
printed. As part of the allowable expressions there is a primitive form of [F expression:
the choice depends on whether or not the first argument evaluates to zero. In [F
€1, €9, e3 il the expression e returns the value 0 then the second component e is
evaluated and if ¢, returns any other value then the third component e3 is evaluated.
The language for using the calculator, considered as a programming language, is
different than that of the last chapter. There each program essentially evaluates to
a single value, a numeral, whereas here we obtain a sequence of values displayed on
the screen. We are assuming that a program for the calculator consists of a press on
the ON button, a sequence of meaningful button pushes followed by a push on the
OFF button. The reason we choose this example language is to demonstrate how
our approach to operational semantics can be applied to languages which calculate
sequences ol values rather than single values.

The makers of the calculator certainly will not supply an abstract syntax for the
language. One attempt at this, by Schmidt [Sch86], is given in Figure 4.1. There are
three main syntactic categories, Prog, Fxpseqand, as usual, Fzp. A program is simply
the ON button followed by an Fapseq. This is a list of expressions separated by the
TOTAL button, and the sequence must end with the OFF button. Expressions are
formed in the usual way with numerals and arithmetic operators but, in addition,
we can use the LASTANSWER button. Again, we emphasise that Figure 4.1 gives
the abstract syntax rather than the concrete syntax. So we ignore bracketing, etc.,
in arithmetic expressions. The net effect of this definition is that a program has the
form

ON e TOTAL ey TOTAL ... TOTAL ¢, TOTAL OFF.
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1. Syntactic categories
pin Prog
se in Frpseq
e in Erp
op in Op

n in Num

2. Definitions

pu= ON se
se = e TOTAL se | ¢ TOTAL OFF
e u= n|eop €| [F(eé€,€e") | LASTANSWER
op = + | — | x| diw

Figure 4.1: Abstract Syntax for CalcL

The intuitive meaning of this program is that the values of the sequence of expressions
€1,...,ex are printed on the output device.

Let us now see how this meaning can be expressed formally using our structural
operational semantics. The first point to notice is that we cannot simply use the
relation =4 of the previous chapter to evaluate expressions. This is because of
the possible presence of the LASTANSWER button. For example, the value of

2+ (3+ LASTANSWER )6

will depend on where in the program it is evaluated, i.e. on the value of LASTAN-
SWER. We could say that the value of LASTANSWER is supplied by an environment
as used in the previous chapter. But, once more, there is a difference because, as the
evaluation of a program proceeds, the value of this ‘environment’ changes. Tt is
preferable to consider the machine as having a primitive state which changes as the
computation proceeds; the state records the value of LASTANSWER and this is up-
dated each time a TOTAL button is pressed. So the computation associated with the

program above can be viewed as follows:

1. start up the calculator in some arbitrarily chosen state, say with the value of
LASTANSWER equal to 0
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2. evaluate the expression e; with respect to the state, output the result and update
the state

3. evaluate the expression ey with respect to the revised state, output the result
and update the state

4. continue thus for each expression.

We formalise this using three different evaluation relations, one for each of the
main syntactic categories, Frp, Firpseq and Prog. The evaluation relation for
expressions, =>4 , takes an arithmetic expression and a state (a numeral) and returns
a value, once more a numeral; its type is

=4 : < Frp, Num > —— Num.

The evaluation relation for Fapseq, =g , takes an element of that syntactic category

and a state and returns a sequence of values; its type is
=5 : < Frpseq, Num > — Num”.

Here Num™ stands for the set of all sequences of elements from Num. Finally, the
evaluation relation for Prog, =p , simply takes a program and returns the sequence
of values computed by the program; its type is

= p : Prog— Num”.

The definitions of the three relations =4 , =5 and =p are given in
Figure 4.2. Most of the rules are quite obvious and are derived from the correspond-
ing rules for the evaluation of expressions given in previous chapters. By and large
they ignore the state component. This is only used in one rule, which evaluates the
expression LASTANSWER, or gives the effect of pressing the button marked LAS-
TANSWER:

(LASTANSWER, ) =>4 [
This simply says that to obtain the value of LASTANSWER look in the state. As
has already been pointed out, the /F expression does not use boolean values; instead
it tests for zero. In IF(e,e’,e”) il e evaluates to zero then ¢’ is evaluated and il it
evaluates to anything else e” is evaluated. This is an expedient used by the calculator
manufacturer to avoid having too many types around. The definition of =5 , which
gives the semantics of sequences of expressions, uses the relation =4 as one might
expect; to evaluate a sequence of expressions one has to know how to evaluate its
individual components. There are two kinds of elements in Fxpseq and corresponding
to each of these we have an inductive rule for =g . The first kind of element in
FEzxpseq has the simple form
e TOTAL OFF.
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1.

2.

3.

=4 : Fxp X Num — Num

Rule CR

Rule StR

Rule OpR

Rule TFR

(n,/) =4 n

(LASTANSWER,[) =, |

(e,]) =4 v
(1) =>4 v

(6 op 6/7 Z) =4 Ap(opvvvvl)

(LZ) =4 0
(e,) =4 v

(IF(e,e,e"),l) =4 v

(e,]) =4+ n,n>0
(e"]) =4 v

(TF(e, e e"),) =4 v

—>s : liapseq X Num — Num”

Rule E-sR1

Rule E-sR2

(e,]) =4 v
(e TOTAL OFF,l) =s<v>

(e,]) =4 v
(.s’e, 'n) =5 S
(e TOTAL se,l) =5 v.s

=p: Prog — Num*

Rule PrR

(se,0) =5 s

ON s¢ =p s

Figure 4.2: Operational semantics for CalcL
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Intuitively this evaluates the expression e, outputs the result and switches off. So in
a given state [ this expression evaluates to a sequence of values of length 1. This is
expressed in Rule E-sR1 which says

(e TOTAL OFF|l) =s<v>
where v is the value of e in the state [, i.e.
(e,]) =>4 v.

In this context we use < v > to denote the sequence which consists of one element
v. More generally, < vq,...,v; > denotes the sequence of elements consisting of vy
followed by vq, etc. In particular, <> denotes the empty sequence. We will use s, s,
etc., to denote typical sequences and finally v.s denotes the sequence obtained by
prefixing the sequence s with the value v: this corresponds to the Cons operator on
lists in languages such as LISP.

The rule for the second kind of expression sequence

e TOTAL se
is slightly more complicated. It essentially says that to evaluate this expression in a
given state [:
1. first evaluate the expression e in the state [ to the value v, say:

(e,1) =4 v

2. then evaluate the sequence se in the state v, i.e. the state where LASTANSWER
has the value v, to the sequence s:

(se,v) =5 s

3. from these two pieces of information we can conclude that e T'OTAL se in the
state | evaluates to the sequence v.s :

(e TOTAL se,l) =5 v.s.
The final relation =p is straightforward. The only form a program can take is
ON se
where se is in Frpseq. 1o evaluate this program we simply evaluate the sequence se
in the initial state. We have already decided that the initial state has 0 as the value

of LASTANSWER. So the only rule for Progis

ON s¢c = p s
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where
(se,0) =5 s.

We now look at an example of the use of these rules to evaluate a program.
Consider the program
ON (4+12)x2 1OTAL 14+ LASTANSWER

TOTAL 1F( LASTANSWER +1,0,2+4)
TOTAL
OFF

To simplify the exposition we let S; denote [F(LASTANSWER 4+ 1,0,2 +

4) TOTAL OFF and Sy denote 1 + LASTANSWER TOTAL S;.

1. (1,83) =4 1 Rule CR

2. (LASTANSWER,33) —4 33 Rule StR

3. (LASTANSWER+1,33) =, 34 Rule OpR to 1, 2
4. (2,33) =4 2 Rule CR

5. (4,33) =4 4 Rule CR

6. (24+4,33) =4 6 Rule OpR to 4, 5
7. (IF(LASTANSWER +1,0,2 +4),33) =, 6  Rule IFR to 3, 6

8 (5,33) =35 <6> Rule E-sR1 to 7

9. (LASTANSWER,32) =, 32 Rule StR

10. (1,82) =4 1 Rule CR

11. (1 4+ LASTANSWER,32) =>4 33 Rule OpR to 9, 10
12, (5:,32) =5 < 33,6 > Rule E-sR2 to 8, 11
13. (4,0) =4 4 Rule CR

4. (12,0) =4 12 Rule CR

15. (2,0) =4 2 Rule CR

16. (4412,0) =4 16 Rule OpR to 13, 14
17 ((4+12)%2,0) =, 32 Rule OpR to 15, 16

18. ((4+12)«2 TOTAL S,,0) =5 < 32,33,6 > Rule E-sR2 to 12, 17
19. ON(4+12)*2 TOTAL S,
= < 32,33,6 > Rule PrR to 18.

What can we say about this semantics for CaleL? Because we have less intuition
about this language — it is less familiar to us — it is more difficult to say that it is
correct in that it captures how we think the calculator should hehave. But at least we
would expect every program to have a value, i.e. to generate a sequence of numerals
and, moreover, a unique sequence of numerals. If we use the calculator in exactly the
same manner on two different occasions we should expect exactly the same result.
This is in analogy with the languages of the previous chapter. There we expected
every expression in the smaller languages Exp! to Fxp4 to have a unique value but,
in the case of Fpl, this was weakened to every expression having at most one value.
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The proof of this result for CalcL is relatively straightforward. It depends on
similar results for elements of the syntactic categories Ezp and Ezpseq.

Theorem 4.1.1 For every expression e in Ezp and every state [ there exists a unique
numeral n such that (e,]) =>4 n.

Proof At this stage the reader should be able to prove this result without any
difficulty by structural induction on e. O

Note that here we have to say that the value of an expression depends on the state,
which supplies the value of LASTANSWER. Note also that here we are combining
two results which would have been proved separately in the previous chapter, well-
definedness and determinacy. They are:

1. for every e in Exp and every state [ there exists some numeral n such that
(e,]) =4 n

2. for every e in Erp and state [, if (¢,]) =>4 n and (¢,!) =4 m then n =m.

Although in the previous chapter we proved these results separately, in fact their
separate proofs can be combined into one proof by structural induction on expressions.

There is a corresponding result for sequences of expressions, once more
parametrised on states.

Theorem 4.1.2 For every se € kapseq and every stale | there exisls a unique se-
quence of numerals s such that (se,l) =5 s.

Proof This time the proof is by structural induction on elements of Ezpseq. There

are two cases:

1. The base case: se has the form e TOTAL OFF for some expression e. By
the previous result there is a unique n such that (e,/) =4 n. So the unique
sequence s such that (se,l) =5 s is the sequence < n >.

2. The inductive case: se has the form e TOTAL se' for some s¢’ € Fapseq. By
induction we may assume that the theorem is true for s¢’, i.e. for any state k

there is a unique sequence of numerals s, such that
3 / 9 [ n,
(s¢ k) =5 s).

Also invoking the previous result, we know that for a given state [ there is a

unique numeral n such that
(e,]) =4 n.

The required sequence of numerals is therefore n.s/,. For (e,/) =4 n and
(s¢/,n) =5 s, and, by applying the rule E-sR2, we obtain
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(se,l) =>s n.s),.

The result for programs now follows since a program is simply a sequence of
expressions which is evaluated in the state 0.

Theorem 4.1.83 For every program p there exists a unique sequence of numerals s
such that p =>p s.

Proof The program p is of the form ON se for some se € Expseq. We may apply
the previous theorem to obtain a unique sequence of numerals s such that

(se,0) =5 s.
Now, applying the rule for programs, Rule PrR, we obtain
p =P S

and, moreover, this is the only sequence which p can produce. O

This result establishes that our semantics is at least consistent or well-defined.
We cannot say very much else about it other than that it coincides with whatever
intuition we have about how the calculator should work. TIts value lies in the fact
that it can replace our intuition and act as a formal description of how the calculator
should behave.

4.2 A Stream Language

Programs in the language of the previous section could only produce a finite sequence
of values; each program is essentially a sequence of arithmetic expressions, each of
which is evaluated in turn. Here we increase the power of the language by allowing
definitions as in the last section of the previous chapter. The result will be a language
for printing finite or infinite sequences of values, which we call streams . However,
to make sense of this we need to make some changes to the syntax. To keep things
relatively simple we drop the presence of the state, reverting to a pure functional
language. We also simplify the syntax by omitting the TOTAL keyword. Instead
e TOTAL will simply be e, i.e. we assume that the evaluation of an expression leads
automatically to the printing of the resulting value. We keep the simple form of the
IF statement which does not require a separate category for booleans but, to make it
more readable, we use If ¢ Then ¢’ Else ¢”. Finally, we add to the language the list
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constructor Cons and the destructors Hd and Tl Intuitively Cons takes a value and
a list and prefixes the list with the value, thereby constructing a new list. Hd takes
the first element from a list whereas 17 takes the tail of a list, i.e. the list obtained
by eliminating the first element from its argument. The notation which applied in
the previous section to sequences is also used for streams. So Cons(v, s) is the stream
v.s, Hd(v.s) is the value v and TI(v.s) is the stream s. Note that both Hd(<>) and
Tl(<>) are undefined.
One function declaration could be

NN(2z)<= Cons(x, NMz + 1)).

If we evaluate the expression NN(0) with respect to this declaration, we obtain the
infinite list of numerals, i.e. a stream. Intuitively we can think of the evaluation of

NN(0) proceeding as follows:

NN0) = <O0,NN(1)> 0 is printed
= < 0,1, NN(2) > 1 is printed
= < 0,1,2,NN(3) > 2is printed

As another example, consider the definition:

FilEw(z)<= If even(Hd )
Then FilEv(Tlx)
Else Cons((Hd ), FilEv( Tl x)).

Here we assume that there is a operator even which decides whether or not numerals
are even. [illv takes a list of numerals and filters out all those which are even.
FilEv(z) examines the first element of the list @, Hd(z). If it is even it is filtered
out; i.e. the resulting stream of values is obtained by processing the remainder of the
list, 7%x). If Hd(z) is not even then the result is Cons(Hd z, Fillbo( 11 x)). This
means that Hd(«) is printed and the subsequent values of the output are obtained by
processing Tl z. However, this will happen only if the parameter-passing mechanism
is call-by-name. Call-by-value would not be of much use in this language because
the value of many programs is actually an infinite stream. For example, if call-by-
value were used in the evaluation of the expression Fillv(NN(0)), then the parameter
NN(0) would have to be evaluated before FilElv could be applied. However, the value
of NN(0) is the infinite stream < 0,1,2,... > and so FilEv would never be called
and there would be no output produced by FilEv(NN(0)).

The abstract syntax of our new language, StreamlL, is given in Figure 4.3. At
this stage let us not bother about enumerating the set of allowed operators. We will
simply assume some reasonable set and when we come to the operational semantics
we will assume that the Apply mechanism can interpret them correctly. They should

certainly include the minimal set 4+, —. , div, but it may also be convenient to have
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1. Syntactic categories

pin Prog

D in Dec

se in StEzp

se in StVar

e in Frp

2 in Var

Fin FVar

opin Op

n in Num

2. Definitions

p = <se D>

D u= F(svy,.., svp)e=se | F(swy,..,s05)< se, D'

se = If e Then se’ Else se" | Cons(e,se’) | Tl(se') | F(sey,...,se) | Nil
e n= x| n|eope | Hdse)

Figure 4.3: Abstract Syntax for Streaml.

others. The only constraint is the interpretative power we wish to assume of the
Apply mechanism. The main syntactic category is Prog and a program consists of
an expression together with a declaration, < se, D >. As before, this declaration is
supposed to provide an interpretation for the function names which appear in se. We
will continue to apply the restriction on programs used in the previous chapter; every
function variable appearing in the expression or in the body of a definition must itself
have a unique definition in the declaration. There are two types of expression: Exp
are the arithmetic expressions and, in addition, we have Stkap, stream expressions.
Arithmetic expressions are formed as before except that one can also form an expres-
sion by taking the head of a stream expression, Hd(se). Nil is one kind of stream
expression; it is meant to denote the empty stream <>. One can also form streams
by the If and Cons operators or using a user-defined function.

There is some subtlety in these definitions. In If e Then se; FElse sey and
Cons(e, se), the first argument must be an arithmetic expression. Also function sym-

bols may only be applied to stream expressions because in their declaration variables
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o0
Ity

fke O/ e =

Dbe =4 v
Rule OpR DFE =, v
Dbe op ¢ =4 Ap(op,v,0')

DFse =4 s

le Hd
Rule HdR DF Hd(se) =>4 v

Figure 4.4: Evaluation Semantics for Streaml: =4

from StVar rather than Var are used. Also these functional expressions represent
streams rather than arithmetic expressions as they only appear in the syntactic cat-
egory StExp and not in Frp. This means that user-defined functions can only take
streams as arguments and also only return streams; they cannot be defined over
arithmetic or boolean values. However, the arithmetic expression e can be simulated,
albeit somewhat clumsily, by the stream expression Cons(e, Nil). So this restriction
does not have much theoretical effect on the power of the language. Therefore, apart
from the omission of boolean expressions and the resulting modification of the If
statement, the language Fpl can be considered in some sense as a sub-language of
Streaml.

We now give an operational semantics for programs. Again, we will have a sepa-
rate evaluation relation for expressions and stream expressions, which we denote by
=>4 and =g respectively. However, stream expressions may contain user-defined
function names and, to make sense of these, we need a declaration. We also need
declarations in order to evaluate ordinary arithmetic expressions. This is because
Hd(se) is an arithmetic expression and se may contain function names. For example,
to evaluate the arithmetic expression Hd(Ev(Cons(0,Nil))) we need to know the
declaration of the function name Fv. As usual we also require environments because
expressions may contain variables. However, to make things less complicated we will
avoid the use of environments by considering only closed expressions, i.e. those con-
taining no free variables from Var or StVar. As usual, the value of an arithmetic

expression, given a declaration, is a numeral. So the type of =4 1is given by :
=4 : Dec — Fap — Num.

However, as in the previous chapter, we will tend to write

DFe =4 v
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DbFe =4 v

Rule ConsR
ule Cons DE Con.s(e,b’é’) —35 se

DIl se =g se
Rule TIR DF s és se’
D+ Tl(se) :L,>g se’!

DFe —4 0
Rule TfR DE sed =g se”
DF IFe,se se”) =5 se”

DFe =4 n,n>1
DF s =g s
DF IF(e,se, se) =g se

D F se[sei/szy,...,se,/s505] ==g5 se
DF F(ser,..., se;) =5 se
whenever F(szy,...,sz,)<= se

Rule FunR

occurs in [

Figure 4.5: Evaluation Semantics for StreamlL: ==¢

to mean that the expression e evaluates to v under the assumption that the function
variables in e are defined in the declaration D. The relation =4 is defined in
Figure 4.4. The only interesting rule is Rule HdR for evaluating expressions of the
form Hd(se). This depends on the evaluation of se and, to understand it, we must
see how stream expressions are evaluated.

The technique of the previous section cannot be used because streams may be
infinite. For example, we cannot say that to evaluate Cons(e, se) you first evaluate e
to v then evaluate se to the stream s and the result of evaluating Cons(e, se) is the
stream v.s; the stream expression se may denote an infinite stream in which case this
rule would never get applied. Intuitively we do expect the value of Cons(e, se) to be
the possibly infinite stream e.se. But let us look more closely at what we expect to
see when we try to evaluate Cons(e, se). We expect the arithmetic expression e to be
evaluated, the resulting value to be printed and the evaluation procedure to continue
with the analysis of the stream expression se. TFrom this point of view applying
=5 to a stream expression gives a pair as a result; the first element is a value,
i.e. a numeral to be printed, and the second element is another stream expression,

embodying the remainder of the result. For example, it will follow from our definition
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of =5 that
Dt Cons(1,s5¢) =5 <1,5¢>.

Here the eventual result of evaluating the stream expression Cons(1, se) is a stream,
the first element of which is 1, which is printed immediately, and the remainder is
the result of evaluating the stream-expression se. However, to emphasise our view of
values being printed out as the stream is being produced, instead of writing

DF Cons(1,se) =5 <1,se>

we write
D F Cons(1, se) :1>5 se.

More generally,
Dt se == s

may be thought of as: the stream expression se, using the declaration D to interpret
function names, produces the value v and also produces the residual s¢’. In other
words, the first value in the stream associated to seis v. To find out about subsequent
values we must apply the definition of =5 to se’. If it turns out that

u

DF se =5 sé’
then we know that the stream associated with se has the form < v,v’,... > with
subsequent values obtainable from the new residual se”.

Of course, it may be that we cannot apply the rules to continue with the evaluation
of s¢’. In this case the resulting value of the expression se is the stream < v >. i.e.
a stream of length one. This can happen; for example, when applying the rules to
Cons(1, Nil) we obtain

DF Cons(1, Nil) 5 Nil

and there is no rule which applies to Nil. So the entire stream produced by
Cons(1,Nil) is < 1 >. We can apply the same argument to Cons(1, F(0)) if the
declaration D contains the definition F(2)<= F(z) as will be explained later.

Let us sum up on the evaluation of stream expressions. The type of =g is

=5 ' Dec +—— StEwp —— (Num, StExp).
This in turn leads to a derived relation ==g for each v in Num of type
=5 : Dec — StExp — StEp

ie. we write D F se ==g s¢ as a more graphic rendition of D F s¢ =g (v, s€).
The inductive definition of =%g is given in Figure 4.5. The discussion we have
gone through should make these rules understandable. For example Rule FunR is
taken directly from the previous chapter and, as we have already pointed out, is a
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call-by-name parameter-passing mechanism. The rule for evaluating 77 se should
also be intuitively clear. If the first element in the stream corresponding to se is v
and its residual is s¢’ then intuitively 17 se corresponds to se’. So to calculate the
first element of the stream corresponding to 17 se and its residual, it is sufficient to
calculate them instead for se’. This is the import of Rule TIR.

Let us now look at an example of the use of these axioms to evaluate an expression.
Suppose D contains the declaration

FilEo(sx )< If even(Hd sx)
Then FilEW(TI sx)
FElse Cons((Hd sx), FilEu(TI sx)).

We look at the evaluation of the expression
FilEv(Cons(0, Cons(1, Nil))).

In order to make the derivation more readable we let [1] denote Cons(1, Nil), [0,1]
denote Cons(0,[1]) and se the body of the definition of Filkw, i.e.

If even(Hd sz )
Then FilEv(Tlsz)
FElse Cons((Hd sx , FilEo( Tl sx)).

In the derivation below we will substitute stream expressions for the vari-
able sz in se. Tor example, se[[0,1]/ sz | represents the result of substituting
Cons(0, Cons(1, Nil)) for sz in the body of FilEw.

1. [0,1] :0>s (1] Rule ConsR
2. Hd([0,1]) =4 O Rule HdR to 1
3. even(Hd[0,1]) =4 O rule for even to 1
4. 1] és Nil Rule ConsR
5. 10,1 =g Nl Rule TIR to 1, 4
6. HA(TI[0,1]) =4 1 Rule HdR to 5
7. even(Hd(TI[0,1])) =4 1 rule for even to 6
8. Cons(Hd TI0. 1], FilE«(TI TI[0.1])) =g

FIEv(TITL]0,1]) Rule ConsR to 6
9. se[T70,1]/sz | :1>5 FilEo(TL T1]0,1]) Rule HR to 7, 8
10.  FiEu(TI0,1]) :1>g Fillo( TI T1[0,1]) Rule FunR to 9
11, se][0,1]/s2] :1>5 Filloo( T1 T1[0,1]) Rule TfR 3, 10
12.  FilEv([0,1]) és FilEw(TI T1]0,1]) Rule FunR to 11.

This means that the first value to be printed when FilFv is called with the pa-
rameter [0,1] is 1 and its subsequent values are obtained from FilEv( TI( 11 10,1])).
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With some patience one can check that FilEw( TI( TI([0, 1]))) will never again produce
a value, essentially because TY TI([0,1])) is Nil.

The language as it stands is virtually impossible to use. Its serious defects include
the lack of the syntactic category Bool and the inability to use recursion directly
over arithmetic expressions. We have omitted these so as to concentrate on the
novel aspects of the language, namely the production of streams. Notice also that
the declaration of NN discussed informally at the beginning of this section is not
definable in the language. This is because it is a declaration of a function which takes
as arguments numerals and returns a stream; in our language we are only allowed
definitions of functions which take as arguments streams and return streams. As we
have already indicated we can simulate these kinds of functions by representing the
arithmetic expression ¢ as the stream expression Cons(e, Nil). A function similar in
behaviour to NN could be defined by

NNst(sx )<= Cons(Hd sz, NNst(Cons(Hd sz + 1, Tl sz))).

The behaviour of NN(0) is then simulated by the stream expression NNst( Cons(0, Nil)).
However, this simulation is rather clumsy and it would be interesting to design an
extension of Streaml. which overcomes all of these defects. This would involve in-
troducing the syntactic category Bool, with appropriate definitions, replacing the
syntactic category Dec with at least three new categories, AADec, SSDec and AS-
Dec, and finally augmenting the definitions associated with the syntactic categories
Frp and Stkap. AADec would contain definitions of functions whose arguments and
results are both numerals, SSDec would correspond to the declarations in the present
language while ASDec would contain declarations of functions whose arguments are
numerals and results streams. In the new language one would then be able to write
relatively natural programs, including NN discussed above, and the language #'pl
would also be a natural sub-language.

As it stands a program in the language is designed to produce a stream of values.
However, because of the function definitions, it is easy to define programs which will
not produce a stream or even a part of a stream. We can use an example similar to
that used in Section 3.4:

F(sv )<= F(sv).
No matter what F is applied to, it will not produce any value whatsoever. This is
reflected in our rules by the fact that, given any stream expression se, there is no pair
< v, s€ > such that

F(se) == s¢.
This can be formally proved much in the same way as in the previous chapter. How-
ever, in this language there is an even simpler example of a program which produces
no value, namely the expression Nil. If we examine the rules for stream expressions
we see that none can be applied to Nil. So, trivially there is no < v, se > such that

Nil =5 se.
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Intuitively Nil represents a terminated or deadlocked program. It has nothing further
to produce. On the other hand, a program such as

I(sz )<= If F Then Nil FElse TI(I(sz))

gives rise to other intuitive connotations. For example, when applied to NN(0),
assuming we have augmented our language to include such definitions, one feels that
I(NN(0)) performs a considerable amount of computation. It simply never produces
a value; for no < v, se > can we show

[(NN0)) =5 se.

At the level of our semantics both Nil, a program which has terminated, and I(NN(0))
have the same behavioural characteristics. However, if we were to develop a less
abstract Computation semantics for our language, for example, the one-step semantics
discussed in Chapter 2, then we would expect to see a difference. Here there would
be no program or residual C' such that

Nil — C
but there would be residuals such that
I(NN(0)) — C.
Tn fact, we would expect to see infinite one-step computations
I(NN(0)) — I(TINN(0)) — I(TITINNO))... — ...

We have just seen that some programs may produce no values whatsoever. Other
programs produce an infinite sequence of values vy, vs,.... The simplest example (in
the extended language proposed above) is NN(0), where NN is defined by

NN(z)<= Cons(z, NN(z + 1)).

This program produces the infinite sequences 0, 1,.... More formally, if D represents
the declaration given above, then there is an infinite sequence of stream expressions
se; such that

MN0) Ls se
se1 :1>5' Se9

2
Sty —>g S€3
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There are also programs which can only produce a finite sequence of values. A
simple example is
Cons(0, Nil).

The only possible move from this is
Cons(0, Nil) =25 Nil.

Since Nil can produce no value, this program can therefore only produce a sequence
of values of length 1. In this case the reason for the absence of further values is the
residual Nil. Another reason could be the production of a residual which diverges,
such as I(z) above.

To end this section we consider the proof of the consistency or the well-definedness
ol our semantics, restricted to the original language whose abstract syntax appears in
Figure 4.3. Consider a sequence of values vy, vq,..., which may be finite, infinite or
even empty. We say that a stream expression se produces this sequence of values, with
respect to a declaration D, if there is a corresponding sequence of stream expressions
sey, seg, ... such that

o
se =35 Se&q
u:
se; =5 ses

P R
Sey ——=g Se€3

Note that if the sequence of values is empty, this means that se produces no value
whatsoever. We will prove that for every declaration D and every stream expression
se there is a unique sequence of values s such that se produces s with respect to D.
This is not as difficult as it sounds. The main point is to prove that if a stream
expression produces a value, then not only will this value be unique but the resulting
residual will also be unique. For convenience we will always assume the presence of

some appropriate declaration D.
v o
Theorem 4.2.1 If sc == se¢; and s¢ == scy, then v =" and se; = se,.

Proof Unfortunately we cannot prove this by structural induction on se because
of the function declarations in the language. So instead we take advantage of the
inductive definition of =g and use Rule induction. The proof method has already
been explained in Theorem 3.4.2. In fact, since =g and =4 are defined in
terms of each other, we must also formulate an inductive hypothesis for =4 . Let

Ps(se, se/,v) denote the property
D se =g se implies v = v’ and se’ = se”
and P4(e, v) denote the property

DFe =>4 v implies v =v'.
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We show that Ps, Py satisfy the defining rules of =g and =4 . Since the latter
are the least such relations it will follow that

DbFe =4 v implies P4(e,v)

DbFe =>4 v and DF e =>4 v implies v = v'.

But, more importantly,

Dt se =4 s implies Ps(se,se',v)

,
v v . .
DFse = s¢ and DF se =5 s¢’ implies s¢/ = s’ and v =v'.

So we must check that Pg, Py satisfy the seven conditions which constitute Rules
ConsR, TIR, IR, FunR., CR, OpR and HdR. As examples we will consider only two,

Rule FunR and Rule HdR. So suppose Ps(se[ser/s21,. .., sex/sxy], s€',v). We must
show Ps(F'(seq,...,seg), s€,v) assuming that the declaration
F(sxq, ..., STy )= se

1

P + 2! N
is in D. So suppose D = F(seq, ..., sex) =g s¢. We must show se/ = s and

v = v'. Now the only way to prove D F F(sey,...,se;) ==g sé¢' is to use Rule

FunR. So it must be the case that
D& ose[ser/sar,...,sep/sap] ==s se’.

However, now we can apply the assumption Ps(se[seq/sxy, ..., sex/s2y], s€/,v) to ob-
tain the required s¢’ = s¢” and v = v/. This means that the condition for the Rule
FunR is satisfied.

Now let us consider the other example case, Rule HdR. So we assume Ps(se, s¢’, v)
and we must prove P,(Hd se,v). Suppose that D - Hd se =4 v'. We have to
show that v = v’. Once more the only way of proving this is by using an application
of Rule HdR. Therefore it must be the case that D F se 7:YI>5 se” for some se”’. But
now we may apply the assumption Ps(se, se/,v) to obtain s¢/ = se”, which is not of
interest, but also v = v’, which is what we are required to prove. O

We have called this semantic description of Streaml an Evaluation semantics
although it could also be argued that it is a Computation semantics. We have not
given, nor does there exist, a precise description of what constitutes an Evaluation
semantics or a Computation semantics. But intuitively the former defines entire

or complete computations from programs to results, whereas the latter defines single
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steps of computations, and thereby only defines complete steps indirectly. In Streaml
these concepts are a little blurred. The final result of evaluating a stream expression is
often an infinite stream and therefore the relationship between stream expression and
final results cannot be easily defined inductively. Instead we have defined the partial
evaluation of stream expressions to values to be immediately printed and residual
expressions. This partial evaluation could be viewed as one step of the complete
evaluation of the stream expression and in this way our semantics could be construed
as a Computation semantics. We have chosen to call it an Evaluation semantics
because each partial evaluation may be further analysed into a sequence of more
primitive operations which would give rise to a lower-level Computation semantics.
However, this example language emphasises that the terms Computation semantics
and Evaluation semantics can be applied at different levels of abstraction and the
distinction between them is not always very clear.

4.3 An Imperative Language

As a final example language in this chapter we consider a simple imperative program-
ming language based on the While statement from languages such as PASCAL and
ALGOL. Here a program acts on a store or memory, which can be taken to be a
collection of locations or addresses in each of which is stored a value. A program is
simply a sequence of commands and each command modifies the store in some way.
The simplest command is the assignment statement:

The effect of this command on a store is to replace the existing value stored in the
location by the value of the expression e; it transforms one store into a new store.

The abstract syntax of the language, WhileL, is given in Figure 4.6. For the sake
of variety we reintroduce the category of boolean expressions but we omit the details
of the exact collection of boolean operators (and of arithmetic operators). Excluding
these there are four main syntactic categories. The principal one is Prog and a
program is simply a command. A command can either be an assignment statement, a
command with no effect called skip, a sequence of commands, a conditional command
which uses the If statement or, finally, a While command. Intuitively While be Do C'
means perform the command C repeatedly so long as the boolean expression be
remains true. For example, the following program implements multiplication using
addition:

z:=0;
While Not(Equal(x,0)) Do
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1. Syntactic categories

pin Prog

C'in Com

e in Erp

be in BEzp

ain Var

bz in BVar

op in Op

bop in BOp

n in Num

2. Definitions

p u= C

C u= skip | x:=e | CC" | If be Then C' Else C" |
While be Do C'

e u= a|n|eope

be u= ba | L' | F | be’ bop be" | Not be | Fqual(e,e')

Figure 4.6: Abstract Syntax for Whilel

zi=z+4y;x:=2— 1.

When the program terminates the value stored in @ is 0, the value stored in y
remains unchanged and that in z is y times the original value of .

The Evaluation semantics of Whilel is given in terms of the three relations, =4,
=g and =r¢ , one for each of the syntactic categories Fuap, BFwp and Com.
Strictly speaking we also need a relation for programs but since these are simply
commands we can use =—>¢ to evaluate them. To make sense of the variables
we need an environment which assigns values to them. However, in this language
variables play a very different role than those in #pL. Here they represent locations
in a memory or store and a computation proceeds by modifying this store. In effect
a program is a sequence of commands for modifying the store. In contrast a program
in Fpl simply represents a value. The exact value may depend on an environment
which gives a meaning to the free variables which may be present in the program.
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But a program in Fpl can in no way be construed as a sequence of commands for
updating its environment. The language CealcL used a simple store with only one
location . But Whilel requires a store which potentially has a location associated
with each variable. Mathematically environments and stores are the same kind of
objects, namely functions from Var to Num. However, to emphasise their different
roles we introduce a new notation: we use Store to denote the set of all stores, i.e.
functions from Var to Num. Typical elements of Store are denoted by s,s’ and
we use the update notation originally introduced for environments: s[v/z] is the
same store as s except that the value v is now at location x. We will assume that
the store preserves types in that it stores numerals in the locations associated with
ordinary arithmetic variables and boolean values (T or F) in the locations associated
with boolean variables. Note that according to the syntax of the language we can
only assign new values to arithmetic locations because the only form of assignment
statement is x := e where x is is an arithmetic variable. There is no inherent reason
for this other than to keep the language fairly small.

The evaluation relation =4 takes a pair consisting of an expression and a store
and returns a value, the result of evaluating the expression with respect to the store.
It is essentially the same as evaluating expressions with respect to an environment
as their evaluation does not affect the store. However, one could easily conceive of
languages where these evaluations could have as side-effects modifications of the store.
The type of =4 1is given by

=>4 : (Fap, Store) — Num.

The definition of =4 is given in Figure 4.7 and is straightforward. Similarly the
type of =g is given by

= p : (Bliap, Store) — {1, 1"}

and its definition is equally straightforward. The evaluation relation for commands,
= , takes a pair consisting of a command and a store, often called a configuration,
and returns a store; intuitively a command takes a store and returns a modified store.
So the type of =« should be

= ¢ : {Com, Store) — Store.

However, with the language WhileL “evaluating” a command actually means running
it. So (C,s) =>¢ s’ means that when we ezecute the command C with respect to
the store s it eventually halts and the resulting store is s'.

Let us look at the different clauses in its definition. The command @ := e simply
updates the value stored at location x. So (x := e,8) =r¢ s[v/2] where v is the

value of e, i.e. (e,s) =>4 v. The command skip has no effect and therefore

(skip,s) =>¢ s.
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=>4 :{Fuap, Store) — Num

Rule CR%  —F———
(n,s) =4 n

Rule VaaR, ——————
(z,8) =>4 s(z)

(e,8) =>4 v
Rule OpR (e,s) =>a v
(¢ op e'ys) =>4 Ap(op,v,v)

=g :(BFExp, Store) — {T, I'}

Rule (R S
e (T,s) =5 T (F.s) =5 F

Rule Vark (ba,s) =5 s(bx)

(be ,s) =>p bv
Rule OpR (be',s) =5 bv'
(be bop be',s) =g Ap(bop, bv, bv')

(e,8) =4 v (e.5) =4 ©
Rule EqR (¢ys) =4 v (¢ys) =4 v
(Equal(e,e'),s) =5 T (Equal(e.€'),s) =5 F

if v is different from v’

(be ,s) =g 1 (be,s) =p I

le Not
Rule No (Not be.,s) =5 F (Not be,s) =g T

Figure 4.7: Evaluation semantics for Whilel.: =4, =5
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(e,8) =>4 v

Rule AsR (x:=e.s) —=¢ s[v/a]

Rule SkipR @—i————
e Bap (skip,s) =v¢ s

(be,s) = T
Rule IfR (Cs) =0¢ &
(If be Then C Else C',s) =¢ s

(be ,s) =g F
(C")5) =0 &
(If be Then C Klse C',s) =¢ &'

(C,S) —c s
Rule ComR (C',s) = &
(C:C5) =¢ &"

(be,s) =p F

le WhileR
Rule WhileR (While be Do C.s) =>¢ s

(be,s) = T
(C; While be Do C,s) =—¢ &
(While be Do C,s) =>¢ §

Figure 4.8: Evaluation semantics for Whilel: —¢

The compound command C'; C" applied to a store s first performs the command C
to s to obtain s', say, and then performs C’ in this new store to obtain the store s”.
So from (C,s) =¢ s and (C',s’) =>¢ s” we can conclude that the result of
applying C'; C" to the store s is the store s”,i.e. (C;C",s) = $".

We have already seen how If works so let us consider the final kind of command,
While be Do C. To see how this works we consider two cases. If the value of be in
the store s is F' then this command does nothing because C' should only be performed
until be becomes false; if it is false already then there is no need to perform C at all.
This is the justification for the first part of the While rule:

(be,s) =»p F
(While be Do C.s) =¢ s

On the other hand, if be is true we know that the command C' is performed at least
once. After performing C' the boolean expression be is once more tested in the new
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store to see if the computation is to continue. A convenient way of saying exactly
what happens after ' is simply to say that the command While be Do C is
executed once more in the new state. In other words, if be is true we execute C' and
then execute the entire command again. This has the same effect as executing the
command C; While be Do C with the original store. This justifies the second part
of the While rule:

(be\s) =5 1
(C; While be Do C,s) =¢ &
(While be Do C,s) =>¢ &

Alternatively we could write this as

(()6,5) —B :[',(C.,S) —c s
(While be Do C.s") =¢ &
(While be Do C,s) =>¢ &

Both these rules gives exactly the same effect because of the manner in which we
evaluate the composition of commands Cy; Cy. The complete definition of =>¢ is
given in Figure 4.8.

Let us now look at an example of the application of these rules to find the meaning
of a particular program. We will consider the execution of the simple program

z := 0; While Not (Equal(z,0)) Do

zi=z+y;
wi=a—=1

with respect to a store s such that s(z) = 2,s(y) = 3 and s(z) = 7. This program
calculates 2 % y by successive addition and places the result in z. For convenience we
let W denote the W hile statement which makes up the main part of the program and
let C denote its body, namely z := z+y;z := 2 — 1. We will also require notation for
new stores which occur as the evaluation proceeds. In general we use s; ; to denote
the store modified so that i is stored in @ and j in z. So s;; is s[i/#][j/z]. Note that

for every 4,7 s; j(y) = 3. We will actually only use the stores $20. 51,3, 92,3, 51,6, S0,6-
Once more we emphasise to the reader that it is better to try to read this derivation

bottom-up rather than from the top-down.

L. (0,506) =4 O Rule CR

2. (2,506) =>4 0 Rule VarR

3. (Lqual(z,0),s06) =>p 1’ Rule EqR to 1, 2
4. (Not Equal(x,0),506) =5 F Rule NotR to 3
5. (W.s06) =>¢ Sos Rule WhileR to 4
6. (y,513) =4 3 Rule VarR

7. (z,513) =4 3 Rule VarR
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8. (2+vy,s13) =>4 6 Rule OpR to 6, 7

9. z:=z4y,513) =>c Sie Rule AsR to 8

10. (1,s (,) =4 1 Rule CR

11 (2,816) =>4 1 Rule VarR

12. (z—1,816) =4 O Rule OpR to 10, 11
13. (z: —1,516) = Soe Rule AsR to 12

14. (C,s 1‘3) = Sos Rule ComR to 9, 13

15. /. $13) = Sog Rule ComR to 14, 5

16. 13) =4 0 Rule CR

17. (2,8 3) E- ! Rule VarR

18. (Fqual(z,0),s13) =5 Rule EqR to 16, 17

20. (W, s 5) = Sog Rule WhileR to 19, 15

21. (z: +Y,820) = S23 Rules VarR, OpR and AsR
22. (z —1,523) =>¢ s13 by the same sequence of rules
23. C 89, U) = S13 Rule ComR to 22, 21

24. (O3 W, s30) =>¢ Sog Rule ComR to 23, 20

25. (Fqual(xz,0),s00) =5 I Rules VarR, CR and OpR again
26. (Not Equal(x 0),s20) =5 T Rule NotR to 25

W.s20) =¢ 306 Rule WhileR to 26, 24
,8) =>¢ S0 Rule AsR
H/, S) =¢ Soe Rule ComR to 28, 27.

LS
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The net result is that if we run the program in the store s it eventually halts with
the new store sy ¢ where the location z now contains the value 6 and « the value 0.
The consistency or well-definedness of this semantics for the language Whilel
means that any command, starting in a given state, should halt in a unique state.
Because of the While statement it is easy to construct programs which intuitively

should never halt. One simple example is the command, Loop.

While T Do skip.
In our semantics the non-halting of this program starting from a state s is reflected
in the fact that for no state s’ can we deduce that

(Loop,s) =¢ .

How, for example, could we make such a deduction? We would have to apply Rule
WhileR, in which case we would have to prove

!

(skip; Loop, s) —»¢ s'.

Now, in order to deduce this, we would have to apply Rule ComR. Since (skip, s) =«
s, we would need to deduce (Loop,s) =>¢ s’ before Rule ComR could be applied.
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So the only way to deduce
!

(Loop,s) =¢ s
is to have a deduction of it already. In other words, it can never be deduced.

Given a command and a store, the most we could therefore show is that when

started in this store if it halts then it halts in a unique store:
Theorem 4.3.1 If (C,s) =>¢ s and (C,s) =>¢ " then ' = s".

Because of Rule WhileR this cannot be proved by structural induction on terms.
Instead Rule induction obtained from the inductive definition of == must be
used. So we need to formulate a predicate P(C, s) which satisfies all the rules defining
=—>¢ and which, in turn, implies the theorem. We have already seen two examples
of such predicates and therefore the proof is left to the reader.

Further Reading: The Evaluation semantics for Whilwl is also discussed in detail
in Chapters Two and Three of [Win93]. But be warned that the notation used is
different. For example the language is called IMP and the symbol — is used for the
evaluation relation =>¢ . It is also discussed in much more detail in Chapter two of
[NN92], where it is called Natural Semanlics; here the language is called While, —
is used to denote the evaluation relation. In later sections of this Chapter it is shown
how to extend the semantics to cope with procedures and block structures.

Questions

Q1 Evaluate the following program in CalcL for the calculator:

ON 834+7 TOTAL 4— LASTANSWER
TOTAL TF(LASTANSWUER.6+2,8)
TOTAL
OFt

Q2 Augment the calculator with an equality button, =, such that in the abstract

syntax we have an extra clause
en=... | e=e
Extend the operational semantics for this new construct.
Q3 Replace the single memory cell in the calculator with a stack. In this new calcula-
tor the last answer printed is now pushed on to the stack and LASTANSWER
accesses the top of the stack. In addition it has a new hutton, called POP which

pops the internal stack. That is, it eliminates the topmost element of the inter-
nal stack. Give an Evaluation semantics for the new calculator.

QUESTIONS 99

Q4 Using the Evaluation semantics of Section 4.2, find the first two values printed
out by the stream expression N Nst(Cons(0, Nil)) where NNst is defined by

NNst(sx)<= Cons(Hd s, NNst(Cons(Hd sz + 1, sz)).

Q5 Extend the language StreamlL as suggested towards the end of Section 4.2 by al-
lowing boolean expressions and the three different types of declarations, AA Dec,
SSDec and ASDec. Can you think of a more uniform method for allowing more

general declarations?

Q6 Using the Evaluation semantics of Section 4.3, execute the following program
using the store s, where s(z) = 0,s(y) = 4,s(z) = 1:

While Not(Equal(z,y)) Do
If even(x) Then z:=zxua
Else skip;
r:=x+1

You may assume that even is interpreted as expected by the Apply mechanism.

Q7 Augment the language Whilel with a new command of the form Repeat C' Until
be . This command repeatedly executes C until be becomes true. It differs from
While Not be Do C in that the command C' is always executed at least once.
Extend the Evaluation semantics to this new construct.

Q8 Use the Evaluation semantics of the previous question to evaluate

Repeal  z 1= z * x;
r:=xr—1
Until x =0

in a store s where s(z) =1, s(z) = 2.

Q9 Extend the language WhileL with a new type of command swap(z,y). Intu-
itively the effect of this command on a store is to interchange the values of the
variables  and y. Extend the Evaluation semantics to this new construct.

Q10 Extend the language WhileL with a parallel assignment command of the form
x,y := e, ¢. Extend the Evaluation semantics to this new construct.
Give an example to show that x,y := e, ¢’ does not always behave in the same

way as T :=¢;y = ¢’
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Q11 Extend the language WhileL with a case command as in PASCAL. A new
syntactic category, which we call Guarded Lists, is required, whose abstract
syntax is given by

Gi=n:C | n:00
and a new command is introduced:

case e of G end.

Intuitively the effect of this command is to evaluate the expression e to a numeral
and then execute the command in the list ¢ corresponding to this numeral.
Extend the Evaluation semantics to this new construct. It should include an
evaluation relation = for guarded lists.

Q12 Extend the language Whilel by adding an extra clause to the definition of the
abstract syntax of expressions and boolean expressions:

ex=... | Run C Then e | ...
be=... | Run C Then be | ...

Intuitively to evaluate the expression Run C Then e in a store s you first
evaluate the command C in s and then evaluate e in the resulting store.

Give a new operational semantics for this language. Note that the types of
=>4 and =g will have to change as the evaluation of expressions will now

affect the store.

Chapter 5

Computation Semantics

This chapter is devoted entirely to Computation semantics. In the first two sections we
give a Computation semantics to the languages Fpl and WhileL which we have already
encountered in previous chapters. Computation semantics describes the evaluation
or execution of programs in terms of primitive one-step operations. Frequently there
is considerable choice as to what these operations should be and in these two sections
we will see some examples of the choices which have to be made. In the final section a
very different kind of Computation semantics is seen. It occurs as part of a Concrete
operational semantics for the language Fpl. This Concrete semantics is in terms of
an interpreter for Fpl which runs on an absiract machine. The functioning of this
abstract machine will be described by defining a Computation semantics for it. In
other words, a Concrete operational semantics for the high-level language Fpl will be
given, using a Computation semantics for a lower-level system, namely the abstract

machine.

5.1 Computation Semantics for Fpl

In this section we re-examine the language Fpl from Figure 3.8. We give it a one-step
operational semantics or Computation semantics which prescribes the sequences of
primitive operations to which the evaluation of an expression may give rise. The
approach is similar to that in Section 2.3 where a Computation semantics is given for
the simple language Fap. Indeed, Fplis an extension of Kzp and so in this section we
simply extend the computation semantics given there. This is formalised as a binary
relation — : Fzp — Fxp, and
e — ¢

means that one primitive operation may be applied in the expression e and the re-
sulting expression, which may remain to be evaluated, is €’. Intuitively a primitive
operation is the application of one of the predefined operator symbols +, —, %, div to
a tuple of values. The formal definition of — is given in Figure 2.3 and we wish to
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extend this definition to the more complicated language Fpl.

The expressions in the language Fpl may contain free variables and therefore, once
more, we need to work with respect to an environment. So this indicates that we need
to define a relation with the type

— ENV — Fpl —— Fpl

The presence of free variables may then be accommodated by adding to the rules of

Figure 2.3 the extra rule:

e — o)

which says that to evaluate a variable you look it up in the environment. The other
rules in Figure 2.3 remain the same except that environments must be mentioned.

Another difference between Frp and Fplis the presence of user-defined functions.
As with the Evaluation semantics, to explain these functions we need to work with
respect to a declaration D. In other words, we need a relation parametrised on decla-
rations. However, we are evaluating arithmetic expressions and boolean expressions
and we need two relations, — 4 for arithmetic expressions and ——p for boolean
expressions. So

D,pte —4 ¢

means that, assuming the declaration D and the environment p in one step of the
computation, the arithmetic expression ¢ may evolve to the arithmetic expression ¢’.
The statement

D,ptbe —p be

has a similar meaning but for boolean expressions.

The inductive definition of —— 4 is given in Figure 5.1 and, as discussed above,
is an extension of the relation defined in Figure 2.3.

The first two rules in the definition of — 4 , Rules VarRc and OpRec, have already
been explained. The third concerns the evaluation of If expressions and it also uses
the auxiliary relation ——p whose definition is given in Figure 5.2. This auxilary
relation is very straightforward because of the simplicity of boolean expressions. Note
that in Rule EqRc the relation —— 4 is used and so the definitions of —pg and
—4 are dependent on each other. We will concentrate our explanation on the rules
for ——, , after which those for —p should be easily understandable.

Let us now explain Rule IfRc. Intuitively, to evaluate If be Then ¢ FElse ¢’ we
must first evaluate be and then, depending on the result, evaluate either e or ¢’. That
is, the first step in any computation from If be Then e FElse ¢’ should make progress
towards the evaluation of be. So if be ——p be’ then the first step in the computation
is from If be Then e Else €' to If be’ Then e FElse ¢'. This explains the first part
of the rule. However, it may be that the boolean expression be is already evaluated.
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le V.
Rule VarRe Dipt e —a ple)

Rule OpRe S

D,ptwv op v/ —4 Ap(op,v,v')

Dypke —4 €

Dypke op ¢ —a ¢ op e

Dipke —y e

Dypke op ¢ —a ¢ op e

o ’
Rule TRe D,ptbe —p be

D,ptIf be Then e Else ¢ —4 If be’ Then e FElse ¢

D,pEIf T Then e Else ¢ —4 e

D,pb If F' Then ¢ Else ¢/ —4 ¢

Rule LocRe Dipbe —a ¢

D,ypb let z=¢ ine —4 let z=¢" in ¢

Dypk et x=v in ¢ —4 €[v/a]

Rule FunRc Dipbei —a e

U7[) F 1’('(617-”76{7"'761&') —A j"(tlw-':eg'n"
Dopb F(vi,...,vr) —a evi/zr, ..., vr/7k]
whenever F(zy,...,25) <= e occursin D

Figure 5.1: Computation semantics for Fpli — 4
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Rule VarRec

Rule OpRe

Rule NotRc

Rule FEgRe

D,pFbr —p p(bx)

D,ptbv bop bv' —p Ap(bop, bv,bv’)

D,pt be —p be”

D,ptbe bop be’ —p5 be” bop be

D,pt b —p be”

D.pF be bop b/ —p be bop be”

D.pkbe —p be

D,pt Not be —p Not be'

D,pkENot T —p F

D,pkENot ' —p T

D.pbe —4 ¢

D,pt Equal(e,e’) —p Equal(e’,¢)

Dipke —y €

D,pt Equal(e,e’) —p FEqual(e,e”)

v="1'

D,pF Equallv,v') —p T

v £

D, pt Equal(v,v') —p F

Figure 5.2: Computation semantics for Fpl: —p
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This case is covered by the other two parts: if it has been evaluated to T', then the
expression we are currently evaluating is If 7' Then e FElse ¢ and the first step in
the computation is to e. If it has been evaluated to £, it is If ¥ Then ¢ FElse ¢
and the first step is to ¢.

The rule for local declarations is somewhat similar. To evaluate let © =€ in €
with respect to the environment p, we first evaluate e to some value v and then
evaluate ¢’ on the assumption that z is v. So the computation should proceed by first
evaluating e, il it needs to be evaluated. In this case the first step of the computation
is from let @ =¢ in ¢ tolel x =¢€" in ¢ where the first step in the evaluation
of e is from e to €”. If, on the other hand, e has already heen evaluated, then the
expression we wish to evaluate is of the form let @ = v in ¢ for some value v.
The computation could then proceed by evaluating ¢’ with respect to the modified
environment p[v/z]. However, we will model this by first syntactically substituting
the value v for all free occurrences of z in €’ to obtain €'[v/z] and then evaluating
this modified expression with respect to the original environment p. So in this case
the first step in the computation is from let * = v in ¢ to ¢'[v/z]|. In this way the
environment with respect to which a computation takes place will not change as the
computation proceeds. Another method for handling local declarations which does
not involve substitution will be discussed later.

The rule for user-defined functions, FunRe, is also similar. The first sub-rule cov-
ers the case when at least one of the parameters is unevaluated, the second when all
the parameters are values. In the latter case the first step is from F'(vy,...,v;) to
eloi/wr, ..., vpfag] when D contains the declaration F'(wq,. .., 25)<= e. This corre-
sponds to a call to the body of a definition. Once more, instead of evaluating the
body e in a modified environment, the environment remains unchanged but the actual
parameters vy, .. ., vg are syntactically substituted for the parameters x1,..., 2 in e.
On the other hand, if any of the parameters are unevaluated, then the computation
proceeds by evaluating an arbitrary parameter. So, in this case, a first step is from
Fle, ..., €. ¢) to Fer,... €}, ...,ex), where a first step in the evaluation of ¢;
is from ¢; to ¢l

Let us now see an example of the use of these rules. Consider the declaration

H(z,y)<= If Equal(z,y)
Then x
Else If Gi(x,y)
Then H(x —y,y)
Else H(y,z)

Here we assume another primitive function symbol Gt similar to Fqual. It takes two
arithmetic arguments and returns T if the first is strictly greater than the second
and false otherwise. We leave it to the reader to incorporate it into the Computation
semantics with rules similar to those for Fqual. We will compute the value of the
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expression H(15,25) with respect to this declaration. For convenience we use e to
denote the sub-expression

If Gt(z,y) Then H(z —y,y) Else H(z,y).

Because there are no free variables in H(15,25) the computation will not depend on
the values contained in the environment. Also the declaration is fixed and therefore
for convenience we will abbreviate D,p e —4 € toe —4 €. If we examine
the rules for —,4 we see that the only one applicable to the expression H(15,25)
is the second part of Rule FunRe. So the first step in the computation is

H(15,25) — 4 If Fqual(15,25) Then 15 Flse (e[15/x,25/y]).

To find the second step in the computation we must see what rule is applicable to
the expression If Fqual(15,25).... Since the boolean expression is not evaluated,
the only rule which applies is the first part of Rule IfRc. So the second step has the
form

If FEqual(15,25) Then ... —4 If be' Then

where
Fqual(15,25) —p be'.

By examining the rules for — 5 we see that the final part of Rule EqRc gives
Fqual(15,25) —p F. So the second step in the computation is

If Equal(15,25) Then ... — 4 If F Then
The third step is obtained by applying the final part of Rule IfRc to obtain
If F' Then 15 Else ¢[15/x,25/y] — 4 ¢[15/z,25/y].

The next step is obtained by examining the expression e[15/x,25/y]. Once more this
is an If expression of the form If Gt(15,25) Then .... Since the boolean expression
is unevaluated, the applicable rule is the first part of Rule IfRc. Applying this we
obtain the step

If G{(15,20) Then ... —4 If F Then

assuming appropriate rules for Gi. The fifth step is obtained by applying the final
part of Rule IfRc to obtain the step

If I Then H(15 —25,25) Else H(25,15) — 4 H(25,15).

So, in five computation steps, each individual step being derived using the rules from
Figures 5.1 and 5.2, we have reduced H(15,25) to H(25,15). Using the notation
introduced in Section 2.3, we may write this as

H(15,25) —* H(25,15).

=
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Another five computation steps which, once more, simply evaluate the boolean
expressions and branch accordingly. give rise to

1(25,15) — H(25 —15,15).
The next step in the computation is
H(25 —15,15) — 4 H(10,15)
by applying the first part of Rule FunRc. So at this stage the computation is
1(15,25) —, H(10,15)
and consists of 11 steps. Another 11 steps will give rise to
H(10,15) —* H(5.10).

and a further 11 steps to
(5,10) —% H(5.5).

The computation now proceeds as:

H(5,5) —4 If Equal(5,5) Then 5 Else
— 4 If T Then 5 FElse

— 4 5.

So, in 36 computation steps, we have
H(15,25) —7 5.
Using the evaluation semantics of Chapter 3, the reader may also check that
H(15,25) =, 5

and it is instructive to compare these two derivations. The first consists of many
individual computation steps, i.e. applications of —— 4, each being derived from
the defining rules for ——4 . These individual derivations are usually quite short
and uninvolved. Tor example, in the computation just carried out, none of these
derivations have depth greater than two. The second, using =4 , consists of only
one derivation using the defining rules for =4 . This derivation is quite long and
involved. The sequence of individual steps using —,4 is “encoded” in its struc-
ture. For this reason the Evaluation semantics is considered more abstract than the
Computation semantics. The Evaluation semantics tells one what an implementation
should do without being too explicit as to how to do it. By examining derivations
within the Evaluation semantics it can be seen which primitive operations have to be



108 CHAPTER 5. COMPUTATION SEMANTICS

performed and often the order in which they should be performed. The Computation
semantics is more explicit. It may be viewed as an attempt to make more explicit
the sequence of primitive operations which lie implicit within the derivations of the
Evaluation semantics.

For a given Evaluation semantics there may be many different Computation se-
mantics, each representing a different method for ordering these implicit primitive
operations. As an example there are many different variations we could introduce
into our Computation semantics. One obvious possibility is with respect to the If
statements. In our semantics the decision to follow the Then branch or the FElse
branch takes one computation step. We could abstract away from this step thereby
saying that the decision is taken instantaneously. This would be the case if we re-
placed the second and third sub-rules in Rule IfRc by

Dipke —4 ¢
D,pFIf T Then e Else ¢/ —4 €"

and
Dipke —y e

D.pb If F' Then ¢ Else ¢ —4 "

Similarly, it takes one computation step to call a user-defined function. This could

be eliminated by replacing the second sub-rule of Rule FunRe with

D.ptelvi/zr,....vx/ar] —a €

Dypk Fvy,...,vx) —4 €

Another variation on the Computation semantics concerns the treatment of local
declarations. In our existing rules we have used syntactic substitution of values for
variables in expressions and it could be argued that such tampering with the expres-
sions under evaluation should be avoided. Environments were introduced to handle
the association between variables and values and it may be preferable if part of the
role of environments were not obscured in this way. One way of modifying the rules
for local declarations so that substitution is avoided is to replace the second part of
Rule LocRe by the two rules

D,plv/zlFe — 4 €

Dipblel =0 in e —,  lel x=0v in ¢

and

! AV ’

Dpk et x=v in v
Substitution is also used in Rule FunRec to usurp some of the role of environments
and, by analogy with Rule LocRc, it is tempting to replace the second part of it by

D.plvi/x1,.. . vpfar]Fe —a €

D,pb Floy,...,v) —a €

whenever #(xq,...,x;) <= € occurs in D.
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However, this is incorrect in that it leads to very different computations and,
moreover, computations which are counter-intuitive. For example, let D be the dec-
laration

Plo,y)e=a+y

and consider the computations from F(1,2) in an environment p where p(y) = 6. If
we use the proposed rule, together with the existing rules (in particular Rule VarRe),
we obtain as a first step in the computation

D,pt F(1,2) —4 1+4y.
Unfortunately the second step, from 1 + y. will be
Dipbl4+y —4 146

and the final step
DpF1+6 —, 7.

However, intuitively the evaluation of F(1,2) should lead to 3 and not 7. The
problem occurs because after the first step the proper environment for evaluating the
body of F', namely p[1/z,2/y], is lost and subsequent steps are evaluated erroneously
with respect to the original environment p. There is a very close link between the
semantics of function calls and local declarations. The careful reader will have noticed
that, in both the Evaluation semantics and our first Computation semantics, F'(¢’)
is interpreted in the same way as the expression lel 2 = €' in e where e is the
body in the declaration of F'. This semantic equivalence can be exploited to give a
substitution-free rule for function calls: the second part of Rule FunRe is replaced by

D,pbF F(vr,...,v5) —a lel a1y =v in ...... let xp = vy in e

provided F(z1,...,2)<= ¢ is a definition in the declaration D.

This adjustment to Rule FunRc is satisfactory because the correct modification to
the environment for evaluating the body of I, namely p[vi/z1,...,vi/x], is carried
along in the syntax, in the local declarations let @y =wvy in ... let xp =v in
as long as they are required.

We end this section with one more comment on our Computation semantics. In
the above example the computation is completely deterministic. For each expression
e which arises during the computation, apart from the final one, there is a unique
next-state, i.e. a unique expression ¢’ such that D,p F e — 4 €. This is not
always the case as the Computation semantics is in general non-deterministic. The
non-determinism arises in function expressions such as e +¢' or F(e, ¢’). If both e and
¢’ are unevaluated, the semantics states that either may be evaluated first. Indeed,



110 CHAPTER 5. COMPUTATION SEMANTICS 5.2. THE LANGUAGE WHILEL

their evaluation may be interleaved in any order. In actual implementations it is more

usual to evaluate the parameters of a function from left to right. But our semantics (e,8) =>4 v

Rule AsRc

essentially leaves this decision up to the implementer. We set as an exercise at the (v :=e,5) —c (skip, s[o/x])
end of this chapter the problem of modifying our Computation semantics so that

parameters may only be evaluated in this more restricted manner. A similar exercise Rule IfRe (be,s) = T,(C,s) —¢c (C",5")
for the sub-langnage Ezp was given at the end of Chapter 2. ) ) (If be Then C Else C's) —¢ (C",5')

(be,s) =p F,(C',s) —¢ (C",5)

5.2 The Language WhileL (If be Then C Eise C',s) —c (C7,5)

We have already seen an Evaluation semantics for the language WhileL. In this section (C,s5) —0 (C",5)
, s

. . . . . . . 1 )
we design a Computation semantics. The basic operation for this language is the Rule ComRe ~ 7 AT
. . . ((";(/70) ¢ (0;(/7‘5)
assignment statement, x := e. It acts on a store s and changes it to s[v/z|, where v is

the value of the expression e with respect to the store s. So a Computation semantics («, s)\/, ((/”, 5) —o ((7//7 )

((;1:(7/?5) —c ((;”/75/,)

for Whilel, must describe the basic operations a command can perform and implicitly
the semantics will also dictate an ordering between them. To execute an assignment

statement a store is required and therefore the Computation semantics is expressed (be, ) P
7y ¢ =B

(While be Do C.s) —¢ (skip,s)

as a relation over configurations Rule WhileRel

—¢ :(Com, Store) — (Com, Store). (be . 5) e
€,8) —p

Rule WhileRc¢2

The statement (While be Do C.s) —¢ (C; While be Do C,s)

(C,s) —c (C,8) Figure 5.3: Computation semantics for Whilel

means that the command C' may execute a basic operation, an assignment statement,
with respect to the store s; this operation will change the store s to s’ and C’ is the
remainder of the command C' still to be executed.

When designing the Computation semantics a number of choices have to be made.

. . ) ) Rule Skipt —_—
One concerns whether or not choices in If commands and While commands take (skip, s)\/
a computation step. In the previous section where we discussed a Computation
semantics for F'pl the resolution of these choices did constitute a step and for the sake Rule TR+t (be,s) = 1,(C,s)y/
of variety in this section, we assume that for If statements they are instantaneous. But (If be Then C Else C',s)\/
for technical reasons it is important to assume that the choice in a While statement
to terminate or to execute the body takes one computation step. Let us also assume (be,s) =g F.(C,s)y/
that we are not concerned with how arithmetic and boolean expressions are computed. (If be Then C Else C',s)\/
For this reason we will not define computation relations, — 4 , ——p for these
expressions. Instead we will use the evaluation relations =4 and =g f[rom the Rule ComRt (C.8)/,(C' 8)y/
previous chapter. So the rule for the assignment statement is: ) ' (C; " 8)y/

(e,s) =>4 v
(x:=e,5) —¢ (skip,s[v/z])

Figure 5.4: Termination predicate for WhileL

All the rules are given in Figure 5.3.
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Let us examine the rule for If commands. We are assuming the instantaneous
evaluation of boolean expressions and of the resolution of choices. So if the configu-
ration (C,s) can perform a basic operation and thereby be transformed into (C”, s'),
Le. (C,s) —¢ (C", ), and be evaluates to true with respect to the store s, i.e.
(be,s) =g T, then we may conclude that in one step (If be Then C FElse (', s)
can move to (C",s"), i.e. (If be Then C Else C'.s) —¢ (C",). Sim-
ilarly, if (be,s) =p F and (C',s) —¢ (C”,§') we can also conclude that
(If be Then C Else C')s) —¢ (C", ).

The rule for While commands is quite different. Intuitively if be evaluates to T
with respect to the store s, the computation from While be Do ' should proceed
by first executing C' and subsequently executing While be Do C'. We are assuming
that this decision to continue with the execution takes one computation step. So in
this case the first step from While be Do C' is

(While be Do C,s) —¢ (C; While be Do C,s).

On the other hand, if the boolean expression be evaluates to F' then the computation
is finished. We model this by one final computation step to the configuration (skip, s):

(While be Do C.s) —¢ (skip,s).

No rules apply to the configuration (skip,s); it is effectively the halt configuration
with the final state s.

The rules for the composition operator ; are the most interesting. The compu-
tation from Cy;Cy should proceed by first executing C7 and then Cs. So the first
step in this computation should be the first step in the computation from . This

explains the first sub-rule, namely that from
(Crys) —0c (C1,9)

we can conclude
(C1;Cyy8) —¢ (C;Cs,8").

But it may be that there is no computation from €y and so if this were the only rule
for the composition operator ; then there would be no move from (Cq;Cy, s). This
arises, for example, in

skip;x =1

and

(If T Then skip Else y:=2);x:=1.

The above rule does not apply to these commands but intuitively they do give rise
to computations, namely, updating the value of the location = to be 1. The subcom-
mands skip and [f T Then skip FElse y := 2 have terminated and for this reason the
second sub-command i.e. the sub-command after ;. may start executing. In general
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whether a command has terminated or not depends not only on the command itself
but also on the current store. For example,

If © =0 Then skip Else y:=1

is terminated if in the current store 0 is stored in the location x but is not terminated
otherwise. Let us indicate that a configuration (C,s) has terminated by writing

(CLs)y.

Then whenever (C,s)y/, the computation from (C;C’, s) may proceed by executing
C’. So the first step in the computation from (C';C’, s) is the first step from (C’, s).
From (C,s)y/ and (C',s) —¢ (C”,s') we may infer (C;C",s) —¢ (C”,s'). This
is the second part of Rule ComRc.

The definition of the termination predicate / is given in Figure 5.4. Tt may be
viewed as a definition by structural induction and the rules are very straightforward.
Note that there are no rules which apply to While commands. This is because every
While command can always make at least one step, the decision as to whether or not

to go once more around the loop.

Let us now look at an application of these rules to execute a command. We
examine the same program as in Section 4.3:
z:=0;
While Not (Equal(x,0)) Do

We also assume the same store s, with s(2) = 2, s(y) = 3 and s(z) = 7 and use the
notation for stores whereby s; ; is used to denote the store s[i/z][j/z]. As before, we
also use W to denote the While command and C its body. We know (0,s) =4 0
and therefore by Rule AsRc we may infer

(2:=0,s5) —¢ (skip,s20)-
Applying the first part of Rule ComRc, we obtain the first step of the overall program
(z:=0;W,s) —¢ (skip; W, s20).

To obtain the next step we have to see which rule is applicable to skip; W. Now
(skip, s)y/ and therefore the second part of Rule ComRc applies. In order to apply it
we must find the first move from W. To discover this we will need to apply the rule
WhileRe. Since (Not(Equal(z,0)),s) =5 T its first move is

(W, 530) —c (C;W,520)
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So, applying Rule ComRc, the second step from our program is
(skip; W, s20) —c (C; W, s20).

The third computation step is from the configuration (C; W, s,9) and to obtain it we

must apply Rule ComRec to a move from (C, s39). Applying Rule AsRc we obtain
(z:=z+y,s0) —c (skip,ss3)
and applying Rule ComRc
(C,800) —c (skipiz =z —1,553).
So another application of ComRc gives the third step
(C:W,s20) —¢ ((skip;a:=a —1); W, s23).
The next step is obtained by an application of Rule AsRec
(z:=a—1,s833) —¢ (skip,si3),
followed by an application of the second part of Rule ComRc
(skip;a == a = 1,593) —¢ (skip,s13)
and followed, finally, by an application of the first part of Rule ComRec to obtain
((skipyz =@ — 1); W, s53) —¢ (skipi W, s13).

So in four steps the program has progressed from (z := 0; W, s) to (skip; W, s13). As
before, we use —% to denote multiple steps. So,

(z:=0;W,s) —& (skip; W, s13).
In three more steps we obtain
(.s’]::/fp; W, 5113) — (,s’l;:ip; W, .9¢J7(5).

A final application of the second part of Rule WhileRc followed by Rule ComRec leads
to

(skip; W, s06) —c (skip, so6).

There is no rule which applies to skip and therefore the computation is terminated;

it can proceed no further. So the complete computation is

(z:=0;W.s) —F (skip, s06).
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In the previous chapter we have also seen the derivation of
(z:=0;W,s) = s06

using the Evaluation semantics =>¢ and a similar comparison may be made hetween
the derivations of = and sequences of derivations of —¢ as between —,4 and
——4 in the previous section. In the latter, individual derivations of single steps are
relatively short and uncomplicated, and a computation consists of a sequence of these
steps. In the former, a complete computation is modelled by a single complicated
derivation within the structure of which the single steps or primitive operations may
be discerned.

Intuitively the predicate \/ represents termination and one property which one
would expect of programs is that they can do a computation step if and only if they
are not terminated. If this were not the case there would be something drastically
wrong with our definitions. As a consistency check on these definitions we therefore
prove that this is indeed the case for our formal notion of termination and computation
step.

Theorem 5.2.1 For every configuration (C,s) evactly one of the following holds:
1. the configuration is terminated, i.e. (C,s)\/
2. il has a move, i.e. there is a configuration (C',s') such that (C,s) —¢ (C', ).

Proof The proof is by structural induction on commands. According to the ab-
stract syntax of WhileL there are five different kinds of command and therefore there
are five cases to consider.

1. C is skip. In this case (C, s)y/ and since no rule applies to skip there can be no

C" such that (skip,s) —¢ (C',s') for any s, s’

2. (' is « := e. This case is the opposite to the previous one.

3. C'is C';C". By induction we may assume that exactly one possibility applies
to (€, s). If it has a move and is not terminated, then by the first part of Rule
ComRec (C'; C", s) also has a move. Also it is not terminated because, according
to Rule ComRt (C’;C",s) is only terminated if both (C’,s) and (C”,s) are
terminated. So suppose the second possibility applies, namely that (C,s)\/
and it has no move. We may now apply induction to (C”,s). If (C",s)y/ and
has no move, then by Rule ComRt (C”; C”,s)y/ and (C';C”,s) has no move.
The latter follows since to derive a step from (C’; C”, s) the second part of Rule
ComRc must be applied, which is not possible. On the other hand, if (C”.s)
has a move and not (C”,s)y/ then by Rule ComRc (C';C", s) has a move and

also (C";C”, s) does not terminate.
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4. C'is If be Then C' Else C”. In this case if (be,s) =p T we apply
induction to (C',s) and if (be,s) =5 F we apply it to (C”, s).

5. C'is While be Do C'. Regardless of be and C”, in this case (' does not terminate
since no tule in the definition of 4/ applies to While commands. Also, for every
store s one part of the rule WhileRec applies to (C, s) since either (be,s) =5 T
or (be,s) =>p F. So there is always a move from (C, s).

Further Reading: A slightly different Computation semantics for While is given in the
second section of Chapter Two of [NN92], but again you should be warned about the
different notation used; First Computation Semantics is called Structured Operational
Semantics, the language itself is called While and the next step relation —¢ s
denoted by =. This Chapter also contains detailed proofs of the properties of the
semantics and the relationship between the Computation and Evaluation semantics.

5.3 An Abstract Machine for Fpl

In this section we give a somewhat unusual example of an Computation semantics.
We have already seen two semantics for Fpl. a rather abstract Evaluation semantics
and a more detailed Computation semantics. Here we give an even more concrete
semantics in the form of an abstract machine. This is, in effect, a formal interpreter
for the language which runs on a hypothetical machine. It is a much more detailed
semantics than the previous two; not only does it determine the order in which prim-
itive operations are to be performed, it suggests concrete implementation methods
for analysing programs to determine this order and how to perform the sequences of
operations.

Let us begin by re-examining the simple language Frp. We have already seen a
Concrete operational semantics for Fap in Section 2.1 in the form of a compiler for
the STACK-machine. Here we use the same technique except that it is expressed as
an interpreter. We augment the S7ACK-machine so that it has not only a stack for
holding values and an arithmetic unit for carrying out operations but also a control
unit. The control unit holds the program or expression we wish to evaluate. As
the evaluation or computation proceeds the expression in the control unit changes
and we will shortly see that in general it contains a list of expressions. We call the
machine an abstract machine because we do not fill in many of the details of how it
is to be constructed or implemented. It could be a physical device or, more likely,
implemented in some low-level language. The only description of the machine, or

rather states or configurations of the machine, will be in terms of tuples < 5,C >
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where S is a stack of values and C is the current control. These descriptions are
somewhat abstract as they ignore many details which would be present in any actual
implementation. However, they are sufficiently detailed to enable us to define how
the machine should work. To evaluate an expression e the machine is started in
the state < €,e >, where € represents the empty stack. The machine then proceeds
from state to state until a final state is reached. These are states where the control
components have been exhausted, i.e. states of the form < v,¢ > where the stack
contains one value v and the control unit contains the empty list of expressions. (Here
it is convenient to use € to represent the empty list or sequence.) Then the value of
the original expression e is v.

To describe the functioning of the machine it is therefore sufficient to define a

next-state relation —— between states:
<S,C>—<S5C >

means that if the abstract machine is in the state < S, C > in one step it can move
to the state < S’,C’ >. In other words we describe the functioning of the machine by
giving a Computation semantics for it. In fact the machine will be deterministic so
that the relation — will be a partial function, i.e. for every state < S, C' > there will
be at most one state < S’,C’ > such that < S, > — < §’,C’ >. Before defining
the relation —— we should be precise about the exact form states may take. The
easiest way to define the allowable states is to give the abstract syntax of a langnage
for describing them. This is given in Figure 5.5 and assumes an abstract syntax for
Fzxp. So e refers to an arbitrary arithmetic expression, op an arbitrary arithmetic
operator symbol and n an arbitrary numeral. The main syntactic category is States,
each element of which is of the form < §,C > where S is an element of Stack and
C" an element of Control. An element of Stack can be a sequence or stack of values,
possibly empty. Here we use the usual dot notation, . , for sequences and, since we
are interpreting fzp, the only values required are numerals. As stated above, we use €
to represent the empty stack or more generally the empty sequence. So, for example,
the sequence z.¢ is the sequence which consists of exactly one element #. An element
of Controlis also a sequence, each element of which is either an expression from Ezp
or a special constant. To interpret Fzp the only special constants required are the
operator symbols.

The definition of — is given in Figure 5.6 and is relatively straightforward. It
consists of three rules, none of which requires premises, and are therefore expressed
in a simple form. The first rule says that if the expression to be evaluated is already
a value, i.e. if the expression on top of the control unit is simply a numeral, then it
is moved to the value stack; the value of a numeral is itself. The second rule analyses
expressions. If the expression on top of the control unit is e op ¢ then it is replaced
by the three elements e. ¢’ and op. Intuitively this says that in order to evaluate

¢ op ¢ we must first evaluate the two objects e, ¢’ and then apply op to the two
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1. Syntactic categories
st in States
C'in Control
S in Stack
cons in Constants

v in Values

2. Definitions

ston= < S,C >

S = ¢ ] 0.8

C = ¢| eC | cons.C
cons == op

v u= n

Figure 5.5: States of the abstract machine for Fxp

results. When op appears at the top of the control unit the time has come to apply
it. By the construction of the machine the values of ¢ and ¢ will at this stage be at
the top of the value stack. So the third rule states that these two values, v and v’,
are replaced by the value Ap(op,v,v). Once more, note that this description of the
machine avoids the issue of how operations are performed; it merely assumes that

there is a mechanism, the operation Ap, for carrying them out correctly.

Here is an example of the use of the machine to evaluate (3 + 4) + (8 — 2). Each
state is obtained from the previous one by an application of the rule noted on the
right-hand side.

=
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Rule Val < S0l >—<v.50C>
Rule Anlm < S,¢ op ¢.C > — < S,e.c.op.C >

Rule Opm < v'.0.5,0p.C > — < Ap(op,v,0v).5,C >

Figure 5.6: A simple abstract machine

<e€(3%4)+(8—-2)>
<63%4.8 —2.+ > Rule Anlm
<63.4.%.8—2.+> Rule Anlm

<3,4.%x.8—2.+ > Rule Val
<4.3,%x8—2+ > Rule Val
<12,8 -2+ > Rule Opm
<12,82. — 4+ > Rule Anlm
< 812,2. — 4+ > Rule Val
<2812, — .+ > Rule Val
<6.12.+ > Rule Opm
<18,¢ > Rule Opm.

The relation between the compiler COMP in Section 2.1 and the abstract ma-
chine should be apparent from this example. The compiler translates an expression
into a sequence of constants and then this sequence is evaluated on the STACK-
machine. The abstract machine interleaves these two processes. It translates ex-
pressions into much the same sequence of constants, using Rule Anlm, and evaluates
the sequence using the Rules Valm and Opm. But the processes of translation and
evaluation are intertwined. The relation with the Computation semantics is more in-
teresting. According to this semantics, a first step in the evaluation of (3%4)+ (8 —2)
is

(3x4)+(8—2) — 12+ (8—2).
It takes the abstract machine five steps to implement this. It is represented by

<o, (3%4)4+(8—2)> —"<12,8 24>,

More generally, each step at the level of the Computation semantics is reflected in the
abstract machine by an application of Rule Opm. But these rules are interspersed
with long sequences of applications of Rules Anlm and Val which are used to analyse
expressions and to prepare for the next application of an operator symbol. Note,
however, that there are some steps at the level of the Computation semantics which

have no counterpart in the abstract machine. A typical example is

(3+4)+(8—-2) — (3x4)+6.
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This is because the abstract machine, unlike the computation semantics, implements
a left-to-right evaluation strategy.

The inferences in the Computation semantics, although much simpler than those in
the Evaluation semantics, are more complicated than those for the abstract machine.
Indeed, inferences for the rules governing the latter are the simplest possible; they
always have depth one. So the extra steps which occur during an evaluation on the
abstract machine reflect the structure of the inferences at the level of the Computation
semantics.

We will now see how to modify this machine so as to interpret I'pl, the language
defined in Section 3.4. We examine in turn the extra features of Fpl and see what
extensions are required. The abstract syntax for the resulting machine is given in
Figure 5.7 and the operational semantics in Figure 5.8, 5.9 and 5.10. As we go
through each of the constructs in Fpl these will be explained. Let us first consider
variables. To evaluate any expression containing variables we need an environment
which associates with each variable a value. For the relatively abstract Computation
and Evaluation semantics this is represented as a function from variables to values.
Here we wish to be a little more concrete and will therefore represent environments as
finite Tists. Of course an environment is in general an infinite object as it associates
with every variable, from a possibly infinite set of variables, a value. However, any
particular expression will only ever contain a finite number of variables and therefore
to evaluate it it will be sufficient to know only a finite part of the environment.
So representing an environment as a finite list rather than a function is not very
restrictive and it also gives an indication of how environments may be implemented

on real machines. The abstract syntax of environments for variables is then given by:
envi=c | (z,v).env.

To look up the value associated with a variable we search the list from left to right.
Let us use

env,x kv
to indicate that according to the environment env the value associated with z is v.

The relation F is captured, at least for arithmetic variables, by the rules:

env,x F o

(z,v).env,z kv (y,v').env,z v

ifasy

The effect of these rules is as follows: to look up the value of a variable z in an
environment env the environment env is searched from left to right until an entry of
the form (z,v) is found; the required value of  is then the value v.

The abstract machine must now be augmented with a third component, namely
an environment. So a state has the form < S, env,C > and the next-state relation

ot
o
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1. Syntactic categories

st in States

C in Control

S in Stack

env in Env

a in Assoc

cons in Constants
Fin FunVar

v in Values

bv in BValues

2. Definitions

st o= < S, env,C >

S u= e| vl | b.C

C == €| eC | cons.S
cons == op | bop | <aw,e> | if (e,¢) | nol | equal | pop | F
env = € | a.env

a == (x,v) | (ba,bv) | (F.(z,¢))

v = n

bv = tt|ff

Figure 5.7: States of the abstract machine for Fpl

has the form

< S env,C > — < S ent/,C' > .

This will not radically change the definition of — as the environment component
is mostly ignored. It is only used in the one new rule

env,r F v

< S,env,x.C > — < 0.8 env, C >

which places the value of the variable z on the stack.
To interpret the full language Fpl no more additions will be made to the ma-
chine. Instead we will simply augment the definition of Constants and extend —
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appropriately. The treatment of local declarations is a case in point. To evaluate
let x=e in €

we must first evaluate e in the current environment, env say, and then evaluate ¢ in
a modification of env. The first rule, Rule Locm1, analyses local declarations into its
components:

< Senv, let t=e in .C>— < S env,e. < 2,6 >.C>.

Here we introduce a new constant < x, e’ > which will be treated like ¢’ except that
to evaluate it in an environment env we must actually evaluate e’ in the modified
environment (z,v).env where the new value associated with @, namely v, is obtained
from the top of the stack. The machine is constructed so that this value picked from
the top of the stack is in fact the result of evaluating e. This is expressed by the
following two rules:

<wv.S.env, < we>.C > — < S, <x,v>.env,e.pop.C >

< S, <x,v>.env, pop.C > — < S, env, C > .

The new constant pop is used to clear the environment of the temporary association
(z,v) when it is no longer needed. These two rules are called Rule Locm2 and Rule
Pop respectively in Figure 5.9.

A similar technique may be used to implement function definitions. For simplicity
let us assume that all function symbols have arity one, so a declaration consists of a
sequence of definitions of the form

Fa)— €.

We can keep this information in the environment by storing pairs (F. (2, ¢’)). The
presence of such a pair in the environment means that we are assuming a declaration
which contains the definition F(x)<= ¢’. The user-defined function symbols can be

handled by the abstract machine by the analysis rule
< S, env, F(e).C) — < S, env, e. F.C' >
and the application rule

env, F'+ (z,¢)
<v.5, env, F.C > — < S, (z,v).env, ¢'.pop.C >

In the application rule when F occurs in the control it means that the function F is to
be applied to the value at the top of the stack, v. Soif env, F F (z,¢'), l.e. F(z)= ¢
occurs in the declaration, this means that the expression ¢’ should be evaluated in
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Rule Opml < S, env,e op €.C > — < S, env,e.e’.op.C >
< S, env,be bop be'.C > — < S, env, be.be'.bop.C >
Rule Notm1 < 8, env, Not be.C' > — < S, env, be.nol.C' >
Rule Eqml < S, env, Equal(e,e').C > — < S, env, e.¢’ . equal.C' >
Rule Tfm1 < S,env, If be Then e Else ¢'.C > — < S,env,be.if (e.e).C >
Rule Funml < S, env, F(e).C > — < S, env, e. F.C' >

Rule Locml < S, env, let @ =¢ in ¢.C > — < S env,e. <a,¢’ >.C >

Figure 5.8: Analysis rules for the abstract machine

the environment modified by the association (2,v). The machine is so constructed
that this value v is the value of the original expression e to which the symbol F' was
applied.

The constructors associated with boolean expressions may be handled with sim-
ilar techniques. First we need to be able to store boolean associations (bx,bv) in
environments and be able to look them up. Then in the analysis phase we introduce
new constants:

< S,env, If be Then e Klse ¢'.C > — < S env,be. if (e,¢).C >
< 8, env, Equal(e, €').C > — < S, env, e.¢’ . equal. C' >
< S, env, Nol be.C' > — < 8, env, be.nol.C' >

In the case of Equal(e,e') a new constant equal is introduced. When the time comes
to process this constant then the values of e and ¢’ are at the top of the stack. So

they are replaced by ¢t if they are the same and ff otherwise:
<v.w'.S, env, equal.C' > — < tt.5, env,C > if v =0’
< 0.8, env, equal C > — < .5, env,C > if v # v'.

Similar reasoning justifies the application rules for the other two constants if (e,¢’)
and not:

< tt.S, env, if (e,€').C > — < S, env,e.C >
<[5 env, if (e,€).C > — < S, env,e’.C >
< .5, env, not.C' > — < fI.5, env,C >
< .5, env, not.C > — < 4.5, env,C' > .
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ot

(F,(z,€)).env, F I (z,€)

Rule Opm2 < v'.v.S, env,0p.C > — < Ap(op,v,v’).S, env,C > (z,v).env,x F v (bx, bv).env, bx = b
< bv'.bv.S, env, bop.C > — < Ap(bop, bv, 0').S, env, C' > env, I'+ (2, ¢)
a.env, F' F (z,¢)
env, & v if a does not bind F

Rule Varm

< S,env,z.C' > — < v.5, env, C >

env,x v env, bx + bv
env, bx = bv a.env,x b v a.env, bz + b
< S,env, be .C' > — < bv.S,env,C > if @ does not bind z if @ does not bind bz

Rule Valm < 8 env,0.C > — < 0.8, env, C > . ) . . . .
Figure 5.10: Lookup rules for environments for an abstract machine

< S, env,bv.C' > — < bv.S, env, C' >

Rule Notm2 < (.5, env, not.C > — < .5, env, (' > This completes our description of the .abstract ma.chin.e for F'pl. As has already
been stated the complete abstract syntax is gathered in Figure 5.7 and all the rules

< 1S, env, not.C > — < t.5, enn, €' > defining the 901111)utat1011- scma.ntics in Figures 5.8, 5.9 and. 5.10. In the latter we use

the phrases “a does not bind #7, etc. to mean that a associates a value or expression

v = to some variable other than I

Rule Eqm?2 § L . - ] )
4 < v..S, env, equal.C > — < tt.S, env, C' > In view of the preceding discussion, these definitions should now be understandable

to the reader. Let us consider an example. Let D be the single definition

v # v Ev(z) <= If Equal(z,0)
< v..S, env, equal.C' > — < fI.5, env, C > Then 0
Else If Equal(z,1)
Rule Tfm2 < LS env, if (e,¢/).C > — < S, env,e.C > Then 1 Flse Fo(x —2).
< .S, env, if (e,¢).C > — < S, env,e’.C > This function returns 0 if its input is even and 1 if it is odd. For convenience, let ¢

denote the body of the declaration and e the expression
env, ' - (x,€)
<v.S,env, F.C > — < S, (z,v).env, e.pop.C >

Rule Funm?2 If Fqual(x,1) Then 1 FElse Fuv(x — 2).

- . . We evaluate the expression Fv(2) with respect to D using the abstract machine. To
Rule Loem2 < v.S,env, < z,e > .C' > — < 8, (z,v).env, e.pop.C > . . .
’ ’ do so we assume that in the environment env we have the association (Fuv, (. €)).

The machine is started in the initial configuration < €, env, Ev(2) >. The description

S, (x,v). .C S, env, C' . R .
Rule Pop < 8 (,v).env pop.C > — < 5, env, O > of the subsequent computation may be found in Figure 5.11; we omit the arrow —
and simply list the states through which the machine proceeds together with the
Figure 5.9: Application rules for the abstract machine corresponding rule.

The final state is < 0, env, e > and therefore the value of Ev(2) is 0. The com-
putation consists of a large number of steps each of which is obtained by a trivial
derivation using the rules which define — . It consists of waves of analysis, where
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€, env, Ev(2) >
e, env,2.Ev >
2, e7w, Ev >
).env, e.pop >

,2) env,0.equal. i f (0,¢q).pop.pop >
’, )()c 2).env, equal. if (0, e1).pop.pop >

2,0).(x,2).env, if (0,e1).pop.pop >

< ¢€,(z,0).(x,2).env,0.pop.pop >

< 0,(z,0).(z,2).env, pop.pop >

< 0,(x,2).env, pop >

< 0,env, e >

<

<

<

<&,

<e¢ (7,2 ) env, Bqual(x,0). 1f (0, ey).pop >

< e (z,2).env,2.0.equal. if (0,e1).pop >

< 2,(x,2).env,0.equal. i f (0,€71).pop >

< 0.2, (z,2).env, equal. i f (0,€1).pop >

< F,(z,2).env, if (0,ey).pop >

< ¢€,(z,2).env, er.pop >

< ¢, (z,2).env, Equal(x,1). if (1, Ev(z — 2)).pop >
< e (x,2).env,a.Lequal if (1, Ev(x— 2)).pop >
< 2,(x,2).env, L.equal if (1, Bv(x — 2)).pop >
< 1.2,(2,2).env, equal. i f (1, Ev(z — 2)).pop >
< F,(x,2).env, if (1,Ev(x—2)).pop >

< ¢ (x,2).env, Ev(xz — 2).pop >

< e, (x,2).env,x — 2. Fv.pop >

< e, (172) env, v.2. — . FKv.pop >

< 2,(x,2).env, 2. — .Ev.pop >

< 2.2, (2,2).env,—.Ev.pop >

< 0,(x,2).env, bL .pop >

< &, (,0).(z,2).env, e.pop.pop >

<

<

<

<

<

)
(2,0).(x,2).env, Equal(x,0). 1f (0,e1).pop.pop >
)

Rule Funl
Rule Valm
Rule Funm2
Rule Tfm1
Rule Eqm1
Rule Varm
Rule Valm
Rule Eqm2
Rule Ifm2
Rule Ifm1
Rule Eqm1
Rule Varm
Rule Valm
Rule Eqm2
Rule Ifm2
Rule Funml
Rule Opm1
Rule Varm
Rule Valm
Rule Opm?2
Rule Funm?2
Rule Tfm1
Rule Eqm1
Rule Varm
Rule Valm
Rule Eqm?2
Rule Tfm2
Rule Valm
Rule Pop
Rule Pop

Figure 5.11: A computation of the abstract machine
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the analysis rules are used, followed by applications, where the application rules are
used. Once more we can see a direct analogy with the derivation in the Computation
semantics of

Ev(2) —75 0

which may be derived using the next-state relation — 4 defined in Section 5.1. In
the latter there are far fewer steps, most of which correspond to the use of application
rules in the Computation semantics of the abstract machine. The use of the analysis
rules do not appear directly at the level of the Computation semantics of Fpl but are
reflected indirectly in the derivation structure of the individual steps.

This completes our description of a Concrete operational semantics for the lan-
guage Fpl. We have now given three different operational semantics for this language,
each at different levels of abstraction. The Evaluation semantics is the most abstract
and it simply formalises the result of evaluating programs without indicating how any
computation for producing the result might proceed. The Computation semantics, on
the other hand, describes  at least in some detail  possible computations which
lead from the program to the result. Of course, these are rather abstract computa-
tions in that they only prescribe the primitive operations a program can perform or,
more generally, the sequences of primitive operations which it can perform. Finally
the Concrete operational semantics in this section is the most detailed semantics. It
provides an abstract machine on which the language can be interpreted. Although
this is a description of the architecture of a machine, it is still a relatively abstract
description. Unnecessary detail is avoided and the actual behaviour of the machine is
defined at the level of Computation semantics. It is possible to show that these three
different semantic descriptions are consistent with each other. They merely represent
three complementary views, at different levels of abstraction, of the same essential
behaviour of programs. In Section 2.3 we have already seen how to relate the Com-
putation semantics and the Evaluation semantics for the simple language Fxp. There
we proved

e = v ifand only if e~ v,

where e ~» v means that if we execute e according to the Computation semantics we
will eventually obtain the value v. This result can be extended to the language Fpl
by showing that for any arithmetic expression ¢ from Fpl,

D.pke =4 v ifandonlyif D,pke~ .

A similar result relating the Evaluation semantics and the Computation semantics
of Whilel, may also be proved. To provide the link with the Concrete operational
semantics one would have to show in addition that D,p FF e =4 v if and only if
whenever the machine is started in the configuration < ¢, env,e >, where the envi-
ronment env contains the definitions in the declaration D, the machine will eventually

stop and the final configuration will be < v, env, ¢ >. The proof of these statements
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is not particularly straightforward and in this introductory text they will not be at-
tempted. However, the more mathematically inclined reader may be tempted, in

which case a review of Section 2.3. would be very helpful.

Questions

Q1 Use the Computation semantics of Fpl to evaluate the expression Fib(2) using
the declaration

Fib(2) <= If Li(x,2)
Then x

Else Fib(x — 1)+ Fib(z — 2)

Here Lt is a boolean function which compares two numerals and returns true if

the first is strictly less than the second and false otherwise.

Q2 Use the alternative Computation semantics for Fploutlined at the end of Section
5.1, which does not use substitution, to evaluate the expression H(15,25) with

respect to the declaration of H(x,y) given in that section.

Q3 Let D,pFe~avif D pke—7 v, le. if using the Computational semantics
the expression e eventually evaluates to the value v. Show that D,p e =4 v
implies D, p F e~y v.

Hint Use Rule induction on the definition of =4 over Fpl. Question 11 from
Chapter 3 is also required.

Q4 Prove the converse of the previous question, that [, p F e ~4 v implies D, p -
€ —>4 U.
Hint Use the proof technique employed in Section 2.3 to prove the same result
for the language Fup.

Q5 Use the Computation semantics of Whilel to evaluate the program, previously
used in Section 4.3:

z =0

While Not (Equal(z,0)) Do
z:=z+y;
ri=a—1

with respect to the same store s, where s(z) = 2,s(y) = 3 and s(z) = 7.
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Q6 Add to the language WhileL the new command
do e limes C.

Intuitively this command executes C' n times, where n is the value of the ex-
pression e. Extend the Computation semantics to this new command.

Q7 Augment the language WhileL with the variant of the While command:

Repeat C Unless be.

=

(See Question 7 of Chapter 4 for an intuitive explanation of this command.)

Extend the Computation semantics to this new construct.

Q8 Extend the Computation semantics to the commands introduced in Questions
11 and 12 at the end of Chapter 4, namely the case statement

case e of G end
and the expressions

Run C Then ¢ and Run C Then be.

Q9 Prove that the Computation semantics and the Evaluation semantics for Whilel
coincide. This involves showing

* !

(C,s) =>¢ s’ implies (C,s) —5 s
and the converse

(C,s) —¢ ¢ implies (C,s) = ¢,

where (C,s) — ¢’ means (C,s) —¢ (€, ') for some command C’ such that

(€', ')/ C

Q10 Show the computation of the abstract machine which results from evaluating
U(2), where U is defined by as in Question 2 at the end of Chapter 3.

Q11 Do likewise for I7ib(2) where Fib is defined in Question 1 above.
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