Conjunctive queries

Giuseppe De Giacomo

Universita di Roma "La Sapienza" `

Corso di Seminari di Ingegneria del Software: Data and Service Integration Laurea Specialistica in Ingegneria Informatica Universita degli Studi di Roma "La Sapienza" ` A.A. 2005-06

FOL queries

A FOL query is an (open) FOL formula.

Let ϕ be a FOL query with free variables (x_1, \ldots, x_k) , then we sometimes write it as $\phi(x_1, \ldots, x_k)$.

Given an interpretation $\mathcal I$, the assignments we are interested in are those that map the variables x_1, \ldots, x_k (and only those). We will write such assignment explicitly sometimes: i.e., $\alpha(x_i) = a_i$ ($i = 1, \ldots, k$), is written simply as $\langle a_1,\ldots,a_k\rangle.$

Now we define the answer to a query $\phi(x_1, \ldots, x_k)$ as follows

$$
\phi(x_1,\ldots,x_k)^{\mathcal{I}}=\{(a_1,\ldots,a_k)\mid \mathcal{I},\langle a_1,\ldots,a_k\rangle\models \phi(x_1,\ldots,x_k)\}
$$

Note: We will also use the notation: $\phi^{\mathcal{I}}$, keeping the free variables implicit, and $\phi(\mathcal{I})$ making apparent that ϕ becomes a functions from interpretations to set of tuples.

G. De Giacomo Conjunctive queries 2

Conjunctive queries (CQs)

^A conjunctive query (CQ) *q* is a query of the form

*[∃]y***.***conj* **(***x, y***)**

where $conj(\vec{x}, \vec{y})$ is a conjunction (an "and") of atoms and equalities, with free variables \vec{x} and \vec{y} .

- CQs are the most frequently asked queries
- CQs correspond to relational algebra Select-Project-Join (SPJ) queries

CQs: datalog notation

A conjunctive query $q = \exists \vec{y}.\text{conj}(\vec{x}, \vec{y})$ is denoted in datalog notation as

 $q(x') \leftarrow conj'(x', y')$

where $conj'(x', y')$ is the list of atoms in $conj(\vec{x}, \vec{y})$ obtained after having

equated the variables \vec{x} associating to the equalities in \vec{x} and (\vec{x}, \vec{x}) . As a equated the variables \vec{x}, \vec{y} according to the equalities in $conj(\vec{x}, \vec{y})$. As a result of such equality elimination, we have that x' and y' can actually contain
constants and multiple accurrences of the same variable constants and multiple occurrences of the same variable.

We call $q(x')$ the head of *q*, and $conj'(x', y')$ the body. Moreover, we call the variables in x' the distinguished variables of q and those in y' the non-distinguished variables.

Example

- Consider an interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, E^{\mathcal{I}})$, where $E^{\mathcal{I}}$ is a binary relation *note that such interpretation is a (directed) graph*;
- the following CQ *q* returns all nodes that participate to a triangle in the graph:

$$
\exists y, z. E(x, y) \land E(y, z) \land E(z, x)
$$

• the query *q* in datalog notation becomes:

$$
q(x) \leftarrow E(x,y), E(y,z), E(z,x)
$$

• the query *q* in SQL is $(E(x, y) \rightarrow E \text{dge}(F, S))$:

```
select e1.F
from Edge e1, Edge e2, Edge e3
where e1.S=e2.F, e2.S=e3.F, e3.S=e1.F
```
G. De Giacomo **Constantine Constantine Conjunctive queries** 6.

Nondeterministic CQ evaluation algorithm

```
boolean ConjTruth(I, \alpha, \exists \vec{y}. conj(\vec{x}, \vec{y})) {
   GUESS assignment \alpha[\vec{y} \mapsto \vec{a}] {
         \text{return } \text{Truth}(\mathcal{I}, \alpha[\vec{x} \mapsto \vec{a}], \text{conj}(\vec{x}, \vec{y}));
}
boolean Truth(\mathcal{I}, \alpha, \phi)) {
    if (\phi is t_1 = t_2)return TermEval(t_1) = TermEval(t_2);
    if(\phi is P(t,1,\ldots,t_k))
         return P^{\dagger} \mathcal{I} (TermEval(t<sub>-1</sub>),...,TermEval(t<sub>-</sub>k));
    if(\phi is \psi \wedge \psi')
          return Truth(\mathcal{I}, \alpha, \psi) \land Truth(\mathcal{I}, \alpha, \psi');
}
```
G. De Giacomo Conjunctive queries 6

```
o \in \Delta^{\mathcal{I}} TermEval(\mathcal{I}, \alpha, t) {
    if(t is a variable x) return \alpha(x);
    if(t is a constant c) return c^T;
}
```
CQ evaluation: combined, data, query complexity

Combined complexity: complexity of $\{\langle \mathcal{I}, \alpha, q \rangle \mid \mathcal{I}, \alpha \models q\}$, i.e., interpretation, tuple, and query part of the input:

- time: exponential
- space: NP *(NP-complete –see below for hardness)*

Data complexity: complexity of $\{\langle \mathcal{I}, \alpha \rangle \mid \mathcal{I}, \alpha \models q\}$, i.e., interpretation fixed (pot port of the input): (not part of the input):

- time: polynomial
- space: LOGSPACE *(* LOGSPACE*-complete –see [Vardi82] for hardness)*

Query complexity: complexity of $\{\langle \alpha, q \rangle | \mathcal{I}, \alpha \models q\}$, i.e., query fixed (not part of the input):

G. De Giacomo Conjunctive queries 8

• time: exponential

• space: NP *(NP-complete –see below for hardness)*

3-colorability

3-colorability: Given a graph $G = (V, E)$, is it 3-colorable? Thm: 3-colorability is NP-complete.

can we deduce 3-colorability to conjunctive query evaluation? **YES**

G. De Giacomo **Conjunctive queries** Conjunctive queries **Constantine Constantine Constanti**

Reduction from 3-colorability to CQ evaluation

Let $G = (V, E)$ be a graph, we define:

• Interpretation: $\mathcal{I} = (\Delta^{\mathcal{I}}, E^{\mathcal{I}})$ where:

$$
-\Delta^{\mathcal{I}}=\{r,g,b\}
$$

- $E^{\mathcal{I}} = \{(r, g), (g, r), (r, b), (b, r), (b, g), (g, b)\}$
- Conjunctive query: Let $V = \{x_1, \ldots, x_n\}$, then consider the boolean conjunctive query *q* defined as:

$$
\exists x_1, \ldots, x_n. \bigwedge_{(x_i, x_j) \in E} E(x_i, x_j) \wedge E(x_j, x_i)
$$

Thm: *G* is 3-colorable iff $\mathcal{I} \models q$.

Thm: CQ evaluation is NP-hard in query and combined complexity.

G. De Giacomo Conjunctive queries 11

Homomorphism

Let $\mathcal{I} = (\Delta^{\mathcal{I}}, P^{\mathcal{I}}, \ldots, c^{\mathcal{I}}, \ldots)$ and $\mathcal{J} = (\Delta^{\mathcal{J}}, P^{\mathcal{J}}, \ldots, c^{\mathcal{J}}, \ldots)$ be two interpretation over the same alphabet (for simplicity we consider solver interpretation over the same alphabet (for simplicity, we consider only constants as functions). Then an homomorphism form $\mathcal I$ to $\mathcal J$ is a mapping $h: \Delta^{\mathcal{I}} \rightarrow \Delta^{\mathcal{J}}$ such that:

- $h(c^{\mathcal{I}}) = c^{\mathcal{J}}$
- $h(P^{\mathcal{I}}(a_1, \ldots, a_k)) = P^{\mathcal{I}}(h(a_1), \ldots, h(a_k))$

Note: An isomorphism is a homomorphism, which is one-to-one and onto.

Thm: FOL is unable to distinguish between interpretations that are isomorphic – any standard book on logic.

G. De Giacomo **Conjunctive queries** Conjunctive queries **12**

Recognition problem and boolean query evaluation

Consider the recognition problem associated to the evaluation of a query *q*, then

$$
\mathcal{I}, \alpha \models q(\vec{x}) \text{ iff } \mathcal{I}' \models q(\vec{c})
$$

where \mathcal{I}' is identical to $\mathcal I$ but includes a new constant c which is interpreted as $c^{\mathcal{I}'} = \alpha(x).$

That is, we can reduce the recognition problem to the evaluation of a boolean query.

Canonical interpretation of a (boolean) CQ

Let *q* be a conjunctive query

$$
\exists x_1,\ldots,x_n.comj
$$

then the canonical interpretation I_q associated with q is the interpretation $\mathcal{I}_q = (\Delta^{\mathcal{I}_q}, P^{\mathcal{I}_q}, \ldots, c^{\mathcal{I}_q}, \ldots)$, where

- $\Delta^{\mathcal{I}_q} = \{x_1, \ldots, x_n\} \cup \{c \mid c \text{ constant occurring in } q\}$, i.e., all the variables and constants
- $c^{I_q} = c$ for all constants in q
- $(t_1, t_2) \in P^{\mathcal{I}_q}$ iff the atom $P(t_1, t_2)$ occurs in q

Sometime the procedure for obtaining the canonical interpretation is call freezing of q.

G. De Giacomo **Conjunctive queries** Conjunctive queries **14**

Example Given the boolean query *q*:

$$
q(c) \leftarrow E(c,y), E(y,z), E(z,c)
$$

the canonical structure \mathcal{I}_q is defined as

$$
\mathcal{I}_q~=~(\Delta^{\mathcal{I}_q},E^{\mathcal{I}_q},c^{\mathcal{I}_q})
$$

where

$$
\bullet\;\, \Delta^{\mathcal{I}_q}=\{y,z,c\}
$$

$$
\bullet \ c^{\mathcal{I}_q}=c
$$

•
$$
E^{\mathcal{I}_q} = \{(c, y), (y, z), (z, c)\}
$$

Canonical interpretation and query evaluation

Thm [Chandra&Merlin77]: For (boolean) CQs, $\mathcal{I} \models q$ iff there exists an homomorphism from \mathcal{I}_q to \mathcal{I} .

Proof.

 \Rightarrow Let $\mathcal{I} \models q$, let α be the assignment to an existential variables that makes the query true in \mathcal{I} , and let $\bar{\alpha}$ be its extension to constants. Then $\bar{\alpha}$ is an homomorphism from \mathcal{I}_q to \mathcal{I} .

 \Leftrightarrow Let *h* be an homomorphism from \mathcal{I}_q to \mathcal{I} , then restricting *h* to the variables only we obtain an assignment of the existential variables that makes *^q* true in *I*. □

In other words (the recognition problem associated to) query evaluation can be reduced to finding an homomorphism.

G. De Giacomo **Conjunctive queries** Conjunctive queries **Conjunctive queries** 16

Finding an homomorphism between two interpretations (aka relational structure) is also known as solving a CSP (Constraint Satisfaction Problem), well-studied in AI –see also [Kolaitis&Vardi98].

Query containment

Query containment: given two FOL queries ϕ and ψ check whether $\phi \subset \psi$ for all interpretations $\mathcal I$ and all assignments α we have that

 $\mathcal{I}, \alpha \models \phi$ implies $\mathcal{I}, \alpha \models \psi$

(In logical terms check whether $\phi \models \psi$.)

Note: of special interest in query optimization.

Thm: For FOL queries, query containment is undecidible.

Proof: Reduction from FOL logical implication.□

G. De Giacomo **Conjunctive queries** Conjunctive queries **Constantine Conjunctive Queries** 18

Query containment for CQs

For CQs, query containment can be reduced to query evaluation!

Step 1 – freeze the free variables: $q(\vec{x}) \subseteq q'(\vec{x})$ iff

- $\mathcal{I}, \alpha \models q(\vec{x})$ implies $\mathcal{I}, \alpha \models q'(\vec{x})$, for all \mathcal{I} and α ; or equivalently
- $\mathcal{I}' \models q(\vec{c})$ implies $\mathcal{I}' \models q'(\vec{c})$, for all \mathcal{I}' , where \vec{c} are new constants, and \mathcal{I}' extends \mathcal{I} to the new constants as follows \mathcal{I}' \mathcal{I}' extends \mathcal{I} to the new constants as follows $c^{\mathcal{I}'} = \alpha(x)$.

Step 2 – construct the canonical intepretation of the CQ on the left $q(\vec{c})$ consider the canonical interpretation $\mathcal{I}_{\boldsymbol{q}(\vec{c})}$...

Step 3 – evaluate the CQ on the right $q'(\vec{c})$ on $\mathcal{I}_{q(\vec{c})}$

.... check whether $\mathcal{I}_{q(\vec{c})} \models q'(\vec{c})$.

Query containment for CQs (cont.)

Thm [Chandra&Merlin77]: For CQs, $q(\vec{x}) \subseteq q'(\vec{x})$ iff $\mathcal{I}_{q(\vec{c})} \models q'(\vec{c})$, where \vec{c} are new constants.

Proof.

- \Rightarrow Assume that $q(\vec{c}) \subseteq q'(\vec{c})$:
	- since $\mathcal{I}_{q(\vec{c})} \models q(\vec{c})$ it follows that $\mathcal{I}_{q(\vec{c})} \models q'(\vec{c})$.
- \Leftarrow Assume that $\mathcal{I}_{q(\vec{c})} \models q'(\vec{c})$.
	- by Thm[[]Chandra&Merlin77] on homomorphism, for every $\mathcal I$ such that $\mathcal{I} \models q(\vec{c})$ there exists an homomorphism h from $\mathcal{I}_{q(\vec{c})}$ to \mathcal{I} ;
	- on the other hand, since $\mathcal{I}_{q(\vec{c})} \models q'(\vec{c})$, again by Thm[Chandra&Merlin77]

	on homomorphism, there exists an homomorphism h' from \mathcal{I} , the \mathcal{I} . on homomorphism, there exists an homomorphism h' from $\mathcal{I}_{q'(\vec{c})}$ to $\mathcal{I}_{q(\vec{c})}$;
	- the mapping *h ◦ h-* obtained composing *h* and *h-* is an homomorphism

G. De Giacomo Conjunctive queries 20

from *I^q-***(***-^c***)** to *I*. Hence, once again for Thm[Chandra&Merlin77] on homomorphism, $\mathcal{I} \models q'(\vec{c})$.

So we can conclude $q(\vec{c}) \subseteq q'(\vec{c})$. \Box

Thm: Containment of CQs is NP-complete.

Union of conjunctive queries (UCQs)

^A union of conjunctive queries (UCQ) *q* is a query of the form

$$
\bigvee_{i=1,\ldots,n}\exists \vec{y_i}.conj_i(\vec{x},\vec{y_i})
$$

where each $conj_i(\vec{x}, \vec{y_i})$ is, as before, a conjunction of atoms and equalities with free variables \vec{x} and \vec{y}_i .

Note: Obviously, conjunctive queries are a subset of union of conjunctive queries.

G. De Giacomo Conjunctive queries 22

UCQs: datalog notation

The datalog notation is then extended to union of conjunctive queries as follows. A union of conjunctive queries

$$
q~=~\bigvee\limits_{i=1,...,n}\exists \vec{y_i} . conj_i(\vec{x}, \vec{y_i})
$$

is denoted in datalog notation as

$$
q=\set{q_1,\ldots,q_n}
$$

where each *^qⁱ* is the datalog expression corresponding to the conjunctive query $q_i = \{\vec{x} \mid \exists \vec{y_i}. conj_i(\vec{x}, \vec{y_i})\}.$

UCQs: query evaluation

Form the definition of FOL query we have that:

$$
\mathcal{I}, \alpha \models \bigvee\limits_{i=1,...,n} \exists \vec{y_i} . conj_i(\vec{x}, \vec{y_i})
$$

iff

 $\mathcal{I}, \alpha \models \exists \vec{y_i}.\text{conj}_i(\vec{x}, \vec{y_i})$ for some $i = 1, \ldots, n$.

Hence to evaluate a UCQ *^q*, we simply evaluate a number (linear in the size of *q* of conjunctive queries in isolation.

Hence, evaluating UCQs has the same complexity of evaluating CQs.

G. De Giacomo Conjunctive queries 24

UCQs: combined, data, query complexity

Combined complexity: complexity of $\{\langle \mathcal{I}, \alpha, q \rangle \mid \mathcal{I}, \alpha \models q\}$, i.e., interpretation, tuple, and query part of the input:

- time: exponential
- space: NP-complete

Data complexity: complexity of $\{\langle \mathcal{I}, \alpha \rangle \mid \mathcal{I}, \alpha \models q\}$, i.e., interpretation fixed (pot port of the input): (not part of the input):

- time: polynomial
- space: LOGSPACE-complete

Query complexity: complexity of $\{\langle \alpha, q \rangle | \mathcal{I}, \alpha \models q\}$, i.e., query fixed (not part of the input):

- time: exponential
- space: NP-complete

G. De Giacomo Conjunctive queries 26

Query containment for UCQs

Thm: For UCQs, $\{q_1,\ldots,q_k\}\subseteq \{q'_1,\ldots,q'_n\}$ iff for all q_i there is a q'_j such
that $x\in \mathbb{Z}$ that $q_i \subseteq q'_j$.

Proof.

⇐ Obvious.

⇒ If the containment holds, then we have

 $\{q_1(\vec{c}), \ldots, q_k(\vec{c})\} \subseteq \{q'_1(\vec{c}), \ldots, q'_n(\vec{c})\}$, where \vec{c} are new variables:

- now consider $\mathcal{I}_{q_i(\vec{c})}$, we have $\mathcal{I}_{q_i(\vec{c})} \models q_i(\vec{c})$, and hence $\mathcal{I}_{q_i}(\vec{c}) \models q_i(\vec{c})$, and hence $\mathcal{I}_{q_i(\vec{c})} \models \{q_1(\vec{c}), \ldots, q_k(\vec{c})\};$
- by the containment we have that $\mathcal{I}_{q_i(\vec{c})} \models \{q'_1(\vec{c}), \ldots, q'_n(\vec{c})\}$, that is
there exists a $q'_i(\vec{c})$ such that $\mathcal{I}_{q_i(\vec{c})}$ there exists a $q_j'(\vec{c})$ such that $\mathcal{I}_{q_i(\vec{c})} \models q_j'(\vec{c})$;
- hence, by the Thm[Chandra&Merlin77] on containment of CQs, we have

that q_i ⊆ q'_j .□

G. De Giacomo Conjunctive queries 28