Progettazione del Software

Giuseppe De Giacomo & Massimo Mecella

Dipartimento di Informatica e Sistemistica
SAPIENZA Universita di Roma

Diagramma degli stati e delle transizioni
Analisi

Progettazione del Software - Diagrammi degli stati e delle transizioni

Il diagramma degli stati e delle transizioni

Il diagramma degli stati e delle transizioni viene definito per una classe, ed intende
descrivere I’evoluzione di un generico oggetto di quella classe.

Il diagramma rappresenta le sequenze di stati, le risposte e le azioni, che un oggetto
attraversa durante la sua vita in risposta agli stimoli ricevuti.

Uno stato rappresenta una situazione in cui un oggetto ha un insieme di proprieta
considerate stabili

Una transizione modella un cambiamento di stato ed € denotata da:

Evento [Condizione] / Azione

Progettazione del Software - Diagrammi degli stati e delle transizioni

Il diagramma degli stati € delle transizioni

R LIS

Il significato di una transizione del tipo di quella qui mostrata ¢:
* se ’oggetto

— si trova nello stato S, e

— riceve ’evento E e

— la condizione C ¢ verificata
« allora

— attiva ’esecuzione dell’azione A e

— passa nello stato S,

Progettazione del Software - Diagrammi degli stati e delle transizioni

Esempio di diagramma degli stati e delle transizioni
per la classe Caldaia
Descriviamo il diagramma degli stati e delle transizioni relativa ad una
classe “Caldaia”. In questo diagramma ogni transizione ¢ caratterizzata

solamente da eventi e condizioni (i cambiamenti di stato non hanno
bisogno di azioni perché sono automatici)

off
‘\ l

temperatura
spenta on [acqua non gelata]

iniziO\ desiderata
ff v
’ temperatura
temperatura\‘ desiderata temperatura

inferiore

inferiore

Progettazione del Software - Diagrammi degli stati e delle transizioni

Stato

» Lo stato di un oggetto racchiude le proprieta (di solito statiche)
dell’ oggetto, piu i valori correnti (di solito dinamici) di tali
proprieta

 Una freccia non etichettata che parte dal “vuoto” ed entra in uno
stato indica che lo stato ¢ iniziale

 Una freccia non etichettata che esce da uno stato e finisce nel
“vuoto” indica che lo stato ¢ finale

» Stato iniziale e finale possono anche essere denotati da appositi
simboli

stato 1niziale stato finale

¢ ®

Progettazione del Software - Diagrammi degli stati e delle transizioni 5

Transizione

Ogni transizione connette due stati

Il diagramma corrisponde ad un automa deterministico (transizioni
dall stesso stato hanno eventi diversi), in cui un evento € un input,
mentre un’ azione € un output

La condizione ¢ detta anche “guardia” (guard)

L’evento ¢ (quasi) sempre presente (condizione € azione sono
opzionali)

E[C]/a
. { . er B

e//ag R
e/a C
NO

A

Progettazione del Software - Diagrammi degli stati e delle transizioni 6

Esempio di diagramma degli stati e delle
transizioni per la classe Motore

L’analisi dei requisiti ha evidenziato I’esistenza, nel diagramma
delle classi, di una classe “Motore”. Tracciare il diagramma degli
stati e delle transizioni a partire da questi requisiti.

Un motore di automobile puo essere spento o acceso, ma puo
essere avviato o spento solo se la marcia ¢ in folle

Progettazione del Software - Diagrammi degli stati e delle transizioni

Esempio di diagramma degli stati e delle
transizioni per la classe Motore (soluzione)

avvia [marcia in folle]
Motore MOtOI‘e

Spento dCCeso
spegni [marcia in folle]

Progettazione del Software - Diagrammi degli stati e delle transizioni

Esercizio 1

Supponiamo che nel diagramma delle classi abbiamo rappresentato
la classe “Menu a tendina”. Tracciare il diagramma degli stati e
delle transizioni per tale classe, tenendo conto delle seguenti
specifiche.

Un menu a tendina puo essere visibile oppure no. Viene reso visibile
a seguito della pressione del tasto destro del mouse, e viene reso
invisibile quando tale tasto viene sollevato. Se si muove il cursore
quando il menu ¢ visibile, si evidenzia il corrispondente elemento
del menu.

Progettazione del Software - Diagrammi degli stati e delle transizioni 9

Esercizio 1: soluzione

muovi cursore/
evidenzia elemento menu

premi bottone destro/mostra menu
Menu Menu
invisibile . . visibile
rilascia bottone destro/cancella menu

Progettazione del Software - Diagrammi degli stati e delle transizioni 10

Diagramma degli stati e delle transizioni

Alcune volte vogliamo rappresentare dei processi che I’oggetto esegue senza cambiare
stato. Questi processi si chiamano attivita, e si mostrano negli stati con la notazione:

do / attivita

Esempio (scaldabagno):

on / accende-spia

a CS0
do/scalda-acqua

off / spenge-spia

Progettazione del Software - Diagrammi degli stati e delle transizioni 11

Stato composto

* Uno stato composto (o macro-stato) ¢ uno stato che ha un nome, e
che contiene a sua volta un diagramma

» Esiste uno stato iniziale del macro-stato

» [sottostati ereditano le transizioni in uscita del macro-stato

LevaR :
- - 5 RetroM . Posso andare in
.—> T I'Cl
Folle ctroMarcia foll dalla
prima, dalla
Dal folle posso |]| LevaN seconda o dalla
andare solo in terza
prima LevaD —m

accelera | \ accelera
Prima Seconda Terza
MarciaAvanti decelera —— decelera

Progettazione del Software - Diagrammi degli stati e delle transizioni 12

Aspetti metodologici nella costruzione del diagramma
degli stati e delle transizioni

Un metodo comunemente usato per costruire il diagramma
degli stati e delle transizioni prevede 1 seguenti passi

» Individua gli stati di interesse

e Individua le transizioni

Correggi,
s Individua le attivita modifica,
. eStendl
» Determina gli stati iniziali e finali
» Controllo di qualita
Progettazione del Software - Diagrammi degli stati e delle transizioni 13

Controllo di qualita del diagramma degli stati e delle
transizioni

« Sono stati colti tutti gli aspetti insiti ne1 requisiti?
* (i sono ridondanze nel diagramma?

« Ogni stato puo essere caratterizzato da proprieta
dell’ oggetto?

« Ogni azione e ogni attivita puo corrispondere ad una
operazione della classe?

* Ogni evento e ogni condizione pud corrispondere ad un
evento o condizione verificabile per " oggetto?

Progettazione del Software - Diagrammi degli stati e delle transizioni 14

Esercizi su diagramma degli stati e delle
transizioni

Progettazione del Software - Diagrammi degli stati e delle transizioni

Esercizio 2

Supponiamo che nel diagramma delle classi abbiamo rappresentato
la classe “InterruttoreAutomatico”. Tracciare il diagramma degli
stati e delle transizioni per tale classe, tenendo conto delle seguenti
specifiche.

Un interruttore automatico collegato ad una cellula fotoelettrica e
ad un sensore di movimento comanda una luce di un sottoscala
che deve essere accesa solo di notte ed in presenza di movimento.
Un’assenza di movimenti per cinque minuti consecutivi causera lo
spengimento della luce.

Progettazione del Software - Diagrammi degli stati e delle transizioni

16

Esercizio 2: soluzione

® @ attivo N\

notte
.) attesa movimento/resetTimer
inattivo - Movimento
giorno
5 minuti luce
Accesa
La luce e spenta in “inattivo” Kmovimento/resetTimer /

e “attesaMovimento.

Progettazione del Software - Diagrammi degli stati e delle transizioni 17

Esercizio 3

Supponiamo che nel diagramma delle classi abbiamo rappresentato
la classe “Libro”. Tracciare il diagramma degli stati e delle
transizioni per tale classe, tenendo conto delle seguenti specifiche.

Una biblioteca puo acquisire libri, che possono essere dati in prestito
e successivamente restituiti. Quando scadono i termini del prestito,
la restituzione ¢ in ritardo, ed in tal caso la biblioteca puo inviare
(anche piu volte) una lettera di sollecito. In ogni momento, un libro
puo essere cancellato dal catalogo.

Progettazione del Software - Diagrammi degli stati e delle transizioni 18

Esercizio 3: soluzione

cancellazione
dal catalogo

cancellato

cancellazione
dal catalogo

prestito

n

disponibile prestito

restituzione

cancellazione
dal catalogo

scadenza

o termini
restituzione

n
ritardo
sollecito/invio lettera

Progettazione del Software - Diagrammi degli stati e delle transizioni 19

Esercizio 4

Supponiamo che nel diagramma delle classi abbiamo rappresentato la
classe “Fax”. Tracciare il diagramma degli stati e delle transizioni per
tale classe, tenendo conto delle seguenti specifiche.

Un fax puo essere inattivo, ricevente o trasmittente. Se il fax ¢ inattivo,
con i1l comando di invio fax si porta il dispositivo nello stato
trasmittente, € con il comando di fine invio si riporta nello stato
inattivo. Quando il fax ¢ inattivo e si verifica una chiamata (segnalata
da uno squillo del telefono), va in stato ricevente, e quindi accetta la
connessione. Se la stringa iniziale ¢ corretta, il fax elabora 1 dati, e
infine ritorna inattivo, altrimenti torna inattivo. In ogni momento della
ricezione, il chiamante puo riagganciare, facendo ritornare il fax nello
stato inattivo. In ogni momento della ricezione, se si verifica un errore
in ricezione, il fax ritorna inattivo e stampa un rapporto di errore.

Progettazione del Software - Diagrammi degli stati e delle transizioni 20

Esercizio 4: soluzione

/ .\ ricezione\
squilla telefono
: . accetta stringaOk
connessione
1NV1o
fax
trasmissione K j

Progettazione del Software - Diagrammi degli stati e delle transizioni

Esercizio 5

Supponiamo che nel diagramma delle classi abbiamo rappresentato
la classe “DispositivoPortatile”. Tracciare il diagramma degli stati
e delle transizioni per tale classe, tenendo conto delle seguenti
specifiche.

Un dispositivo portatile per la comunicazione di emergenze pud
essere acceso o spento con lo stesso tasto “OnOff”. Gli altri due
tasti del dispositivo sono: “Emergenza” e “Invio”. Per comunicare
un'emergenza bisogna, nell'ordine, premere il tasto “Emergenza” e
poi “Invio”. Per disattivare la tastiera del dispositivo bisogna
premere il tasto “Invio”. Per riattivare la tastiera quando ¢ stata
precedentemente disattivata bisogna premere il tasto “Invio”. In
ogni momento si puo spengere il dispositivo. In ogni circostanza,
la pressione di un tasto non contemplato nella descrizione
precedente non produce alcun effetto.

Progettazione del Software - Diagrammi degli stati e delle transizioni

21

22

Esercizio 5: commento (1)

Per comodita, numeriamo i requisiti.

1. Un dispositivo portatile per la comunicazione di emergenze pud
essere acceso o spento con lo stesso tasto “OnOff”.

2. Gli altri due tasti del dispositivo sono: “Emergenza” e “Invio”.

3. Per comunicare un’ emergenza bisogna, nell” ordine, premere il
tasto “Emergenza” e poi “Invio”.

4. Per disattivare la tastiera del dispositivo bisogna premere il tasto
“Invio”.

5. Per riattivare la tastiera quando ¢ stata precedentemente
disattivata, bisogna premere il tasto “Invio”.

6. In ogni momento si puo spengere il dispositivo.

7. In ogni circostanza, la pressione di un tasto non contemplato nella
descrizione precedente non produce alcun effetto.

Progettazione del Software - Diagrammi degli stati e delle transizioni

Esercizio 5: commento (2)

« Irequisiti 1 e 2 affermano che esistono tre simboli nell” alfabeto di
input (“OnOff”, “Emergenza” e “Invio”).

Il requisito 1 implica I’ esistenza di (almeno) due stati: “acceso” e
“spento”.

» Il requisito 6 suggerisce che ¢ conveniente modellare lo stato
“acceso’ come macro-stato.

Progettazione del Software - Diagrammi degli stati e delle transizioni

Esercizio 5: commento (3)

 Irequisiti 3 e 4 implicano 1’ esistenza di altri tre stati, tutti interni al
macro-stato “acceso’ :

— “tastiera attivata’ : lo stato iniziale del macro-stato

— “tastiera disattivata”: lo stato a cui si giunge con la pressione del
tasto “Invio”

— “pronto”: lo stato a cui si giunge dopo la pressione del tasto
“Emergenza”

» Le transizioni fra stati sono dettate dai requisiti 3,4, 5 ¢ 7.
» Le transizioni sono tutte prive di condizioni.

« Sihal azione di “comunica emergenza” in corrispondenza della
« . [13 ” 113 . . »”
transizione dallo stato “pronto™ a quello “tastiera attivata

Progettazione del Software - Diagrammi degli stati e delle transizioni 25

Esercizio 5: soluzione

ﬁ:ceso \

Invio/
OnOff comunica emergenza
spento ®
OnOff \
Emergenza -

) S Invio | tastiera
tas.tlera disattivata
attivata Invio ~

J

o J

Progettazione del Software - Diagrammi degli stati e delle transizioni 26

Diagramma degli stati e delle transizioni di
oggetti reattivi

Progettazione del Software - Diagrammi degli stati e delle transizioni 27

Principi generali

Assumiamo di avere diversi oggetti reattivi, cio¢ con associato un diagramma stati-
transizioni.

Assumiamo che I’interazione sia basata su scambio esplicito di eventi

Assumiamo che gli eventi abbiano un mittente ed un destinatario
In particolare ammettiamo

— Messaggi punto-punto: un oggetto manda un messaggio ad un altro oggetto

— Messaggi in broadcasting: un oggetto manda un messaggio a tutti gli altri
oggetti (vedremo esempi successivamente).

Inoltre gli eventi possono avere parametri con specifico contenuto informativo (il
cosiddetto payload del messaggio)

Una azione puo a sua volta lanciare un evento (tipicamente uno solo per semplicita)
per un altro oggetto o in broadcasting.

Progettazione del Software - Diagrammi degli stati e delle transizioni 28

Nel diagramma degli stati e transizioni per semplicita identifichiamo I’azione stessa

Osservazioni

con I’evento lanciato.

Diamo una specifica dettagliata di ci0 che avviene ad ogni transizione:

— Quali eventi sono recepiti e lanciati (e a chi)

— Come cambiano eventuali variabili di stato ausiliarie associate allo stato

dell’oggetto (vedi sotto)

— Come cambia P’istanziazione del diagramma delle classi

Le variabili di stato ausiliarie non sono di interesse per il cliente servono solo alla
corretta realizzazione delle azioni associate alle varie transizioni. Quindi non vanno

confuse con con gli attributi dell’oggetto stesso.

Il diagramma degli stati e transizioni ¢ sempre corredato da detta specifica che ne

chiarisce in dettaglio la semantica.

Progettazione del Software - Diagrammi degli stati e delle transizioni

Diagramma delle classi

* Consideriamo il seguente diagramma delle classi:
» PlayList e Brano li abbiamo gia incontrati in precedenza

» Player ¢ una classe che non contiene alcun dato (ma a cui € associato un

diagramma stati e transizioni

0.”

Brano

PlayList * :
y 0.. contiene
Nome: Strin
g {ordered}
DurataTotale():Int
Vedi diagramma degli stati
e delle transizioni J Player

Nome: String
Durata:Int
NomeFile: String

Vedi diagramma degli
stati e delle transizioni

Progettazione del Software - Diagrammi degli stati e delle transizioni

29

30

Diagrammi degli stati e delle transizioni

done[ci sono ancora brani da ascoltare]/playSongyes.pjayer(Pr)

Playlist
N play(player)[playlist non vuota]/playSongges.iayer(Pr) ("
Attesa “| Esecuzione
reset/stopSonggesipiayer
Y, G
Si puo modiﬂc;re una T done[non ci sono pit brani da ascoltare]
PlayList solo quando
€ nello stato Attesa
Player
h playsong{m_itt:playlist)(br) \(
Pronto Esecuzione
)\ /done{@:playlist) \
A
stopSong
Progettazione del Software - Diagrammi degli stati e delle transizioni 31

Specifica degli stati di PlayList

InizioSpecificaStatiClasse PlayList

Stato: {Attesa, Esecuzione}

Variabili di stato ausiliarie:
player: Player
prossimobrano: intero

“statoCorrente” denota lo stato
attuale dell’'oggetto.

Viene aggiornato automaticamente
facendo transizioni

Stato iniziale:

statoCorrente = Att
player = --

prossimobrano = --

FineSpecifica

Progettazione del Software - Diagrammi degli stati e delle transizioni 32

Specifica delle transizioni di PlayList

InizioSpecificaTransizioniClasse PlayList

Transizione: Attesa—> Esecuzione
play(player)[playlist non vuota]/playSong;gest.piayer(Pr)
“evento” denota I'evento ricevuto,

Evento: play(player: PIayer) “mitt’ e “dest’, denotano il mittente

e il destinatario dell’evento.

HEE . H ; Ovviamente affinché I'evento sia
Condizione: this.contiene non vuoto ST i S

evento.dest=this
Azione:
pre: nessuna
post: nuovoevento = playSong{mitt = this, dest = player}(br: Brano)

and

this.player = player and “nuovoevento” denota
. . I'evento da mandare

this.prossimobrano = 0 and con I'azione

<this,br> in contiene and
posizione(contiene(this,br)) = this.prossimobrano

FineSpecifica

Progettazione del Software - Diagrammi degli stati e delle transizioni

(98}
W

Specifica delle transizioni di PlayList

InizioSpecificaTransizioniClasse PlayList

Transizione: Esecuzione—> Esecuzione
donelci sono ancora brani da ascoltare]/playSong,gest.piayer(Or)

Evento: done
Condizione: this.prossimobrano < |{b | <this,b> in contiene}|

Azione:
pre: nessuna
post: nuovoevento =
playSong{mitt = this, dest = this.player}(br: Brano) and

this.player = Pre(this.player) and
this.prossimobrano = Pre(this.prossimobrano)+1 and
<this,br> in contiene and
posizione(contiene(this,br)) = this.prossimobrano

FineSpecifica

Progettazione del Software - Diagrammi degli stati e delle transizioni 34

Specifica delle transizioni di PlayList

InizioSpecificaTransizioniClasse PlayList

Transizione: Esecuzione—> Attesa
done[non ci sono brani da ascoltare]

Evento: done

Condizione: this.prossimobrano >= [{b | <this,b> in contiene}|

Azione:
pre: nessuna
post: this.prossimobrano = -- and

this.player = --

FineSpecifica

Progettazione del Software - Diagrammi degli stati e delle transizioni 35

Specifica delle transizioni di PlayList

InizioSpecificaTransizioniClasse PlayList

Transizione: Esecuzione—> Attesa
reset/stopSong gest.piayen

Evento: reset
Condizione: nessuna

Azione:

pre: nessuna
post: nuovoevento = stopSong{mitt = this, dest = Pre(this.player)}

this.prossimobrano = -- and
this.player = --

FineSpecifica

Progettazione del Software - Diagrammi degli stati e delle transizioni 36

Specifica degli stati di Player

InizioSpecificaStatiClasse Player

Stato: {Pronto, Esecuzione}
Variabili di stato ausiliarie:
playlist: PlayList
brano: Brano

Stato iniziale:
statoCorrente = Pronto
playlist = --
brano = --

FineSpecifica

Progettazione del Software - Diagrammi degli stati e delle transizioni

Specifica delle transizioni di Player

InizioSpecificaTransizioniClasse Player

Transizione: Pronto> Esecuzione
playsong{m:playlist}(br)

Evento: playSong(br:Brano)
Condizione: nessuna
Azione:

pre: nessuna

post: this.playlist = evento.mitt and
this.brano = br

FineSpecifica

Progettazione del Software - Diagrammi degli stati e delle transizioni

Specifica delle transizioni di Player

InizioSpecificaTransizioniClasse Player

Transizione: Esecuzione—> Pronto
I dON€gest-playiisty

Evento: evento interno generato da this stesso
Condizione: nessuna

Azione:
pre: nessuna
post: nuovoevento = done{mitt = this, dest = Pre(this.playlist)}
this.playlist=-- and
this.brano = --

FineSpecifica

Progettazione del Software - Diagrammi degli stati e delle transizioni

Specifica delle transizioni di Player

InizioSpecificaTransizioniClasse Player

Transizione: Esecuzione—> Pronto
stopSong

Evento: stopSong
Condizione: nessuna

Azione:
pre: evento.mitt = Pre(this.playlist)}
post: this.playlist= -- and
this.brano = --
FineSpecifica

Progettazione del Software - Diagrammi degli stati e delle transizioni

40

