
Conjunctive queries

Giuseppe De Giacomo

Università di Roma “La Sapienza”

Corso di Seminari di Ingegneria del Software:

Data and Service Integration

Laurea Specialistica in Ingegneria Informatica

Università degli Studi di Roma “La Sapienza”

A.A. 2005-06

FOL queries

A FOL query is an (open) FOL formula.

Let φ be a FOL query with free variables (x1, . . . , xk), then we sometimes
write it as φ(x1, . . . , xk).

Given an interpretation I, the assignments we are interested in are those that
map the variables x1, . . . , xk (and only those). We will write such assignment
explicitly sometimes: i.e., α(xi) = ai (i = 1, . . . , k), is written simply as
〈a1, . . . , ak〉.

Now we define the answer to a query φ(x1, . . . , xk) as follows

φ(x1, . . . , xk)
I = {(a1, . . . , ak) | I, 〈a1, . . . , ak〉 |= φ(x1, . . . , xk)}

G. De Giacomo Conjunctive queries 1

Note: We will also use the notation: φI, keeping the free variables implicit, and

φ(I) making apparent that φ becomes a functions from interpretations to set

of tuples.

G. De Giacomo Conjunctive queries 2

Conjunctive queries (CQs)

A conjunctive query (CQ) q is a query of the form

∃�y.conj (�x, �y)

where conj (�x, �y) is a conjunction (an “and”) of atoms and equalities, with free

variables �x and �y.

• CQs are the most frequently asked queries

• CQs correspond to relational algebra Select-Project-Join (SPJ) queries

G. De Giacomo Conjunctive queries 3

CQs: datalog notation

A conjunctive query q = ∃�y.conj (�x, �y) is denoted in datalog notation as

q(�x′) ← conj ′(�x′, �y′)

where conj′(�x′, �y′) is the list of atoms in conj (�x, �y) obtained after having

equated the variables �x, �y according to the equalities in conj (�x, �y). As a

result of such equality elimination, we have that �x′ and �y′ can actually contain

constants and multiple occurrences of the same variable.

We call q(�x′) the head of q, and conj ′(�x′, �y′) the body. Moreover, we call the

variables in �x′ the distinguished variables of q and those in �y′ the

non-distinguished variables.

G. De Giacomo Conjunctive queries 4

Example

• Consider an interpretation I = (ΔI, EI), where EI is a binary relation –
note that such interpretation is a (directed) graph;

• the following CQ q returns all nodes that participate to a triangle in the
graph:

∃y, z.E(x, y) ∧ E(y, z) ∧ E(z, x)

• the query q in datalog notation becomes:

q(x) ← E(x, y), E(y, z), E(z, x)

• the query q in SQL is (E(x, y) � Edge(F,S)):

select e1.F

from Edge e1, Edge e2, Edge e3

where e1.S=e2.F, e2.S=e3.F, e3.S=e1.F

G. De Giacomo Conjunctive queries 5

Nondeterministic CQ evaluation algorithm

boolean ConjTruth(I,α,∃�y. conj(�x, �y)) {
GUESS assignment α[�y �→ �a] {

return Truth(I,α[�x �→ �a],conj (�x, �y));

}

boolean Truth(I,α,φ)) {
if(φ is t 1 = t 2)

return TermEval(t 1) = TermEval(t 2);

if(φ is P (t 1, . . . , t k))

return PˆI(TermEval(t 1),...,TermEval(t k));

if(φ is ψ ∧ ψ′)

return Truth(I,α,ψ) ∧ Truth(I,α,ψ′);

}

G. De Giacomo Conjunctive queries 6

o ∈ ΔI TermEval(I,α,t) {
if(t is a variable x) return α(x);

if(t is a constant c) return cˆI;
}

G. De Giacomo Conjunctive queries 7

CQ evaluation: combined, data, query complexity

Combined complexity: complexity of {〈I, α, q〉 | I, α |= q}, i.e.,
interpretation, tuple, and query part of the input:

• time: exponential

• space: NP (NP-complete –see below for hardness)

Data complexity: complexity of {〈I, α〉 | I, α |= q}, i.e., interpretation fixed
(not part of the input):

• time: polynomial

• space: LOGSPACE (LOGSPACE-complete –see [Vardi82] for hardness)

Query complexity: complexity of {〈α, q〉 | I, α |= q}, i.e., query fixed (not
part of the input):

G. De Giacomo Conjunctive queries 8

• time: exponential

• space: NP (NP-complete –see below for hardness)

G. De Giacomo Conjunctive queries 9

3-colorability

3-colorability: Given a graph G = (V, E), is it 3-colorable?

Thm: 3-colorability is NP-complete.

can we deduce 3-colorability to conjunctive query evaluation?

YES

G. De Giacomo Conjunctive queries 10

Reduction from 3-colorability to CQ evaluation

Let G = (V, E) be a graph, we define:

• Interpretation: I = (ΔI, EI) where:

– ΔI = {r, g, b}
– EI = {(r, g), (g, r), (r, b), (b, r), (b, g), (g, b)}

• Conjunctive query: Let V = {x1, . . . , xn}, then consider the boolean
conjunctive query q defined as:

∃x1, . . . , xn.
∧

(xi,xj)∈E

E(xi, xj) ∧ E(xj, xi)

Thm: G is 3-colorable iff I |= q.

Thm: CQ evaluation is NP-hard in query and combined complexity.

G. De Giacomo Conjunctive queries 11

Homomorphism

Let I = (ΔI, P I, . . . , cI, . . .) and J = (ΔJ , P J , . . . , cJ , . . .) be two

interpretation over the same alphabet (for simplicity, we consider only

constants as functions). Then an homomorphism form I to J is a mapping

h : ΔI → ΔJ such that:

• h(cI) = cJ

• h(P I(a1, . . . , ak)) = P J (h(a1), . . . , h(ak))

Note: An isomorphism is a homomorphism, which is one-to-one and onto.

Thm: FOL is unable to distinguish between interpretations that are isomorphic

– any standard book on logic.

G. De Giacomo Conjunctive queries 12

Recognition problem and boolean query evaluation

Consider the recognition problem associated to the evaluation of a query q,

then

I, α |= q(�x) iff I ′ |= q(�c)

where I ′ is identical to I but includes a new constant c which is interpreted as

cI′
= α(x).

That is, we can reduce the recognition problem to the evaluation of a boolean

query.

G. De Giacomo Conjunctive queries 13

Canonical interpretation of a (boolean) CQ

Let q be a conjunctive query

∃x1, . . . , xn.conj

then the canonical interpretation Iq associated with q is the interpretation
Iq = (ΔIq , P Iq , . . . , cIq , . . .), where

• ΔIq = {x1, . . . , xn} ∪ {c | c constant occurring in q} , i.e., all the
variables and constants

• cIq = c for all constants in q

• (t1, t2) ∈ P Iq iff the atom P (t1, t2) occurs in q

Sometime the procedure for obtaining the canonical interpretation is call
freezing of q.

G. De Giacomo Conjunctive queries 14

Example Given the boolean query q:

q(c) ← E(c, y), E(y, z), E(z, c)

the canonical structure Iq is defined as

Iq = (ΔIq , EIq , cIq)

where

• ΔIq = {y, z, c}
• cIq = c

• EIq = {(c, y), (y, z), (z, c)}

G. De Giacomo Conjunctive queries 15

Canonical interpretation and query evaluation

Thm [Chandra&Merlin77]: For (boolean) CQs, I |= q iff there exists an

homomorphism from Iq to I.

Proof.

⇒ Let I |= q, let α be the assignment to an existential variables that makes

the query true in I, and let ᾱ be its extension to constants. Then ᾱ is an

homomorphism from Iq to I.

⇐ Let h be an homomorphism from Iq to I, then restricting h to the variables

only we obtain an assignment of the existential variables that makes q true in

I. �

In other words (the recognition problem associated to) query evaluation can be

reduced to finding an homomorphism.

G. De Giacomo Conjunctive queries 16

Finding an homomorphism between two interpretations (aka relational

structure) is also known as solving a CSP (Constraint Satisfaction Problem),

well-studied in AI –see also [Kolaitis&Vardi98].

G. De Giacomo Conjunctive queries 17

Query containment

Query containment: given two FOL queries φ and ψ check whether φ ⊆ ψ for

all interpretations I and all assignments α we have that

I, α |= φ implies I, α |= ψ

(In logical terms check whether φ |= ψ.)

Note: of special interest in query optimization.

Thm: For FOL queries, query containment is undecidible.

Proof: Reduction from FOL logical implication.�

G. De Giacomo Conjunctive queries 18

Query containment for CQs

For CQs, query containment can be reduced to query evaluation!

Step 1 – freeze the free variables: q(�x) ⊆ q′(�x) iff

• I, α |= q(�x) implies I, α |= q′(�x), for all I and α; or equivalently

• I ′ |= q(�c) implies I ′ |= q′(�c), for all I ′, where �c are new constants, and
I ′ extends I to the new constants as follows cI′

= α(x).

Step 2 – construct the canonical intepretation of the CQ on the left q(�c)

consider the canonical interpretation Iq(�c) ...

Step 3 – evaluate the CQ on the right q′(�c) on Iq(�c)

.... check whether Iq(�c) |= q′(�c).

G. De Giacomo Conjunctive queries 19

Query containment for CQs (cont.)

Thm [Chandra&Merlin77]: For CQs, q(�x) ⊆ q′(�x) iff Iq(�c) |= q′(�c), where �c

are new constants.

Proof.

⇒ Assume that q(�c) ⊆ q′(�c):

• since Iq(�c) |= q(�c) it follows that Iq(�c) |= q′(�c).

⇐ Assume that Iq(�c) |= q′(�c).

• by Thm[Chandra&Merlin77] on homomorphism, for every I such that
I |= q(�c) there exists an homomorphism h from Iq(�c) to I;

• on the other hand, since Iq(�c) |= q′(�c), again by Thm[Chandra&Merlin77]
on homomorphism, there exists an homomorphism h′ from Iq′(�c) to Iq(�c);

• the mapping h ◦ h′ obtained composing h and h′ is an homomorphism

G. De Giacomo Conjunctive queries 20

from Iq′(�c) to I. Hence, once again for Thm[Chandra&Merlin77] on

homomorphism, I |= q′(�c).

So we can conclude q(�c) ⊆ q′(�c). �

Thm: Containment of CQs is NP-complete.

G. De Giacomo Conjunctive queries 21

Union of conjunctive queries (UCQs)

A union of conjunctive queries (UCQ) q is a query of the form
∨

i=1,...,n

∃�yi.conj i(�x, �yi)

where each conj i(�x, �yi) is, as before, a conjunction of atoms and equalities

with free variables �x and �yi.

Note: Obviously, conjunctive queries are a subset of union of conjunctive

queries.

G. De Giacomo Conjunctive queries 22

UCQs: datalog notation

The datalog notation is then extended to union of conjunctive queries as

follows. A union of conjunctive queries

q =
∨

i=1,...,n

∃�yi.conj i(�x, �yi)

is denoted in datalog notation as

q = { q1, . . . , qn }

where each qi is the datalog expression corresponding to the conjunctive

query qi = { �x | ∃�yi.conj i(�x, �yi) }.

G. De Giacomo Conjunctive queries 23

UCQs: query evaluation

Form the definition of FOL query we have that:

I, α |=
∨

i=1,...,n

∃�yi.conj i(�x, �yi)

iff

I, α |= ∃�yi.conj i(�x, �yi) for some i = 1, . . . , n.

Hence to evaluate a UCQ q, we simply evaluate a number (linear in the size of

q of conjunctive queries in isolation.

Hence, evaluating UCQs has the same complexity of evaluating CQs.

G. De Giacomo Conjunctive queries 24

UCQs: combined, data, query complexity

Combined complexity: complexity of {〈I, α, q〉 | I, α |= q}, i.e.,
interpretation, tuple, and query part of the input:

• time: exponential

• space: NP-complete

Data complexity: complexity of {〈I, α〉 | I, α |= q}, i.e., interpretation fixed
(not part of the input):

• time: polynomial

• space: LOGSPACE-complete

Query complexity: complexity of {〈α, q〉 | I, α |= q}, i.e., query fixed (not
part of the input):

G. De Giacomo Conjunctive queries 25

• time: exponential

• space: NP-complete

G. De Giacomo Conjunctive queries 26

Query containment for UCQs

Thm: For UCQs, {q1, . . . , qk} ⊆ {q′
1, . . . , q′

n} iff for all qi there is a q′
j such

that qi ⊆ q′
j.

Proof.

⇐ Obvious.

⇒ If the containment holds, then we have
{q1(�c), . . . , qk(�c)} ⊆ {q′

1(�c), . . . , q′
n(�c)}, where �c are new variables:

• now consider Iqi(�c), we have Iqi(�c) |= qi(�c), and hence
Iqi(�c) |= {q1(�c), . . . , qk(�c)};

• by the containment we have that Iqi(�c) |= {q′
1(�c), . . . , q′

n(�c)}, that is
there exists a q′

j(�c) such that Iqi(�c) |= q′
j(�c);

• hence, by the Thm[Chandra&Merlin77] on containment of CQs, we have

G. De Giacomo Conjunctive queries 27

that qi ⊆ q′
j.�

G. De Giacomo Conjunctive queries 28

