
Progettazione del Software - Diagrammi degli stati e delle transizioni 1

Progettazione del Software

Giuseppe De Giacomo & Massimo Mecella
Dipartimento di Informatica e Sistemistica

SAPIENZA Università di Roma

Diagramma degli stati e delle transizioni
Analisi

Progettazione del Software - Diagrammi degli stati e delle transizioni 2

Il diagramma degli stati e delle transizioni
Il diagramma degli stati e delle transizioni viene definito per una classe, ed intende
descrivere l’evoluzione di un generico oggetto di quella classe.

Il diagramma rappresenta le sequenze di stati, le risposte e le azioni, che un oggetto
attraversa durante la sua vita in risposta agli stimoli ricevuti.

Uno stato rappresenta una situazione in cui un oggetto ha un insieme di proprietà
considerate stabili

Una transizione modella un cambiamento di stato ed è denotata da:

Evento [Condizione] / Azione

Progettazione del Software - Diagrammi degli stati e delle transizioni 3

Il significato di una transizione del tipo di quella qui mostrata è:
•  se l’oggetto

–  si trova nello stato S1 e
–  riceve l’evento E e
–  la condizione C è verificata

•  allora
–  attiva l’esecuzione dell’azione A e
–  passa nello stato S2.

Il diagramma degli stati e delle transizioni

S1 S2
E [C] / A

Progettazione del Software - Diagrammi degli stati e delle transizioni 4

Esempio di diagramma degli stati e delle transizioni
per la classe Caldaia

Descriviamo il diagramma degli stati e delle transizioni relativa ad una
classe “Caldaia”. In questo diagramma ogni transizione è caratterizzata
solamente da eventi e condizioni (i cambiamenti di stato non hanno
bisogno di azioni perché sono automatici)

spenta inizio in-funzione

scalda

on [acqua non gelata]

off

off

off

temperatura
inferiore

temperatura
desiderata temperatura

inferiore

temperatura
desiderata

Progettazione del Software - Diagrammi degli stati e delle transizioni 5

Stato

stato iniziale stato finale

• Lo stato di un oggetto racchiude le proprietà (di solito statiche)
dell�oggetto, più i valori correnti (di solito dinamici) di tali
proprietà

• Una freccia non etichettata che parte dal “vuoto” ed entra in uno
stato indica che lo stato è iniziale

• Una freccia non etichettata che esce da uno stato e finisce nel
“vuoto” indica che lo stato è finale

• Stato iniziale e finale possono anche essere denotati da appositi
simboli

Progettazione del Software - Diagrammi degli stati e delle transizioni 6

Transizione
•  Ogni transizione connette due stati
•  Il diagramma corrisponde ad un automa deterministico (transizioni

dall stesso stato hanno eventi diversi), in cui un evento è un input,
mentre un�azione è un output

•  La condizione è detta anche �guardia� (guard)
•  L’evento è (quasi) sempre presente (condizione e azione sono

opzionali)

A E[C]/a B
SI A

B

C

e1/a1

NO
A

e/a

Progettazione del Software - Diagrammi degli stati e delle transizioni 7

Esempio di diagramma degli stati e delle
transizioni per la classe Motore

L’analisi dei requisiti ha evidenziato l’esistenza, nel diagramma
delle classi, di una classe “Motore”. Tracciare il diagramma degli
stati e delle transizioni a partire da questi requisiti.

Un motore di automobile può essere spento o acceso, ma può
essere avviato o spento solo se la marcia è in folle

Progettazione del Software - Diagrammi degli stati e delle transizioni 8

Esempio di diagramma degli stati e delle
transizioni per la classe Motore (soluzione)

Motore
spento

Motore
acceso

avvia [marcia in folle]

spegni [marcia in folle]

Progettazione del Software - Diagrammi degli stati e delle transizioni 9

Esercizio 1

Supponiamo che nel diagramma delle classi abbiamo rappresentato
la classe “Menu a tendina”. Tracciare il diagramma degli stati e
delle transizioni per tale classe, tenendo conto delle seguenti
specifiche.

Un menu a tendina può essere visibile oppure no. Viene reso visibile
a seguito della pressione del tasto destro del mouse, e viene reso
invisibile quando tale tasto viene sollevato. Se si muove il cursore
quando il menu è visibile, si evidenzia il corrispondente elemento
del menu.

Progettazione del Software - Diagrammi degli stati e delle transizioni 10

Esercizio 1: soluzione

Menu
invisibile

Menu
visibile

premi bottone destro/mostra menu

rilascia bottone destro/cancella menu

muovi cursore/
evidenzia elemento menu

Progettazione del Software - Diagrammi degli stati e delle transizioni 11

Diagramma degli stati e delle transizioni
Alcune volte vogliamo rappresentare dei processi che l’oggetto esegue senza cambiare
stato. Questi processi si chiamano attività, e si mostrano negli stati con la notazione:

do / attività

Esempio (scaldabagno):

spento
 acceso
do/scalda-acqua

on / accende-spia

off / spenge-spia

Progettazione del Software - Diagrammi degli stati e delle transizioni 12

Stato composto

•  Uno stato composto (o macro-stato) è uno stato che ha un nome, e
che contiene a sua volta un diagramma

•  Esiste uno stato iniziale del macro-stato
•  I sottostati ereditano le transizioni in uscita del macro-stato

Folle RetroMarcia
LevaR

LevaN

LevaD LevaN

Prima Seconda
accelera

decelera
Terza

accelera

decelera MarciaAvanti

Posso andare in
folle dalla

prima, dalla
seconda o dalla

terza
Dal folle posso
andare solo in

prima

Progettazione del Software - Diagrammi degli stati e delle transizioni 13

Aspetti metodologici nella costruzione del diagramma
degli stati e delle transizioni

•  Individua gli stati di interesse
•  Individua le transizioni
•  Individua le attività
•  Determina gli stati iniziali e finali
•  Controllo di qualità

Un metodo comunemente usato per costruire il diagramma
degli stati e delle transizioni prevede i seguenti passi

Correggi,
modifica,
estendi

Progettazione del Software - Diagrammi degli stati e delle transizioni 14

Controllo di qualità del diagramma degli stati e delle
transizioni

•  Sono stati colti tutti gli aspetti insiti nei requisiti?
•  Ci sono ridondanze nel diagramma?
•  Ogni stato può essere caratterizzato da proprietà

dell�oggetto?
•  Ogni azione e ogni attività può corrispondere ad una

operazione della classe?
•  Ogni evento e ogni condizione può corrispondere ad un

evento o condizione verificabile per l�oggetto?

Progettazione del Software - Diagrammi degli stati e delle transizioni

Esercizi su diagramma degli stati e delle
transizioni

15

Progettazione del Software - Diagrammi degli stati e delle transizioni

Esercizio 2

Supponiamo che nel diagramma delle classi abbiamo rappresentato
la classe �InterruttoreAutomatico�. Tracciare il diagramma degli
stati e delle transizioni per tale classe, tenendo conto delle seguenti
specifiche.

Un interruttore automatico collegato ad una cellula fotoelettrica e
ad un sensore di movimento comanda una luce di un sottoscala
che deve essere accesa solo di notte ed in presenza di movimento.
Un’assenza di movimenti per cinque minuti consecutivi causerà lo
spengimento della luce.

16

Progettazione del Software - Diagrammi degli stati e delle transizioni

Esercizio 2: soluzione

inattivo

notte

giorno

luce
Accesa

attivo

attesa
Movimento

movimento/resetTimer

5 minuti

17

movimento/resetTimer La luce è spenta in “inattivo”
e “attesaMovimento.

Progettazione del Software - Diagrammi degli stati e delle transizioni

Esercizio 3
Supponiamo che nel diagramma delle classi abbiamo rappresentato
la classe �Libro�. Tracciare il diagramma degli stati e delle
transizioni per tale classe, tenendo conto delle seguenti specifiche.

Una biblioteca può acquisire libri, che possono essere dati in prestito
e successivamente restituiti. Quando scadono i termini del prestito,
la restituzione è in ritardo, ed in tal caso la biblioteca può inviare
(anche più volte) una lettera di sollecito. In ogni momento, un libro
può essere cancellato dal catalogo.

18

Progettazione del Software - Diagrammi degli stati e delle transizioni

Esercizio 3: soluzione

disponibile

cancellato

prestito

restituzione

in
ritardo

scadenza
termini

restituzione

cancellazione
dal catalogo

cancellazione
dal catalogo

cancellazione
dal catalogo

sollecito/invio lettera

19

in
prestito

Progettazione del Software - Diagrammi degli stati e delle transizioni

Esercizio 4
Supponiamo che nel diagramma delle classi abbiamo rappresentato la
classe �Fax�. Tracciare il diagramma degli stati e delle transizioni per
tale classe, tenendo conto delle seguenti specifiche.

Un fax può essere inattivo, ricevente o trasmittente. Se il fax è inattivo,
con il comando di invio fax si porta il dispositivo nello stato
trasmittente, e con il comando di fine invio si riporta nello stato
inattivo. Quando il fax è inattivo e si verifica una chiamata (segnalata
da uno squillo del telefono), va in stato ricevente, e quindi accetta la
connessione. Se la stringa iniziale è corretta, il fax elabora i dati, e
infine ritorna inattivo, altrimenti torna inattivo. In ogni momento della
ricezione, il chiamante può riagganciare, facendo ritornare il fax nello
stato inattivo. In ogni momento della ricezione, se si verifica un errore
in ricezione, il fax ritorna inattivo e stampa un rapporto di errore.

20

Progettazione del Software - Diagrammi degli stati e delle transizioni

Esercizio 4: soluzione

inattivo

squilla telefono
riaggancio

elabora
dati

fine
invio

trasmissione

ricezione

accetta
connessione

invio
fax

stringaOk

fine elaborazione

21

Progettazione del Software - Diagrammi degli stati e delle transizioni

Esercizio 5
Supponiamo che nel diagramma delle classi abbiamo rappresentato
la classe �DispositivoPortatile�. Tracciare il diagramma degli stati
e delle transizioni per tale classe, tenendo conto delle seguenti
specifiche.

Un dispositivo portatile per la comunicazione di emergenze può
essere acceso o spento con lo stesso tasto “OnOff”. Gli altri due
tasti del dispositivo sono: “Emergenza” e “Invio”. Per comunicare
un'emergenza bisogna, nell'ordine, premere il tasto “Emergenza” e
poi “Invio”. Per disattivare la tastiera del dispositivo bisogna
premere il tasto “Invio”. Per riattivare la tastiera quando è stata
precedentemente disattivata bisogna premere il tasto “Invio”. In
ogni momento si può spengere il dispositivo. In ogni circostanza,
la pressione di un tasto non contemplato nella descrizione
precedente non produce alcun effetto.

22

Progettazione del Software - Diagrammi degli stati e delle transizioni

Esercizio 5: commento (1)

Per comodità, numeriamo i requisiti.
1.  Un dispositivo portatile per la comunicazione di emergenze può

essere acceso o spento con lo stesso tasto �OnOff�.
2.  Gli altri due tasti del dispositivo sono: �Emergenza� e �Invio�.
3.  Per comunicare un�emergenza bisogna, nell�ordine, premere il

tasto �Emergenza� e poi �Invio�.
4.  Per disattivare la tastiera del dispositivo bisogna premere il tasto
�Invio�.

5.  Per riattivare la tastiera quando è stata precedentemente
disattivata, bisogna premere il tasto �Invio�.

6.  In ogni momento si può spengere il dispositivo.
7.  In ogni circostanza, la pressione di un tasto non contemplato nella

descrizione precedente non produce alcun effetto.

23

Progettazione del Software - Diagrammi degli stati e delle transizioni

Esercizio 5: commento (2)

•  I requisiti 1 e 2 affermano che esistono tre simboli nell�alfabeto di
input (�OnOff�, �Emergenza� e �Invio�).

•  Il requisito 1 implica l�esistenza di (almeno) due stati: �acceso� e
�spento�.

•  Il requisito 6 suggerisce che è conveniente modellare lo stato
�acceso��come macro-stato.

24

Progettazione del Software - Diagrammi degli stati e delle transizioni

Esercizio 5: commento (3)

•  I requisiti 3 e 4 implicano l�esistenza di altri tre stati, tutti interni al
macro-stato �acceso�:
–  �tastiera attivata�: lo stato iniziale del macro-stato
–  �tastiera disattivata�: lo stato a cui si giunge con la pressione del

tasto �Invio�
–  �pronto�: lo stato a cui si giunge dopo la pressione del tasto
�Emergenza�

•  Le transizioni fra stati sono dettate dai requisiti 3, 4, 5 e 7.
•  Le transizioni sono tutte prive di condizioni.
•  Si ha l�azione di �comunica emergenza� in corrispondenza della

transizione dallo stato �pronto� a quello �tastiera attivata�

25

Progettazione del Software - Diagrammi degli stati e delle transizioni

Esercizio 5: soluzione

spento

OnOff

OnOff

pronto

acceso

tastiera
attivata

Emergenza

tastiera
disattivata

Invio/
comunica emergenza

Invio

Invio

26

Progettazione del Software - Diagrammi degli stati e delle transizioni

Diagramma degli stati e delle transizioni di
oggetti reattivi

27

Progettazione del Software - Diagrammi degli stati e delle transizioni

Principi generali
•  Assumiamo di avere diversi oggetti reattivi, cioè con associato un diagramma stati-

transizioni.

•  Assumiamo che l’interazione sia basata su scambio esplicito di eventi

•  Assumiamo che gli eventi abbiano un mittente ed un destinatario
In particolare ammettiamo
–  Messaggi punto-punto: un oggetto manda un messaggio ad un altro oggetto
–  Messaggi in broadcasting: un oggetto manda un messaggio a tutti gli altri

oggetti (vedremo esempi successivamente).

•  Inoltre gli eventi possono avere parametri con specifico contenuto informativo (il
cosiddetto payload del messaggio)

•  Una azione può a sua volta lanciare un evento (tipicamente uno solo per semplicità)
per un altro oggetto o in broadcasting.

28

Progettazione del Software - Diagrammi degli stati e delle transizioni

Osservazioni
•  Nel diagramma degli stati e transizioni per semplicità identifichiamo l’azione stessa

con l’evento lanciato.

•  Diamo una specifica dettagliata di ciò che avviene ad ogni transizione:
–  Quali eventi sono recepiti e lanciati (e a chi)
–  Come cambiano eventuali variabili di stato ausiliarie associate allo stato

dell’oggetto (vedi sotto)
–  Come cambia l’istanziazione del diagramma delle classi

•  Le variabili di stato ausiliarie non sono di interesse per il cliente servono solo alla
corretta realizzazione delle azioni associate alle varie transizioni. Quindi non vanno
confuse con con gli attributi dell’oggetto stesso.

•  Il diagramma degli stati e transizioni è sempre corredato da detta specifica che ne

chiarisce in dettaglio la semantica.

29

Progettazione del Software - Diagrammi degli stati e delle transizioni 30

Diagramma delle classi

PlayList Brano 0..* 0..* contiene

{ordered}

Player

Nome: String

DurataTotale():Int

Nome: String
Durata:Int
NomeFile: String

•  Consideriamo il seguente diagramma delle classi:
•  PlayList e Brano li abbiamo già incontrati in precedenza
•  Player è una classe che non contiene alcun dato (ma a cui è associato un

diagramma stati e transizioni

Vedi diagramma degli stati
e delle transizioni

Vedi diagramma degli
stati e delle transizioni

Progettazione del Software - Diagrammi degli stati e delle transizioni 31

Diagrammi degli stati e delle transizioni

Esecuzione
play(player)[playlist non vuota]/playSong{dest:player}(br)

Playlist

Attesa
reset/stopSong{dest:player}

done[ci sono ancora brani da ascoltare]/playSong{dest:player}(br)

done[non ci sono più brani da ascoltare]

Esecuzione
playSong{mitt:playlist}(br)

Player

stopSong

Pronto
/ done{dest:playlist}

Si può modificare una
PlayList solo quando
è nello stato Attesa

Specifica degli stati di PlayList

Progettazione del Software - Diagrammi degli stati e delle transizioni 32

InizioSpecificaStatiClasse PlayList

 Stato: {Attesa, Esecuzione}
 Variabili di stato ausiliarie:
 player: Player
 prossimobrano: intero

 Stato iniziale:
 statoCorrente = Attesa
 player = --
 prossimobrano = --

FineSpecifica

“--” sta per non definito

“statoCorrente” denota lo stato
attuale dell’oggetto.

Viene aggiornato automaticamente
facendo transizioni

Specifica delle transizioni di PlayList

Progettazione del Software - Diagrammi degli stati e delle transizioni 33

InizioSpecificaTransizioniClasse PlayList

 Transizione: Attesa! Esecuzione
 play(player)[playlist non vuota]/playSong{dest:player}(br)

 Evento: play(player:Player)

 Condizione: this.contiene non vuoto

 Azione:
 pre: nessuna
 post: nuovoevento = playSong{mitt = this, dest = player}(br: Brano)
 and
 this.player = player and
 this.prossimobrano = 0 and
 <this,br> in contiene and

 posizione(contiene(this,br)) = this.prossimobrano

 …
FineSpecifica

“evento” denota l’evento ricevuto,
“mitt” e “dest”, denotano il mittente
e il destinatario dell’evento.

Ovviamente affinchè l’evento sia
considerato deve essere
evento.dest=this

“nuovoevento” denota
l’evento da mandare
con l’azione

Specifica delle transizioni di PlayList

Progettazione del Software - Diagrammi degli stati e delle transizioni 34

InizioSpecificaTransizioniClasse PlayList

 …

 Transizione: Esecuzione! Esecuzione

 done[ci sono ancora brani da ascoltare]/playSong{dest:player}(br)

 Evento: done

 Condizione: this.prossimobrano < |{b | <this,b> in contiene}|

 Azione:
 pre: nessuna (implicitamente abbiamo sempre evento.mitt=this.player)
 post: nuovoevento =
 playSong{mitt = this, dest = this.player}(br: Brano) and
 this.player = Pre(this.player) and
 this.prossimobrano = Pre(this.prossimobrano)+1 and
 <this,br> in contiene and
 posizione(contiene(this,br)) = this.prossimobrano
 …
FineSpecifica

Specifica delle transizioni di PlayList

Progettazione del Software - Diagrammi degli stati e delle transizioni 35

InizioSpecificaTransizioniClasse PlayList

 …

 Transizione: Esecuzione! Attesa

 done[non ci sono brani da ascoltare]

 Evento: done

 Condizione: this.prossimobrano >= |{b | <this,b> in contiene}|

 Azione:
 pre: nessuna
 post: this.prossimobrano = -- and
 this.player = --

 …
FineSpecifica

Specifica delle transizioni di PlayList

Progettazione del Software - Diagrammi degli stati e delle transizioni 36

InizioSpecificaTransizioniClasse PlayList

 …

 Transizione: Esecuzione! Attesa

 reset/stopSong{dest:player}

 Evento: reset

 Condizione: nessuna

 Azione:
 pre: nessuna
 post: nuovoevento = stopSong{mitt = this, dest = Pre(this.player)}
 this.prossimobrano = -- and
 this.player = --

FineSpecifica

Specifica degli stati di Player

Progettazione del Software - Diagrammi degli stati e delle transizioni 37

InizioSpecificaStatiClasse Player

 Stato: {Pronto, Esecuzione}
 Variabili di stato ausiliarie:
 playlist: PlayList
 brano: Brano

 Stato iniziale:
 statoCorrente = Pronto
 playlist = --
 brano = --

FineSpecifica

Specifica delle transizioni di Player

Progettazione del Software - Diagrammi degli stati e delle transizioni 38

InizioSpecificaTransizioniClasse Player

 Transizione: Pronto! Esecuzione
 playSong{mitt:playlist}(br)

 Evento: playSong(br:Brano)

 Condizione: nessuna

 Azione:
 pre: nessuna
 post: this.playlist = evento.mitt and
 this.brano = br

 …
FineSpecifica

Specifica delle transizioni di Player

Progettazione del Software - Diagrammi degli stati e delle transizioni 39

InizioSpecificaTransizioniClasse Player

 …

 Transizione: Esecuzione! Pronto

 / done{dest:playlist}

 Evento: evento interno generato da this stesso

 Condizione: nessuna

 Azione:
 pre: nessuna
 post: nuovoevento = done{mitt = this, dest = Pre(this.playlist)}
 this.playlist= -- and
 this.brano = --

 …
FineSpecifica

Specifica delle transizioni di Player

Progettazione del Software - Diagrammi degli stati e delle transizioni 40

InizioSpecificaTransizioniClasse Player

 …

 Transizione: Esecuzione! Pronto

 stopSong

 Evento: stopSong

 Condizione: nessuna

 Azione:
 pre: evento.mitt = Pre(this.playlist)}
 post: this.playlist= -- and
 this.brano = --
FineSpecifica

