1&

18,

TOWARD A MATHEMATICAL SEMANTICS
FOR COMPUTER LANGUAGES

Dana Scott
Department of Philosophy, Princeton University, Princeton, NJ
and
Christopher Strachey
Programming Research Group, Oxford University, Oxford, England

Compilers for high-level languages are generally constructed to give the complete
translation of the programs into machine language. As machines merely juggle bit pat-
terns, the concepts of the original language may be lost or at least obscured during this
passage. The purpose of a mathematical semantics is to give a correct and meaningful
correspondence between programs and mathematical entities in a way that is entirely
independent of an implementation. This plan is illustrated in a very elementary way in
the introduction. Section II connects the general method with the usual idea of state
transformations. The next section shows why the mathematics of functions has to be
modified to accommodate recursive commands. Section IV explains the modification.
Section V introduces the environments for handling variables and identifiers, and shows
how the semantical equations define equivalence of programs. Section VI gives an ex-
position of the new type of mathematical function spaces that are required for the seman-
tics of procedures when these are allowed in assignment statements. The conclusion
traces some of the background of the project and points the way to future work.

I. INTRODUCTION

The idea of a mathematical semantics for a language is perfectly well illus-
trated by the contrast between numerals on the one hand and numbers on the
other. The numerals are expressions in a certain familiar language; while the
numbers are mathematical objects (abstract objects) which provide the intended
interpretations of the expressions. We need the expressions to be able to com-
municate the results of our theorizings about the numbers, but the symbols them-
selves should not be confused with the concepts they denote. For one thing,
there are many different languages adequate for conveying the same concepts
(e.g., binary, octal, or decimal numerals), For another, even in the same lan-
guage many different expressions can denote the same concepts (e.g., 2 + 2, 4,
1 +(1+(1+1)),etc.). The problem of explaining these equivalences of ex-
pressions (whether in the same or different languages) is one of the tasks of
semantics and is much too important to be left to syntax alone, ‘Besides, the
mathematical concepts are required for the proof that the various equivalences
have been correctly described.

Contributed to the Proceedings of the Symposium on Comput ers and Automata
Polytechnic Institute of Brooklyn, April 13-15, 1971.

19

20 COMPUTERS AND AUTOMAT A

In more detail we may consider the following explicit syntax for binary
numerals
NUMERALS

vii=0]1]|v0|ul

Here we have used the Greek letter v as a metavariable over the syntactical
category of numerals, and the category itself is being given a recursive defini-
tion in the usual way, Thus, a numeral is either one of the digits 0 or 1 or is the
result of suffixing one of these digits to a previously obtained numeral. Let the
set of all numerals be called Nml for short,

Semantically speaking each of the numerals is meant to denote a unique num-
ber. Let N be the set of numbers. (The elements of Nm! are expressions; while
the elements of N are mathematical objects conceived in abstraction indepen-
dently of notation.) The obvious principle of interpretation provides a function,
the evaluation mapping, which we might call 0, and which has the functional
character:

O:Nml — N
Thus for each 1 = Nml, the function value

Ofel ,

is the number denoted by v,

How is the evaluation function O determined? Inasmuch as it is to be de-
fined on a recursively defined set Nml, it is reasonable that U should itself be
given a recursive definition. Indeed by following exactly the four clauses of the
recursive definition Nml, we are motivated by our understanding of numerals to

Clol-o ,
QL1 =1 ;

Olvol=2.00v]
OMuv1l=2.002]+1

Here on the left-hand side of the equations, (is being applied to expressions;
while on the right-hand side the values are given. To borrow the relevant termi-
nology from logic, the numerical expressions belong to the object language,
whereas the definition of Uis given in the metalanguage. To he able to write
down explicitly the definition of U, some metalinguistic symbolization is of
couwrse required. The metalinguistic expressions must at all cost be distin-
guished from those in the object language. (We have put the object language 0
and 1 in Roman typeface and the metalémguage 0, 1, 2 in italics, Logicians
often take further precautions by enclosing the object language expressions in
quotes; the quotation- expressions can then be reparded as part of the metalan-
guage, and thus the languages are “insulated’’ from one another. In this paper,
however, our object languages are simple enough making the use of such devices
less critical. The separation needs to be observed nevertheless, and in the
semantic equations we have enclosed the object language expressions in the
special brackets [|] merely as an aid to the eye.)

fini-
is the
2t the

: num-~
while
2n-
:tion,
al

ie-

f be
of the
s to

ons;
termi-

rite

s in
ilan-
aper,
evices
e

he

MATHEMATICAL SEMANTICS 21

Granted that there is a distinction between symbol and object, it may still
seem that the above equations for {J are circular or nearly vacuous in content.
Such a conclusion is wrong, however, because there is an easily appreciated
point to the definition: namely, the explication of the positional notation. In our
metalanguage we need never have heard of decimals or binaries. We do require,
though, the concept of number, the concepts of zero and one, the concepts of
addition and multiplication. (By definition 2 = I + 1, say, and if we want, the
whole theory of numbers could be conveyed in the metalanguage with the help of
Roman numerals augmented with a few tricks from algebra such as the use of
operation symbols and variables.) These concepts, fundamental as they are,
cannot be strictly said to imply the positional notation. In fact, the clever use
of 0 to help form strings of digits was a discovery of language. This discovery
in no way changed the abstract nature of number, but it was a tremendous help in
popularizing the use of arithmetic ideas—and there seems to be a perfectly good
parallel here with computer languages many of which contain in their syntactical
structures quite as clever discoveries of language.

One point that encourages confusion in thinking about numbers is the possi-
bility of having a complete and canonical naming system for them. In the illus-
trative syntax for binary numerals we have been considering, such strings as
001101 were allowed. As everyone knows the initial run of 0’s is unneces-
sary for we can show that

(‘)II001101]1=@[1101]]:)(1/11.

This type of straight-forward deletion gives us the only possible equivalences in
this very simple language. The reduced numerals (i.e., numerals of the forms 0
and 1v, where v € Nml is arbitrary) are then in a one-one correspondence with
the numbers. We can then work exclusively with these normal forms, and it is so
easy to think of these expressions as being the numbers—especially if one is
familiar with only one notational system. The attitude is wrong-headed, how-
ever. But for many activities there may be no real harm, since the confused
mind will give the same answers as the clear-headed person. The notationally
bound thinker may often be distinguished by the way he feels that he has to
specify all his operations by algorithmic symbol manipulations (as in digitwise
addition of numerals). Again there may be no real harm in this—if the algo-
rithms are correctly given. And in the case of numbers the two approaches can
be brought together (the symbolic and the conceptual), for our system of reduced
numerals can, by a slight amount of good will, be regarded as a model for number
theory., Since we know that all such models are isomorphic, there is not much
mathematical advantage in using one model over another, This is a sense in
which numbers can be consistently confused with numerals. But the confusion
does not really do us any good either,

The reasons why the number/numeral confusion should be avoided are many.
For one reason, we may turn the isomorphism argument the other way round: If
all models of number theory are isomorphic, you may not want to single out a
particular one at all. Because the semantical ideas will equally well apply to
all of them, you may want to leave open the possibility of shifting from one to
another, This is somewhat analogous in computer language semantics to allow=
ing different representations to be used in different machines to implement the

22 COMPUTERS AND AUTOMATA

same language (in hopefully isomorphic ways). . In the case of numbers not much their m
advantage is bought by this freedom, but any attitude of restricting generality is sion dc
a bad habit which can be misleading in analogous but more complicated sort, bt
situations. initiali
A more important reason for not getting into this habit comes to light when tion pr¢
one realizes that for some systems of mathematical concepts no fully adequate state.
notational system is possible: the real numbers are the prime example. Of change
course it will be objected that this realm of mathematics is much too abstract, the mo:
much too infinitary, much too distant from real- life computation. This objection Theref
cannot stand careful conceptual investigation, but a full answer would take us ‘‘beaut
too far from the topic of this paper. A quite adequate answer concerns not the the sen
mathematically very pure structures such as the real numbers, but rather our comple
theories of classes of similar but different structures. That is to say, for the Paf
semantic investigation of certain language features it may not be appropriate to dynami
single out one (isomorphism type of) structure, but for many reasons—generality, this S
lack of knowledge, for the sake of experiment—we may want the same semanti- metala
cal equations to be employed over the whole class of structures. Since the
structures need no longer be isomorphic, different structures may lead to quite
different normal forms for expressions. (The mathematical theory of groups, for for the
instance, could provide us innumerable such examples.) Hence, no one system Byat
of “‘numerals’’ would any longer suffice. Even if the separate structures could matica
somehow each be symbolically constructed, the effort would be beside the point: sense
what we are trying to get at are the common features of the structures. The ' after tl
various ad hoc details would only detract from this higher purpose. tween
To bring this introductory sermon to a close: the point of our approach is to sume t
allow a proper balance between rigorous formulation, generality of application, even t.
and conceptual simplicity, One essential achievement of the method we shall ferent
wish to claim is that by insisting on a suitable level of abstraction and by em- Th
‘phasizing the right details we are going to hit squarely what can be called the they g:
mathematical meaning of a language. In the trivial example of the binary nu- one is
merals discussed above everyone will agree that the evaluation function O is in- implic
deed correctly defined. That much is obvious. Note, however, that having ac- The c«
cepted this fact, it is then possible to prove that certain numerical algorithms of exp
are correct (digitwise addition, say), and before we had the definition this ques- But on
tion did not even make sense. (Specifically, digitwise addition is an operation the se
vy ® v, defined on numerals vy, v;. What one needs to prove is that "(hla[;he]‘
Y
Oflveodv 1=00vel +O v, 1 , mappis

with symbolic addition on the left and conceptual addition on the right. It is not
difficult to do this, but one needs an inductive argument.) These are simple ‘

points, but it is easy to lose sight of them when the languages get involved, t e
1

What i

[l. STATES AND COMMANDS 1 merals

, is far

We begin by postulating that the interpretation of the language depends on the pose |

states of ‘‘the system.”” That is to say, computer oriented languages differ from It .

nuch
ty is

en
ate

ct,
ction

I —

s to
.on,
all

em-
the

e g -

is in-
ac-
ms
jues-
tion

T e —————— — —
T 4 o — TR

is not

i.

on the

t from =

MATHEMATICAL SEMANTICS 23

their mathematical counterparts by virtue of their dynamic character. An expres-
sion does not generally possess one uniquely determined value of the expected
sort, but rather the value depends upon the state of the system at the time of
initialization of evaluation. What increases the dynamic character of the evalua-
tion process is the fact that the act of evaluation may very well alter the initial
state. Thus the working out of a compound expression can require several
changes of state, and the treatment of a subexpression generally has to wait for
the moment at which the state can be provided appropriate to its evaluation,
Therefore the ‘‘algebra’’ of equivalences. of such expressions need not be as
‘‘beautiful’”’ as the well-known mathematical examples. This does not mean that
the semantics of such languages will be less mathematical, only an order more
complex.

Part of our assumption is that the states of the system form a set S, and the
dynamic character of the language will require us to consider transformations of

this S into itself: the state transformations. For the moment let us write (in our
metalanguage)

[s —s],

for the set of all state transformations (this set may require restriction later).
By a transformation f € [S — S] we understand the ordinary concept of a mathe-
matical function defined on S with values in S. Functions in the mathematical
sense are abstract objects—they can be defined in various linguistic forms, but
after the definition is interpreted all that is left is the bare correspondence be-
tween arguments o € S and values f(o) € S. In particular two functions which as-
sume the same values for the same arguments are mathematically identical—
even though they might have been defined in some object language in quite dif-
ferent ways.

The simplest way to regard the state transformations from o to f(o) is that
they give the results of executing a command. No explicit values are required;
one is merely being asked to ‘‘move along.”” Of course certain ‘‘values’’ may be
implicit in ¢, and they may be changed in passing to f(o) (e.g., ones position).
The command, however, is concerned more with the overall change; other kinds
of expressions can be used to extract from a state ¢ € S any relevant values,

But one syntactic category in our language will be that of commands; let us call
the set of these expressions Cmd. Given y € Cmd, no matter how complex, the
mathematical meaning of this expression is an associated state transformation
Clyl €[S — S]. That is, the semantics of commands is to provide us with a

mapping
C: Cmd — [S — 8],
just as the semantics of numerals gave us
O: Nml — N

What is vague here is that we have no idea what commands are, whereas nu-
merals were standard, That we have at this stage no idea what states ¢ € S are
is far less serious, because that is the part of the interpretation we are on pur-
pose leaving open. '

It is not difficult to be more explicit about the syntax of commands, however,

24 COMPUTERS AND AUTOMATA

because there are several quite natural ways of combining them. An initial chan
syntax might look as follows
COMMANDS
This
y.i=()|¢|dummy |
€ — Yo, ¥1lyos v1

wher
Here the Greek letter y is a metavariable over the category (Cmd) which is being sl
given a recursive definition, On the right-hand side of the definition the y, (Her
Yo, y1 can be regarded as previously obtained commands, where the subscripts Binct
are required in a binary composition to allow for different commands to be E
chosen. If in one clause of the definition the same y appeared twice, we would i eral
intend that the same previously obtained expression be used in both positions. } G

There is no implied connection between the ys in the separate clauses. The

Greek letters ¢ and € are meant to refer to other syntactic categories yet to be

explained. The expression dummy is a constant command (an “‘atomic’’ com- b

mand expression). I for a
As anyone can see (assuming that the categories of ¢ and & are simple) the

set Cmd is going to be a context-free language, Also obvious is the fact that the

language is ambiguous—thus yo; y1; y, can be parsed in two different ways at [

least. Machines generally prefer their languages unambiguous; while humans

enjoy a little uncertainty, or at least they find ways to overlook ambiguities by

whet
giving each other the benefit of the doubt. Sometimes ambiguities make no dif-
ference (as in yg; y1; y3), but at other times they are quite tiresome (as in
€ — Yo, ¥1; Y2). We shall deal with this problem presently, but in the meantime
note the clause (y) in the definition. This clause allows us to form
(& — vo, ¥1)i y2 o € — yq, (y1; y2) which are similar to the ambiguous ex- fori
pression but which have one chance less of being ambiguous. With a sufficient b ke
nesting of parentheses all ambiguity can be eliminated; or, speaking more pre- o B
cisely, there is a completely unambiguous sublanguage of Cmd, The only |
trouble with us humans is that the majority find writing in this sublanguage a
terrific bore; hence the tendency to the more dangerous syntax. for .
Before we can be more precise about Cmd and the interpretation , we have writi
to discuss the €. For the time being € € Exp, the class of Boolean expressions choi
(we shall allow other types of expressions later). As a starter at a syntax we be d
can write
EXPRESSIONS
whe
€. =(&)|n|true|false| ey, — &4, €, . '
The same remarks about ambiguity apply. The 7 are certain atomic expressions | for :
which we shall not stop to detail now. The Boolean expressions true and false ' ¢
are constants, and €, — g,, £, is the well- known conditional expression
(short for: if €, then €, else €,, which some may prefer).
What of interpretation? In the first place we postulate the set T of fruth bec:
values which contains the elements true and false corresponding to true and
false. But the meaning &l e is not going to be simply an element of T, for in
general values must depend on states. Besides this evaluation may cause a bec

—

£ MATHEMATICAL SEMANTICS 25

1 | change of state, Thus the correct functional character of & is
&:Exp — [S — [T xS]] .
This means that given € € Exp and ¢ € §, then

&Elel()=<t,o> ,

. = P R—

Boin where t € T is the value of € given o, and o’ is the resultant state after the
' £ evaluation and may differ from ¢ as it may have been changed by the evaluation.
4 { (Here T x S is the usual cartesian product of sets and <., +> is the pairing
ripts function.)
— 3 Before giving the clauses that define € and &, it is useful to introduce sev-
ons f eral mathematical operations on functions, If f:B — C and g: A — B, then as
o s : usual we write fo g: A — C for the composition, where
‘0 be ; (fo g) (o) =f(g(a) ,
ym- §
_ for all oo € A, We have further
2) the 1 P:A— [B—[AxB]],
that the .
lys at i\ My:AxB—A ,
ans it M,:AxB—B ,
es by .'. where
> dif- #
. i P()(B) = <&, B> ,
zantime ; Mo (<o, B>) = ,
; M1(<Q’B>)=6)
3 ex- §
= Vel FE forall 0. € A, B € B. Finally, if p: A" — [B —C]and g: A — A" x B, then
. pre- ; p*q:A— C, where
’ge] (P * @) () = p (Mo (a()) (M1 (q(@)) ,
for all oL € A. On all of these operations and special functions we ought to
2 have write some kind of ABC subscripts, because strictly speaking they depend on the
sssions choice of the various sets; we have omitted these subscripts as they can easily
X we be deduced from the context. The same goes for the identity function
I:A —A ,
£ where
!;‘.r
% I(@)=0a ,
BE oy i for all o € A,
I false E Turning now to the mapping & we have clause by clause
on 5 -
£ ELe)l=61lel
f‘f; E because parentheses add nothing to the meaning,.
an k-
for in ;‘ & [#] = (some given S — [T x 8)]) ,
e a %‘ because each atomic expression 7 must have a given meaning. (Which meaning

W

-

it

26 COMPUTERS AND AUTOMATA

this is, need not concern us here, since at the moment all we consider is the clear.
form of the semantic definition.) mands,
g functio
5 [true || = P(true) , of the «
and on the
& [false] = P(false) , ' ' compos
use of
because true and false are constants which can be evaluated ‘‘instantaneously”’ In f
without change of state, This means that for all ¢ as app!
& [truel (o) = <true, o> , eral cli
the sar
and tended
& [false] (o) = < false, o> . meanin
additis
&Eleg — ey, e,0=Cond& e,],6Me,H*ENeo] , (
and Bo
where the function ations
(s —”
Cond:[S-—*TxS]x[S—'TxS]*—-*[T—’[S-*TXS]], .

various
is such that Th:
seem b

Cond (ey, e2)(t) =t — ey,€;5 , P

so that possib

ble

e, (0), if t = true , a.l v
Cond (e, e,) (t)(0) =) siderat

e;(0), if t= false , genera
for all e, e,, t, o in appropriate sets. matl'.letn
It is now possible to give the clauses of the definition of € positic
guages
@—[[(}’)]]=G[[}’]] ’ portant
Cl¢ll = (some given S — S) ought t
onstrat
Cldummyl =1 , “Pimnaiie
GEE—’}’0,}’1H:C0ﬂd(e[[}’nﬂ,C-'I}H]])*ESHE]' i Bei
I .
el[?oiyll]reﬁy1]]°@|[yu]] . ; facedl.
_ | speaki
These functional equations can all be read in words: C [()] is of course the well di
same as C [y l. Next C [4] is a given state transformation, since & is taken here?
for the moment as a primitive (or atomic) command. (Later we could introduce _ on the
some syntax for the category of ¢ if we wished, and this would require further ' fined ¢
semantic equations of a similar sort.) The dummy-command is next being inter- for exg
preted as the ‘‘do nothing”’ transformation. The conditional-command on the a fully
other hand requires a conditional operator similar to the one used for expres- expres
sions, except that the domain of definition is altered to make it appropriate to subsct
commands, Specifically we have write;
Condz (8~ 8] % [S —¥8] =% [T =% [§ —28]] syntac
) clear v

Some subscripts ought to be introduced to indicate the difference between the ogy of
two kinds of Cond-functions, but we are relying on the context to make this meanir

MATHEMATICAL SEMANTICS 27

1e clear. Finally yo;y, is being interpreted as the sequencing operation on com-
mands, which in terms of state transformations is simply. the composition of
functions. Note, however, the order of application, The "“positional notation’’
of the command language conventionally places the first command to be executed
on the left and the following one on the right, The convention with mathematical
composition of functions is just the opposite. (The reason being the common

‘ use of f(x) rather than xf for the function-value notation.)

In format these equations for C and & are not much different from those for {)
as applied to the numerals, In all cases there is a syntactical definition in sev-
eral clauses. The semantical definition is ‘‘syntax-directed’’ in that it follows
the same order of clauses and transforms each language construct into the in-
tended operation on the meanings of the parts. In the case of numerals the
meanings were familiar mathematical objects on which many familiar operations
(addition, multiplication, etc.) were already defined. In the case of commands
and Boolean expressions, the values were not so well known, nor were the oper-
ations (such as Cond) very common. Nevertheless, the domains [S — S] and
[S — T x S] are quite appropriate to the ideas that are being explained, and the
various operations (o, *, P, My, M) are natural ones for these domains.

That it is necessary to construct meanings out of functions ([S — S]) may
seem bothersome, but it should not be deplored. After all the idea of function is

. one of the greatest of our mathematical discoveries. The calculus would be im-

j possible without functions, and the development of the subject would be unthink-
able without the use of various operators (derivative, integral, etc.) and con-
sideration of the equations involving them. Though formal languages are not
generally made explicit, still there is constant translation from intuitive ideas to
mathematical concepts (velocity means derivative, area means integral, super
position means addition of functions, and so on). In the case of computer lan-
guages we cannot say yet that we have introduced concepts anywhere near as im-
portant as those of the calculus, but the spirit of mathematizing ideas can and
ought to be carried over. That the project is a useful activity remains to be dem-
onstrated, but the treatment of recursion in the next section ought to indicate
some of the advantages of the mathematical approach.

Before turning to more important concepts, the question of ambiguity must be
faced again. We have allowed our grammars to be ambiguous, and so strictly
speaking the semantical mappings C and & are not well defined. (0 on Nml was
well defined because that grammar was not ambiguous.) Is there a mistake
here? We think not. Our attitude is that the meaning of an expression depends
on the way it is parsed. From this point of view the mappings C and & are de-

- fined not on expressions simpliciter but rather on the annotated deduction trees
- for expressions based on rules of the grammar. (If one wishes a linear notation,
a fully bracketed language could be introduced in the usual way, and then the
¥ expressions we have written above would result by deletion of the brackets and
; subscripts.) As emphasized above these brackets (or trees) are intolerable to

}r write; hence, as long as we keep our semantic equations ‘‘in step’’ with the

* syntactical definitions and warn the reader of the oversimplification, it will be

clear what is intended without the burden of any mote notation. (In the terminol-

the 3 ogy of Knuth [2, 3] we are still using only synthesized attributes in assigning
meanings to expressions. Whether the inherited-attribute approach is convenient

1sly”’

Bk LA ol ey

SaasiEaEs TS

SEGIR A NS

SR

28 COMPUTERS AND AUTOMATA

is something we must consider further, and there is no doubt that Knuth’s way of
introducing both bottom-up and top-down dependencies between semantic equa-
tions is an interesting notion. Be that as it may, the point of our paper is the
study of what it is that semantic equations assign to expressions. The path by
which the assignment is made is at the moment a secondary issue.)

I1l. RECURSION

The language of commands and expressions as introduced in the last section
is at best of illustrative value. It was useful to see in not too horrible detail the
connections between the syntactical and semantical equations. But the actual
language used was of very limited expressive power, The command structure
was of a very direct sort: the execution of such a command would proceed along
a ‘““branch’’ of a tree, the commands being composed in sequence and the choice
of path at a branch point being decided by evaluation of a conditional expres-
sion. In Scott [6] the expressive power of such a language was expanded by the
introduction of a certain kind of infinite tree, but the mathematics of this ap-
proach would take us too far afield here. And in any case, it is rather fully ex-
plained in that paper. Our interest here lies in more conventional language fea-
tures; in particular those that can be written down in finite space. This does not
mean that thinking of finite expressions as being ‘‘unrolled’’ into infinite trees
might not be mathematically illuminating, rather we do not have the time to dis-
cuss it in this paper.

The question that leads to infinite trees is of course that of recursively de-
fined commands. By way of example suppose that exit is a primitive command,
as is fudge. Moreover, suppose that test is a primitive Boolean expression,

One would wish then to introduce a command loop by the equation

loop = (test — fudge; loop, exit) .

In other words, to loop means to alternate testing and fudging until a negative
test is produced. At that moment a hasty exit is then required without further
fudging. This is one of the simplest and most familiar examples. More generally
it will be desired to introduce a whole sequence of interrelated commands

€0, €1y €2y 200, £y by a system of equations

{:02}’0.51:}f1,"',§n—1=}’n—1 ’

where we may think of £, as the principal command to be executed and the re-
maining &; as auxiliary commands introduced to aid the definition. Now the yi
command expressions will involve reference to the £; commands, just as in the
loop example. Sometimes it is possible to eliminate the auxiliary commands at
the expense of perspicuity by substitution of one equation in another, But at
other times the elimination is not possible or not at all obvious. In any case it
is a language feature of well-known convenience to allow simultaneous equa-
tions, All of this is very familiar ground.

Syntactically, to accommodate this recursive style of command definition, we
must expand the language to allow for (temporary) identifiers which will refer to
these auxiliary commands, the precise reference being controlled by a scheme of

declar
quire i
expres
many ¢

Ha
mand e
expanc
mands,
followj

where
tells u
order g
auxilis
mitted
trouble
declars:
other ¢
strictly
ploy th
ness tc

Thi
mands
auxilia

corl

A word
fiers, w
fiers. «
ranges
tion for
longer ¢
have lis
with toc
is not r
neat latr
discuss
dogmati
certain

MATHEMATICAL SEMANTICS 29
ray of declaration. The exact style of identifiers need not concern us here; all we re-
Ray quire is a syntactical category Id of expressions distinct from the other kinds of
he expressions mentioned so far. Besides this Id should be infinite to allow for as
h by many auxiliaries as we please. We use the Greek ¢ to range over Id.

Having provided identifiers, we then need to combine them with other com-
mand expressions, Of course an identifier standing alone will be allowed in the
' expanded Cmd. In this way identifiers can be included in the interiors of com-
mands. Further the system of equations indicated above can be recorded in the
. following declaration scheme
-ction
'taulallthe § 50: £v .EZ! L "fn_1:}’0: Yi, Y2, 2%, ¥noy $
ire where we have slightly torn apart the equations. The initial list of identifiers
along tells us to ‘‘watch out’’ because some auxiliaries are being introduced—in the
hoice order given. The following sequence of commands tells us how to use these
B8 auxiliaries with &; = y; intended—in the order as written. Recursion is per-
oy the mitted because the various £; may occur within the y;, Having gone to the
pr trouble of writing &, first, we may not only regard this expression as a scheme of
y ex- declaration but also as an instruction to carry out &, first, thereby activating the
> fea- other £, as necessary under the control of the y;. (The brackets § and § are not
des not strictly necessary, since we could regard : as the declaration operation and em-
aees ploy the colorless (and) to block ambiguity—but one can carry linguistic stingi-
» dis- ness too far.)
: This expansion of expression now requires a revision of the syntax for com-
y de- mands whereby the principal syntactical equation (for y) is accompanied by some
nand, 4 auxiliary equations for sequences (namely £7 and y")
n. 3 COMMANDS
i
1 yii=()|¢|dummy| €]
—_— i € — vo y1lyoivil
ther & § &%y
anerally g En = £y, &y, Egy ven s Eny (n> 0, the £, distinct)
§ Y= Yo, Yi» Y21 *** s Ya—y (n >0, the y; arbitrary) .
& A word of explanation is in order here. Greek £ is a metavariable over identi-
5 fiers, while £" by definition is a metavariable over n-tuples of distinct identi-
e re- g fiers. (We keep n > 0, so the n-tuples are nonempty.) The metavariable y"
he y; % ranges over n-tuples of commands (again, n > 0). In the last clause of the defini-

in the tion for y note that the £" and 5" have the same n. Our language therefore is no

nds at & longer context-free. But, if we may say so, who cares? Context-free languages
it at "L have limited usefulness. Note, too, that we have not tried to torture ourselves
sase it }: with too rigorous a style of BNF syntactical definition, We deny that our syntax
Jua- i is not rigorous or even unaesthetic. On the other hand, if someone has a really

g neat language definition system that is as easy to comprehend at this level of
-ion, we % discussion, we shall be glad to consider it. The last thing we want to be is
refer to * dogmatic about language: it is in the mathematization of concepts that we have a
heme of g certain amount of dogma to sell.

o

30 COMPUTERS AND AUTOMATA

For the time being we introduce no revision in the definition of Boolean ex-
pressions &. Note that the command construction

§&miym §
is, logically speaking, a variable-binding operator. The identifiers £ are the
bound variables (and, since a matching with the y” is intended, they must be
kept distinct); whereas other identifiers which occur may occur as free variables
because the construction can be iterated. A certain semantical device will have
to be introduced to handle this problem of scope of identifiers.
There are other problems, however, and the loop-example will suffice for il-

lustration, In the official notation there are no equations for commands as such;
rather our example above becomes

§ loop: (test — fudge; loop, exit) §

which is a command with the understanding that Ioop € Id. What is the exact
meaning of this command? Whatever it is our dogma says it must be a state
transformation in [S — S]. Let the command be called A for short. We are ask-
ing what C [A] should be. Intuitively we want

CIAD=C [test — fudge; A, exit] ,
= Cond (C LA - C [fudgel, C [exit]) * & [test] .
To simplify our thinking here let

L=CIAl,

f=C [fudgel ,
e=C [exit] ,
t=61[test] ,

where
L, f,eels— 8],
tel[S — T xS].

Of these f, e, and t are known, while 4 is the unknown we seek. The functional
equation for £ reads

f?:Cond(/EOf,e)*t.

Some solution or other to this equation—if any exists—has the right to be called
C Al the meaning of the loop-command as a state transformation,

Now comes the rub. So far we have not analyzed the nature of the set S at
all, because we opted for extreme generality. If we stick to this generality and
allow the functions f, e, and f to be arbitrary functions, then it is easy to con-
struct an example where no solution for 4 exists in the above equation at all.
The reason is simple: f, e, and t are total functions so interrelated that any at-
tempt to define 4. as required sets up an infinite loop; so that no choice of values
can be made to satisfy the equation as a functional equation between total
functions,

The solution to this problem is easy enough and is well known: we modify our

idea a
total t
certail
convel
tion in
we me
This a
[1].) ¢
methoc
sophis

of S w!

In
tial fu
tionsh
ing the
These
existe
regula:
structt
until i
comple
quires
to retu
pose t

Spe
lattice
write &

for x,
Next, .
called

We hav

and th:
txally [

Am
nothin,
full su

1 ex-

the
be
1ables
| have

or il-
. such;

act

» ask-

ctional

e called

S at

ty and
con-
all,

ny at-

f values
il

ydify our

T

SR AR Ty i]

R e

|..’

MATHEMATICAL SEMANTICS 31

idea about the function space [S — S]. We no longer demand that functions be
total but understand the functions in [S — S] to be partial functions. Thus for
certain ¢ € S and certain g € [S — S] we allow g(0) to be undefined, With this
convention it can then be shown that the equation for f, does indeed have a solu-
tion in the partial function sense, and in fact it has a least solution, (By least
we mean that the ‘‘graph’’ of the function is included in every other solution.)
This approach is that of Park [4] and many others. (See references in Engeler
[1].) Suitable as it is for many purposes and simple as it is, it is not quite the
method we wish to adopt. Our method is related, but it is made a little more
sophisticated in order to supply a closer analysis of the nature of the elements
of S which is required for the explanation of other language features.

IV. LATTICES AND FIXED POINTS

In the last section we found it necessary to expand [S — S] to allow for par-
tial functions. The set of all partial functions is partially ordered by the rela-
tionship of one function’s being included in the other, Under this partial order-
ing the set [S — S] takes on a structure which has quite pleasant properties.
These properties can be formulated in an abstract way, so that the proof of the
existence of solutions to fixed-point equations can easily be given. In order to
regularize and generalize this argument, it turns out to be natural to derive the
structure on [S — S] from structure on S. This is accomplished by expanding S
until it becomes a partially ordered set itself—in fact, S will be made into a
complete lattice, Just how this construction of an expanded S is to be done re-
quires a closer examination of the kind of elements S should have. We will have
to return to this question in more detail in Section VI. For the time being sup-
pose that the expansion has been made,

Speaking a bit more generally for the moment, the structure of a complete
lattice on a particular domain (set) D requires first a partial ordering which we
write as

xLCy,

for x, y € D. This relationship is reflexive, transitive, and anti-symmetric.

Next, if X< D is a subset of D, we assume the existence of an element of D,
called the least upper bound (lub) of the subset X, which we write as

L x

We have for all y € D
|_|X|;yiffx1;y (forall x € X)

and this condition uniquely characterizes LJ X € D. A complete lattice is a par-
tially ordered set in which lubs always exist.

Among the lubs in a complete lattice there are two extreme ones: the lub of
nothing and the Iub of everything. That is to say, the empty subset ¢ and the
full subset D will both have lubs to which we give special names

1 =1_|¢and T :UD

32 COMPUTERS AND AUTOMATA

Note that for all x € D it is the case that
I1CxCT,

We can think of | as the weakest element and T as the strongest element of D,
The ordinary elements are somewhere in between, and 1 and T should be con-
sidered rather extraordinary. (We can call them bottom and top.)

An intuitive way of reading the relationship x L y is to say that x approxi-
mates y. Thus x is worse and y is better. But take care, the sense of approxi-
mation being used here is a qualitative one of what we might style direct
approximation. The statement x [y does not mean that x is very near y, but
rather that x is a poorer version of y, that x is only partially specified and that
it can be improved to y without changing any of the definite features of x, For
example in the case of partial functions, L means inclusion of graphs (the graph
of a function is just the set of ordered pairs of arguments and function values);
hence, improvement means adding new ordered pairs, The smaller set of ordered
pairs can indeed be said to be an approximation to the larger one, (In the case of
partial functions treated by graphs in the ordinary way, the structure becomes a
lattice only when T is added in a somewhat artificial way as a top element which
is not represented as a set of ordered pairs. We shall discuss partial functions
in a slightly different way below.) Additional examples of approximations
treated in this way can be found in Scott (5, 6].

If we take the notion of approximation seriously, then we have to rethink
what we mean by function. Thus if

f:b-—D ,
and
Ly

then f should not juggle x and y around in too arbitrary a fashion. Indeed it
ought to follow that

f(x)C £ .,

(a9

because if we improve x to y, then in ‘‘calculating’” f(y) the calculation should
be just an improvement over that for f(x). Mathematically speaking the reason-
able functions ought to be monotonic (i.e., L preserving).

Besides the intuitive motivation for monotonic functions, we have the well-
known mathematical fact that monotonic functions on complete lattices always
have fixed points. They even have least fixed points. This makes their use
most convenient for our purposes.* Actually the functions we use—which are
appropriate to computation theory—have an even stronger property: they are
continuous. (See the discussion in Scott [5, 6].) We shall assume this stronger

*The argument for fixed points is as follows, Let f: D — D be monotonic. Let
¥ € D be the subset of all y € D such that ¥y C z whenever f(z) Lz e D. Let x=1LJY. To
show that x = f(x), note first that x € ¥; because if {(z) C z, then vy Lz forall y ¢ ¥, so
x L z. Next note that f(x) € ¥; because if f(2z) Lz, then x C 2, and so f(x) Cf(z) C z by
monotonicity. Therefore f(x) L LY = x. But then f(f(x)) C f(x), again by monotonicity,
so x L f(x) because x ¢ Y. Thus x = f(x).

-

property
should ¢

What
step the
fining s
Solving
tain fun
by a lat
lattices

Retu
many w:
abstract
element
junction
C aside
relation

(For pic
panded
should 1
The
function
tion spa
differen

we shall

The new
compani
of this ¢
we can

to mean

for all o
set and

an imprc
ous ides
stricted
o €8),

Hence f
graph of

of D,

on-

oxi=
roxi-

wt

that

For
graph
1es);
rdered
case of
1€es a

which
tions

1k

ould
son-

ell-

ays

se
are

nger

Y. To
Y, so

.z by
icity,

%m AP AR e 0 T et s S e e G R R v

% B e A A - S R R

s P 5 T PR AT, St T

MATHEMATICAL SEMANTICS 33

property but shall not go into the technical details in this paper. The reader
should only be assured that normal functions are automatically continuous.

What does all this theory have to do with the subject of semantics? Step by
step the relevance is this: Commands (programs) are naturally thought of as de-
fining state transformations. Recursive commands require partial functions.
Solving for these partial functions is just finding (minimal) fixed points in cer-
tain functional equations. In general the existence of fixed points is justified
by a lattice-theoretic argument. Therefore, if we can see the connection between
lattices and partial functions, the relevance of the theory will be established.

Returning to S, we promised to expand it to a lattice. This can be done in
many ways, but for simplicity suppose that the initial version of S was just an
abstract set, S, , say. In S; we assume no particular connections between the
elements for the sake of argument., The expanded S results merely by the ad-
junction of the two, new ‘‘fictitious’’ elements 1 and T. The partial ordering
C aside from satisfying the usual axioms, provides in addition only the
relationships

LCx T s

(For pictures of these and other partial orderings consult Scott [5,6].) This ex-
panded S becomes a complete lattice in a rather trivial way, and the construction
should not be taken as being typical.

The function space [S — S] is not regarded as being the set of all monotonic
functions from S into S. (In more interesting lattices we shall restrict our func-
tion spaces to the continuous functions; in this example the restriction makes no
difference.) For o €S and g € [S — S] when we formerly wrote that

g(a) is undefined ,

we shall now write simply

g(o)=1 .

The new element 1 can be regarded as an ‘‘embodiment’’ of the undefined. (The
companion equation g(o) = T could be read ‘“g(o) is overdefined,’’ but the utility
of this concept is not as obvious,) Now if f, g € [S — §] are any two functions,
we can write

fLg,

to mean that

f(o) L (o) ,

for all o0 €S. This definition at once structures [S — §] as a partially ordered
set and indeed as a complete lattice, This is a natural definition for g’s being
an improvement over f, if one reads it in words, and it corresponds to our previ-
ous ideas about functions., Thus if f(0) = 1 (is undefined), then g(0) is unre-
stricted and can be any element of S. If f(¢) is better defined (say, f(o) =0,
o” € 8), then g(o) can only be ¢” or T if the relationship f [g is going to hold.
Hence f [g means just about what we intended when we said that the ordinary
graph of f is included in that of g.

34 COMPUTERS AND AUTOMATA

Note that by the embodiment of L, what used to be partial functions are now will be
total functions in the expanded sense, because g(0) = 1 is an allowed ‘‘value.” ' continut
This may seem like a silly thing to do, but the main mathematical point is that ous fune
the lattice structure on [S — S] is now derived, by means of a simple definition, continuc
from the lattice structure on S. And by the very same regular process we can pun.
provide lattice structure on [S — S] — [S — S], and in general on any Tiin
[D — D’]l—always remembering to use the set of continuous functions for this gether i
construction, disjoint

We can now make more precise that we mean by T as a lattice; namely T = identify
{1, false, true, T}, where L C ¢t C Tholds for t € T, but false [true and (L= L
true ([false. We have used T in the context T x S, and in general any D x D” roughly
can be construed as a lattice if D and D” are. One has only to define are cart

<, x>L<y,y>iff xCy and x Ly , the disj
constru
for all x, y € Dand x",y" € D". In this way all of the domains [T — [S — plain th
T x S]], etc. can be regarded as lattices, and by the general method fixed points
can be obtained when necessary. In particular in the equation
’ff:Cond(’EIOI,e)*t, In S
f, e, t were certain constants in their intended domains, and Cond, o, * were cer- (£ eld)
tain functions (operators) on these domains. Under the present interpretation all meaning
these domains are lattices, and it can be checked that all these functions are in- ident ifi
deed continuous. Therefore, the function within t
Fr (s Sl [§= §] | rary ass
where
F('ID/) - Cond (1 o f,e)*t , which v
: because¢
is itself a continuous function; and we know that such functions have fixed S B
points. The price of generality is high, but eventually there are some returns on of value
your investment. 1ot

Another kind of pay-off was discussed in some detail in Scott [6]. In that
paper the syntactical domains were taken to be lattices also, and it was found
that the mapping Now it

: syntax
C: Cmd — [S—S] , C <o th
was not only continuous but its existence could be proved by the very same i
lattice-theoretical argument via fixed points. That is a rather fundamental point ,
and unifies the theory considerably. | That is

The whole process of forming fixed points can be given a functional formula- $ to prov:
tion, Let D be any complete lattice and let [D — D] be the lattice of continu- . The
ous functions. Then there is a mapping ; ments.

i p € Env
Y:[D—D]—D, {
such that for each f € [D — D] the element Y (f) ¢ D is the least fixed point of f. {)
—— -; is that‘
| we defi

(Y ()=Y) , |

T T T T,

re now
value.”’
s that
finition,
can

or this
T =

x D’

—

| points

ere cer-
ition all
s are in-

ed
turns on

that
found

me
al point

‘ormula-
mtinu-

oint of f.

rﬁm A A b e TR e B R B e Rt S R b £ L L BT L i e o bR

Lo b

> et R A

MATHEMATICAL SEMANTICS 35

will be satisfied. What is remarkable and particularly useful is that ¥ itself is
continuous. Thus if we employ ¥ in various equations along with other continu-
ous functions we can rest assured that the compound functions obtained are also
continuous. This makes the theory very smooth, if the reader will forgive the
pun.

In making up these lattices it is sometimes useful to join two lattices to-
gether into one. We write D + D’ to mean the result of taking a copy of D and a
disjoint copy of D" and forming the union. To make this union a lattice we
identify the L e D with the 1” € D" and similarly for TeDand T" € D’
(L=1"and T =T")., Thus, for “‘ordinary’’ elements of D + D” we can say,
roughly, that either they are elements of D or of D’ but not both. The [relations
are carried over directly with no connections imposed between the elements of
the disjoint parts., We shall discuss in Section VI considerably more complex
constructions of lattices of a ‘‘recursive’’ nature, but first it is necessary to ex-
plain the semantical treatment of identifiers.

V. IDENTIFIERS AND ENVIRONMENTS

In Section III we introduced into our syntax for commands the identifiers
(£ €Id). An identifier standing alone is an ‘“‘unknown’’ having no predetermined
meaning of its own—in contrast to the constants. The way one wishes to use
identifiers, however, is to give them temporary meanings which can be altered
within the differing scopes of different operators. The way to indicate a tempo-
rary assignment of meanings is by a function

p:ld —[S—5§] ,

which we call (the current) environment of the identifiers. We use [S — S] here
because in the elementary command language the values of the variables are to
be command values. In other languages with other types of variables other types
of values would have to be used.

Let us write for short

Env=[1d —[s —98]] .

Now it will no longer be true that a command has a ‘‘fixed’’ value, because our
syntax allows y € Cmd to contain variables. What we have to do is to redefine
€ so that

C:Cmd — [Eav — [S — 8] .

That is to say, given y € Cmd, we do not evaluate at once C [y] but rather have
to provide the current p € Env to find C[y] (p) as a state transformation.

The details of this redefinition of C will require alterations of the environ-
ments. Our notation for this is the following. Suppose ¢ €1Id, 8 <[S —], and
p € Env. Then

pl6/£) € Env-,

is that environment p” which is just like p except for the one identifier £ where
we define

p’LéD=6 .

36 COMPUTERS AND AUTOMATA

(Thus p” = pl6/£] is the modification of the function p just at the argument & to
have the prescribed value A.) Generalizing this idea we can also write

plo7/&n]

where A" € [S — S]”, the set of n-tuples of state transformations. Here ¢ is a
group of n distinct identifiers and the alteration changes all the n values of the
original p. (These definitions require just a bit more rigor when Id is taken as a
lattice in the more abstract version of syntax of Scott [6].)

We can now state the revised clauses of the semantical definition for C. (The
function & retains its former definition, because in this simple language Boolean
expressions contain no identifiers.)

CLMI(=CLyl (p ,

CLe1 (p) = (some given S — S) ,

C [dummy] (p=1,

CLED () =plél

Cle —yo,y11(p) = Cond Clyll (p), C Ly, 1 () *6Mel ,
Clyo;yil (@ =CLyl (o) o Cliyel (p) ,

CLEE™ v §1 (o) = M3 (Y (A07.C Ly~] (plon/E71Y)

These clauses are quite similar to the previous ones, except that the environment
is dragged along into the interpretation of each compound command. It is invoked
whenever an identifier stands in the place of a command (giving pl[11 in the

fourth clause). It is altered whenever identifiers are bound as formal parameters.
This last clause requires a gloss.

First off if p” ¢ Env, then
Cly"1 () =<Clly,l), Clly,l) Cllyas D (e)>

where y" = yo,y1,¥2, *
metaexpression

**, ¥n-1 is an n-tuple of commands. Therefore the

Cly1 (plom/én)y

can be regarded as a function of the n-tuple 6" « [S — S]” whose values are also
in[S — S]". The A-expression

A C Lyl (plon/én)y
is just the name of that function in the domain
[S —S]" — [S — §)" ,
The Y-operator used in the equation above is then to have the logical type
[[S — 1" — [S — SI"] — [s — s}~ .

(Cf. the end of the last section taking D =[S — S]".) The value of this
Y-operator is an n-tuple, and M{ is the selector function such that

M5 (<0g,01,04, o+ ,0,_1"): 7y

What we are doing here, then, is finding the least solution to the equation (really:

B

a syst

and se

Our ms
of the
dous,
things
would
two lii
provin
long.
practi
In
to retu
are se
which
are the
duce €

for the
values
treates
then |
lished

and

once !
given

becau
langu:
¥ and

and

(That
and m

1t € to

tn
>

is a
of the

en as a

C. (The
3oolean

rironment

; invoked
the

ameters.

1e

; are also

pe

on (really:

ST R L

MATHEMATICAL SEMANTICS 37

a system of n equations)
<O, 05,03, , 0= CLy"1 (p16%/E™D) .
and setting
CL§Em:y"§1 (p) = 0o

Our mathematical equations describe this process rather succinctly with the aid
of the various functional operators. At first sight these operators seem horren-
dous, but actually they are not hard to read. Furthermore they hide just the right
things leaving the structure and sequencing of the operations quite apparent. It
would also seem to be an advantage to condense the various clauses to one or
two lines: If one can actually write equations in detail, he may have a chance of
proving a theorem. And his chances are improved if the equations are not too
long. It remains to be seen, admittedly, whether the method is going to be really
practical for more complex languages.

In the introduction we spoke of models for a theory, and it will be useful now
to return to this discussion in the present context. The concepts of our language
are separated into two kinds: the primitive notions and the logical constructs
which are built on these. In the simple command language the primitive notions
are the set of states S and the objects denoted by the #’s and ¢’s. Let us intro-
duce explicitly syntactical categories for these

mePred and e Op ,

for the atomic predicates and operations. All the other concepts like the Boolean
values, the conditional expressions, the sequencing and looping of commands are
treated as logical notions with fixed meanings. The only chance for variation
then lies in the primitive concepts. The interpretation of them would be estab-
lished by giving mappings

?:Pred —[s —Tx$,
and

6 :Op _— [S — S] ’

once S has been determined. We could then say that in broad outline models are
given as

M=<8,?,0> ,

because once these features are specified the meanings of all expressions in the
language are fixed. Of course all we have explained here is the logical types of
P and O, but that is all one needs to give the semantical definitions for

Cu:Cmd —[S —S] ,
and
bp:Exp =[S—TxS .

(That is, in the semantical definitions we should replace C by Cy and & by &y
and modify the atomic clauses to read

Culol (D =OLel, and Eylnl=201r] .

38 COMPUTERS AND AUTOMATA

By the way, in Scott [6] the O and the ? were treated as parameters and it was

A pr
noted that with S fixed both Cy and & are continuous in these parameters.) have res
With this point of view we can specialize and vary M in restricted classes conside
that actually are models for some reasonable concept of computational structure range of
—as we contemplated for various models of the theory of integers. Besides this in the l:
we can compare two models. Thus if y, and y, are two commands, we say that
they are equivalent in M iff
Culyol = Cully,] . ﬁlgea:;j:
It may very well be that y, and y, are equivalent in M but not in M". That may be the patt
an interesting fact. Whether it is or not, we can at least say what we mean with the stat
the aid of our semantical definitions. state. |
ment me
that
VI. PROCEDURES
The language features discussed up to this point have been of the most ele- Thus if
mentary sort and were kept simple just for the sake of illustration. Even so the o €8S.

mathematical entities associated with the commands and expressions were in-

volved enough. Fortunately the level of complication that we have reached is a
plateau on which a variety of other features can be accommodated without too where y
much additional effort. Among the features pressing for recognition is of course Ord
the assignment statement. No programming language can be called practical if it

be dro
does not include the assignment statement in some form. The issues surrounding we fgrg
the proper interpretation of the assignment statement, however, require a rather
full treatment of their own, and this will have to be reserved for another publica-
tion [11]. In this section we select only one concept—that of a procedure—to which a

discuss in any detail, mainly because it fits in well with our previous discussion
of identifiers and function spaces. Even with this addition the language remains
fragmentary. (In the syntax we shall make provision for an assignment statement, In word:
but the semantics of it and some other related ideas will only be briefly sketched.

ean val
These inclusions are made so that the reader can grasp something of the style of theory t
the languages we are considering.) V must

In order to be able to include other concepts in our language a substantial ex- of all fr
tension of the repertoire of expressions beyond the Boolean level will be neces-

is impo
sary. In some languages this is done through the introduction of a host of syn- Here
tactical categories. This may be a practical idea to aid automatic syntax By rest

checking and error detection, but for understanding the language as a whole it is space i
sometimes a formidable hurdle. For the sake of exposition we pretend that all V and 1
the type checking is going to be done at run time. Thus all the expressions that

be cont

have values will be massed together into one category. Before we start to define functios
the category we should stop to consider what the values are going to be, to use :
We always need Boolean values (T), and we may as well throw in at this point proper ¢
(integer) arithmetic values (N). If we will be getting into assignments, then some ous anc
expressions will have locations (addresces) for values (L). In this paper we will and furt
not say todo much about them, but we want to leave room for them. Next we bring pers un
up the suggestion that at some point one may want to store—or maybe pass as a come is
parameter—a command. Hence we are going to allow elements of C =[S — §] but the:
as values of expressions also. Finally we come to procedures (P). with co

was
3.)
ses
ucture
es this
7 that

: may be
in with

st ele-
so the

e in-

ad is a

t too
course
cal if it
rounding
rather
sublica-
re—to
scussion
remains
tatement,
sketched.
style of

intial ex-
: neces-
of syn-

X

ole it is
1at all
ions that
to define

this point
-hen some
:r we will
we bring
ass as a
3 — 8]

f

MATHEMATICAL SEMANTICS 39

A procedure is very much like a mathematical function. Now some functions
have restricted domains, while others are more widely defined. We do not wish to
consider here typed functions, so we shall attempt to permit our functions a free
range of arguments and values. The different sorts of values were just described
in the last paragraph, Let us put them together into one space, the value space

V=T+N+L+C+P .

Again for simplicity we restrict attention to one-parameter procedures; that is,
the domain of a function will be V itself. The values will also turn up in V but
the path cannot be so direct. Remember that every evaluation has to depend on
the state of the system, and that any action generally has to effect a change of
state. It will be just the same for procedures: evaluating a procedure at an argu-
ment may produce along with a value a change of state. This argument suggests
that

P-[V—[Ss— Vx5

Thus if p € P and x € V, then we cannot find a value from p(x) until we look at
o €S, Then we get

p(x)(@) =<y, 0"> ,

where y is the value and o” is the (possibly) altered state. That seems just fine.

Or does it? Suppose the state space were a one-element space which could
be dropped from consideration. Suppose that we are in a dropping mood and that
we forget about N, L, and C as well. Then the equation for V comes down to

V=T+P ,
which after substitution reads . &
V=T + [V—V] .

In words we can say that under the reduction every element of V is either a Bool-
ean value or a function. It still sounds good, but there is trouble: in ordinary set
theory there are no such spaces! Why? Because there is a cardinality question.
V must have at least two elements; but if so, then by Cantor’s Theorem the space
of all functions [V — V] always has more elements than V. Hence, the equation
is impossible.

Here is the place where the lattice-theoretic pay-off is especially generous.
By restricting [V — V] to continuous functions the cardinality of the function
space is considerably reduced. That is a help, but it is not enough just to have
Vand T + [V — V] in any one-one correspondence. The correspondence must
be continuous; then everything is fine, because we can rest assured that all our
functional equations involve only continuous functions. (Remember, to be able
to use a function as an argument of other operators, we must keep it inside the
proper spaces.) The way to achieve a continuous isomorphism is not quite obvi-
ous and demands an inductive construction. Some remarks are given in Scott [5]
and further hints are found in Scott [6]. The full details will be presented in pa-
pers under preparation (see references in the bibliography). In any case the out-
come is that the construction of such self-referential spaces is not only possible,
but they can be made to suit a variety of purposes—as long as one can be happy
with continuous functions. Since we can argue that computability theory is happy

40 COMPUTERS AND AUTOMATA

with continuous functions, all is well, and the existence of the big value space V
can be taken for granted.

All right, what then is the (a) language that might go along with V? (The au-
thors have the peculiar idea that the domains of our concepts can be quite rigor-
ously laid out before we make final the choice of the language in which we are
going to describe these concepts. And it may turn out that the same domain is
suitable for several languages. This is not to deny that there may be some vague
ideas of language which influence our choice of domains. What we suggest is
that, in order to sort out your ideas, you put your domains out on the table first,
Then we can all start talking about them.) A possible format of the language
would retain the distinction in category between Cmd and Exp. (This is a point
one might wish to debate—but we do not have the space to do it here.) It is Exp

that will undergo the major expansion over the earlier language, so we give Cmd
first:

COMMANDS

y =N é|dummy | £ |

€ — vo.Y1lvos¥1|
§€m:y ¢
el €g:= €,
This looks almost the same as before except for the last two clauses. Since we

will convert commands into expressions, the £! is needed for the reverse process.

The €4: = €, is the assignment statement taken as a command to make the re-
quired assignment.

Turning now to expressions we must take note of the five parts of V:
EXPRESSIONS

gll=(&)|m| €|
€:T|true|false| &€y — €,,€5| €= €|
e:N|v|gowe,]
g:L|tre| | e]
g:C|:y|
g:P|Af.g| gp8, |
v resultis €

Note that identifiers occur in both Cmd and Exp. Some may wish to avoid the
overlap, but it actually does not cause any difficulty, because we will separate
values in a moment.

Before trying to understand the features of this language, it will be well to
state the exact logical types of the semantical functions. An identifier will be
assigned an element either from C or from V depending on how it is to be used.
This means that now we shall have to set

Env - [Id — C + V] .

Strictly speaking C, V, and C + V are all different domains even though the first
two are matched with parts of C + V. We shall require a more precise notation to

o —————

indicate th!
so we write

where 6 €
SeC+ Vo

to indicate
sponds to
The lack ¢
have to di:

The lo

and

We shall 1
been disc

tional dev
For th

and

which ke
the right
we ask f
state of !
state.
With

where D

and

By this

then we

That is

ot e i

y value space V

h V? (The au-
be quite rigor-
~vhich we are
mne domain is

* be some vague
2 suggest is

he table first.
1e language
“his is a point
1iere.) It is Exp
o we give Cmd

1Ises. Since we
reverse process.
» make the re-

s of Vi

1 to avoid the
e will separate

yill be well to
entifier will be
is to be used.

though the first
ecise notation to

S —————————————

MATHEMATICAL SEMANTICS 41

indicate this matching. A completely precise symbolism would be cumbersome,
so we write

(@ inlC +V]) and (BinlC+ VD,

where 6 € C and 8 € V to indicate the corresponding elements of C + V. For
5 € C+ V we write

§|C and 8|V ,

to indicate the “‘projection’” from C + V onto its two parts. (In case & corre-
sponds to an element of C, then 5|V =1; and if & comes from V, then 8| C =1.
The lack of precision becomes clear for spaces such as C + C where one would
have to distinguish between left- and right-hand parts.)
The logical types of the functions C and & now will be these
€ :Cmd — [Env — [— 1] ,
and
&:Exp — [Env — [S — Vx S]] .

We shall not state all the semantical equations, since either they have already
been discussed enough for the simpler language, or they require too much addi-
tional development. But a few can be shown.

For the case of identifiers, we use

CLeD py=pligdIC
and

&I £1 (p)")\o.<P[[€]] |V,o>

which keep the types straight. Note that in the latter equation we had to make
the right hand side a function of o € S with values in V x S. The point is that if
we ask for the value of £ as an expression relative to the environment and the
state of the system, then the answer is to be just p(£) |V without any change of
state.

With the two new kinds of commands, we have in the first instance

Clell)=Dox&Lel) .
where Do is a special operator defined as follows
Do:V — [S — S,

and

Do(B) (o) = (BIO) @) -
By this we mean to indicate that C = [S — 8] is itself a part of V. Thus if

&l el (p)(o) = <B,0"> ,
then we project 3 into 3| C and apply that to o obtaining

o = (B1O)@)

That is the resultant change of state in executing €! so that

Cle'd (p)o) =0"

42 COMPUTERS AND AUTOMATA

In the second instance, the assignment command, the sequence of events is more
complicated.
In this paper we shall not try to write the equation for

Cl €o:=€:1(p)(0) ,
but we can say in words more or less what happens. We first evaluate
6l eyl (p)0)=<B,0"> ,
and project B to & = 8| L, a location. Next we evaluate
&M e, 1 (p)0)=<p 07>

Now comes the scuffle. If 87 is not in the part of V which comes from L, we set
B’ = B’. However, if B does correspond to a location, then we consider Q=
B’| L. At this point we reveal that these mysterious ‘‘states of the system” are
the internal states of our hypothetical machine. That is to say, 0’ represents
(among other things) the current state of the memory of the machine—a memory
which provides contents for locations. Thus there is a function to be applied to
extract the desired contents, and we can write

B~ = Contents(a")(@”") .

In any case we have B € V. Finally there is one last transformation to be
made: we have a location & and a value B”” and the current state o’”, All that
remains is to assign 3’ to & in ¢”" obtaining

o_.ul _ ASSign (a, BH)(U”) "
We then assert that the equation
Cley:=e.10)=0",

makes the interpretation of the command what is usually intended. Well, that is
reasonably precise, but it only becomes completely rigorous when we give an ex-
plicit construction of S as a domain of internal states along with the concomitant
functions Contents and Assign. The exposition of these ideas is the task of
Strachey [11].

Shifting now to the semantics of expressions, the compounds of the sort €: D
are meant as Boolean-valued predicates which distinguish between the various
parts of V; namely, D= T, N, L, C, or P. Take note of the fact that T has been
made a part of V so that after a Boolean value t ¢ T has been found, it will have
to be injected into V. For example, to find the value of

&l eg-2,1(p)0) ,

we have to evaluate €,, then €, then see if they belong to the same part of V.
If they do and the part is T, N, or L, then a test for equality is meaningful. We
carry the test out, get a truth value, and then wrap it up into V. Remember too
that the state of the system will have been changing.

We need not discuss here the evaluation of numerals () or arithmetic opera-
tions (w). The mysterious operators * and | are for referencing and dereferenc-
ing—operations involving locations. Thus to evaluate

&l el (po) ,

we hat

Then »

making

In othe
be the
the cu

In

Note ¢
not be
been ¢
or pas
then s

Be
result

where

Here

comes
tion c
becat
in the
funct:

path-

first !

is more

., We set
ro’ =
:em’’ are
asents
memory
»plied to

> be
111 that

1, that is
ive an ex-
ncomitant
ask of

sort £:D
various

has been
will have

»art of V.
igful. We
mber too

tic opera-
lereferenc-

TR

WER LY

i T T S TR

i TP TR L 5

MATHEMATICAL SEMANTICS 43

we have to find first
&l el (p)0)=<B,o"> .
Then we have to find a new (unused) location O in ¢ and take

o = Assign(a,B)(0") ,
making

ELtel(P () = <a,0”> .

In other words 1€ gives a reference to the value of €. Obviously we want | € to
be the opposite: € is evaluated as having a value in L and then the contents of
the current state of the system provide the value for L €.

In the case of commands as expressions we take

6![:)/]] (p)(a):(@ﬁyﬂ (p)inV,o> .

Note especially that no change of state has taken place and that CIy1 (p has
not been activated. The command has been ‘‘read,’’ so to speak, but it has not
been executed. Why do we do this? Because one may wish to store a command
or pass it as a parameter without executing it. In that way it can be set up and
then set aside for later use.

Before we finish our survey of the semantics with a look at procedures, the
resultis-construct can be given a quick explanation

&My resultis €1 (p) = &L el (p) CLy1 (p) .

That is to say, do y first, then evaluate €. This combination is very similar to
yo;¥: but is of a different syntactical category.

Finally, we come to procedures where the notation used in the language is
just that of the functional abstraction/functional application sort. Abstraction

is easy
&IAE.ell (p)(0) = <finV,0> ,
where f € P is defined by

f=28.60 el (p[BinC +V/ED) .
Here 3 € V and

f:V—[S— VxS ,

comes out correctly by reference to the logical type of &. Note that the evalua-
tion of a functional abstraction requires no change of state. This is reasonable
because none of the state transformations that may be lurking in € can come out
in the open until we know the value of 0. This cannot be known at the time the
function is defined; we have to wait until it is applied to an argument.

Application can be interpreted in at least two ways. We take a more direct
path—which might not be the most flexible. Thus to evaluate

g[[8081]] (P)(U) »
first find

&l o] (p)0) =<B,0”> ,

44 COMPUTERS AND AUTOMATA

and set f= 8| P. Then find
&l e, 1 (p)(0)=<B"0""> , .

and set
&l eoe, 1 (p) @) = (B .

(The ““indirect’’ route would test 8 to see if it were an L, if so all it would re-
quire is to look up the contents of that location and try to use that value. If 8
were not in the L part of V, then we would proceed as above.)

By the time we got around to the procedures there was not so very much to
say. The point is of course that

AE.E

is but one clause of a highly recursive definition. The & can be any compound

expression. Thus the value of A¢.€ is a complicated function. The construction -

of our value space allows us to treat this function (a mathematical object) just
like any other value. It can be used as an argument of another function, it can be
stored, it can be thought about in a mathematical way.

Vil. CONCLUSION

There are many features missing from the language of the last section; to
name a few: lists, structured values, initialization of parameters, more flexible
parameter passing, recursive procedure definitions. This last is very important.
Even though the space

[V—=[s—vVxS]] ,

contains all the values of procedures, we gave no notation for recursively defined
procedures the way we did for recursively defined commands. The reason for
passing over that topic is the difficulty in keeping track of the state transforma-
tions involved in such definitions. This will have to be a topic for another
essay.

Despite the shortcomings of the present exposition, we do feel, however, that
we have demonstrated the possibility of a mathematical semantics for sophisti-
cated languages. And we hope by now the reader understands what we mean by
“‘mathematical semantics.’”’ In this approach the semantical functions give math-
ematical values to expressions—values related to some given model. The val-
ues of expressions are determined in such a way that the value of a whole ex-
pression depends functionally on the values of its parts—the exact connection
being found through the clauses of the syntactical definition of the language. In
this way the syntax is kept to a minimum so one can concentrate on the semanti-
cal interpretation.

The advantages of the method are many. In the first place we feel that it gets
at the essence of meaning without having to formalize any bookkeeping, symbol
tables, identifier lists, road maps or what have you—as is necessary in some
language definitions. Furthermore, the method is conceptual and is not just a
formal translation from one language into another. Sometimes the translation

g
G
3
%
s
i
i
4
i
i

sch
stre
isol
clar
itse

whi
refe
dev
app
mer
but

isr

For
(Str
ide:
vier
tenc
tot
inte

it 1:
ordj
par:
muc
tior
mat
ing

siol
imp
vide
afu
ical
that
the

whe
the:
mat

1d re-
If B

zh to

pound
struction -
) just
it can be

1; to
exible
portant.

y defined
n for
1sforma-
her

wer, that
|phiSti-
nean by
ive math-
‘he val-
le ex-
nection
uage. In
semanti-

aat it gets
symbol

1 some
just a
ation

|
=
4

MATHEMATICAL SEMANTICS 45

scheme is useful, but usually a full translation, say into the language of an “‘ab-
stract’’ machine, makes it hard to discuss the features of the original language in
isolation. As we have shown above we can move through the language one
clause at a time, stopping to get a clear understanding of each construct by
itself.

The present paper is one of a series that is the outcome of a collaboration
which the authors started in the fall of 1969; further papers are mentioned in the
references. As it now stands this theory falls into two rather distinct parts: the
development of the appropriate mathematical apparatus, and its application to the
application of programming languages. From a logical point of view the develop-
ment of the mathematical foundations should obviously precede their application,
but as often happens it is difficult to know exactly what mathematical apparatus
is needed until some applications have been attempted.

The genesis of this apptoach is a paper given at a Working Conference on
Formal Language Description Languages sponsored by IFIP in September 1964
(Strachey [10]). Although that paper contained the beginnings of the semantical
ideas described here, it was quite unsatisfactory from a mathematical point of
view. Not only was there no attempt at mathematical rigor, but the very exis-
tence of some of the objects used was not certain. For example, referring again
to the domain mentioned in Section VI which is quite naturally associated with
interpretations of reasonable languages

V=T4 N+L+[S—’S]+[V'—0[S—'VXS]])

it is particularly important to note that such a domain cannot be constructed by
ordinary set-theoretical means. Hence, the need for some such mathematical ap-
paratus as we have presented here was forced on us. The present paper covers
much the same ground as Strachey [10], but this time the mathematical founda-
tions are secure. It is also intended to act as a bridge between the formal mathe-
matical foundations and their applications to programming languages by explain-
ing in some detail the notation and techniques we have found to be most useful.

Very much work remains to be done. An essential topic will be the discus-
sion of the relation between the mathematical semantics for a language and the
implementation of the language. What we claim the mathematics will have pro-
vided is the standard against which to judge an implementation. Thus if A£.€ is
a function definition, then our semantics tells us which function—as a mathemat-
ical object—was intended. Any implementation must provide us with answers
that are in complete harmony with this function in the same way we expect even
the simplest desk calculator to be able to add. An interesting question here is
whether the function defined by A£.€ is calculable at all—in any sense. All of
these questions are basic and do not even make sense without the proper mathe-
matical foundation, which is just what we think our theory provides.

REFERENCES

[1] **Semantics of Algorithmic Languages,’® Springer Lecture Notes in Mathematics, 188,
(E. Engeler, Ed., 1971).

[2] D. E. Knuth, ‘“Semantics of Context-Free Languages,’’ Mathematical Systems The-
ory, 2, 127-145 (1968).

46
(3]
(4]
(s]
(e]
(7]
(8]

(9]
[10]

[11]

COMPUTERS AND AUTOMATA

, ““Examples of Formal Semantics,’’ Springer Lecture Notes in Mathematics,
188, 212-235 (E. Engeler, Ed., 1971).

D. Park, ‘““Fixpoint Induction and Proofs of Program Properties,’’ Machine Intelli-
gence, 5, 59=78 (1969).

D. Scott, ““Outline of a Mathematical Theory of Computation,’’ Proc. 4th Ann.
Princeton Conf. Information Sciences and Systems, 169=176 (1970).

, "“The Lattice of Flow Diagrams,"'’ Springer Lecture Notes in Mathematics,
188, 311-366 (E. Engeler, Ed., 1971).

, "*Continuous Lattices,’” Proc. Dalhousie Conf,, Springer Lecture Notes (to
be published).

, ‘*Lattice-theoretic Models for Various Type-Free Calculi’ (to be
published).

—, “Data Types as Lattices’’ (to be published).

C. Strachey, **Towards a Formal Semantics,' Formal Language Description Lan-
guages, 198-220 (T. B. Steel, Ed., North Holland, 1966).

———, “*An Abstract Model for Storage®’ (to be published).

Ol

Th
ward tl
tion st
source
meanir
stitute
base-l:
empha:
prograi

Ou
Vienne
langua
just th
range
the ex)
langua
base I;
expres
langua

Tt
by the
tion in

Tt
sign :
tures.
senta

Tt
creati
ingrec
progr:
dently

Tc

	Scott71
	Document

