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FOL queries

A FOL query is an (open) FOL formula.

Let φ be a FOL query with free variables (x1, . . . , xk), then we sometimes
write it as φ(x1, . . . , xk).

Given an interpretation I, the assignments we are interested in are those that
map the variables x1, . . . , xk (and only those). We will write such assignment
explicitly sometimes: i.e., α(xi) = ai (i = 1, . . . , k), is written simply as
〈a1, . . . , ak〉.

Now we define the answer to a query φ(x1, . . . , xk) as follows

φ(x1, . . . , xk)
I = {(a1, . . . , ak) | I, 〈a1, . . . , ak〉 |= φ(x1, . . . , xk)}
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Note: We will also use the notation: φI, keeping the free variables implicit, and

φ(I) making apparent that φ becomes a functions from interpretations to set

of tuples.
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Conjunctive queries (CQs)

A conjunctive query (CQ) q is a query of the form

∃�y.conj (�x, �y)

where conj (�x, �y) is a conjunction (an “and”) of atoms and equalities, with free

variables �x and �y.

• CQs are the most frequently asked queries

• CQs correspond to relational algebra Select-Project-Join (SPJ) queries
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CQs: datalog notation

A conjunctive query q = ∃�y.conj (�x, �y) is denoted in datalog notation as

q(�x′) ← conj ′(�x′, �y′)

where conj′(�x′, �y′) is the list of atoms in conj (�x, �y) obtained after having

equated the variables �x, �y according to the equalities in conj (�x, �y). As a

result of such equality elimination, we have that �x′ and �y′ can actually contain

constants and multiple occurrences of the same variable.

We call q(�x′) the head of q, and conj ′(�x′, �y′) the body. Moreover, we call the

variables in �x′ the distinguished variables of q and those in �y′ the

non-distinguished variables.
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Example

• Consider an interpretation I = (ΔI, EI), where EI is a binary relation –
note that such interpretation is a (directed) graph;

• the following CQ q returns all nodes that participate to a triangle in the
graph:

∃y, z.E(x, y) ∧ E(y, z) ∧ E(z, x)

• the query q in datalog notation becomes:

q(x) ← E(x, y), E(y, z), E(z, x)

• the query q in SQL is (E(x, y) � Edge(F,S)):

select e1.F

from Edge e1, Edge e2, Edge e3

where e1.S=e2.F, e2.S=e3.F, e3.S=e1.F
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Nondeterministic CQ evaluation algorithm

boolean ConjTruth(I,α,∃�y. conj(�x, �y)) {
GUESS assignment α[�y �→ �a] {

return Truth(I,α[�x �→ �a],conj (�x, �y));

}

boolean Truth(I,α,φ)) {
if(φ is t 1 = t 2)

return TermEval(t 1) = TermEval(t 2);

if(φ is P (t 1, . . . , t k))

return PˆI(TermEval(t 1),...,TermEval(t k));

if(φ is ψ ∧ ψ′)

return Truth(I,α,ψ) ∧ Truth(I,α,ψ′);

}
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o ∈ ΔI TermEval(I,α,t) {
if(t is a variable x) return α(x);

if(t is a constant c) return cˆI;
}
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CQ evaluation: combined, data, query complexity

Combined complexity: complexity of {〈I, α, q〉 | I, α |= q}, i.e.,
interpretation, tuple, and query part of the input:

• time: exponential

• space: NP (NP-complete –see below for hardness)

Data complexity: complexity of {〈I, α〉 | I, α |= q}, i.e., interpretation fixed
(not part of the input):

• time: polynomial

• space: LOGSPACE ( LOGSPACE-complete –see [Vardi82] for hardness)

Query complexity: complexity of {〈α, q〉 | I, α |= q}, i.e., query fixed (not
part of the input):

G. De Giacomo Conjunctive queries 8

• time: exponential

• space: NP (NP-complete –see below for hardness)
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3-colorability

3-colorability: Given a graph G = (V, E), is it 3-colorable?

Thm: 3-colorability is NP-complete.

can we deduce 3-colorability to conjunctive query evaluation?

YES
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Reduction from 3-colorability to CQ evaluation

Let G = (V, E) be a graph, we define:

• Interpretation: I = (ΔI, EI) where:

– ΔI = {r, g, b}
– EI = {(r, g), (g, r), (r, b), (b, r), (b, g), (g, b)}

• Conjunctive query: Let V = {x1, . . . , xn}, then consider the boolean
conjunctive query q defined as:

∃x1, . . . , xn.
∧

(xi,xj)∈E

E(xi, xj) ∧ E(xj, xi)

Thm: G is 3-colorable iff I |= q.

Thm: CQ evaluation is NP-hard in query and combined complexity.
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Homomorphism

Let I = (ΔI, P I, . . . , cI, . . .) and J = (ΔJ , P J , . . . , cJ , . . .) be two

interpretation over the same alphabet (for simplicity, we consider only

constants as functions). Then an homomorphism form I to J is a mapping

h : ΔI → ΔJ such that:

• h(cI) = cJ

• h(P I(a1, . . . , ak)) = P J (h(a1), . . . , h(ak))

Note: An isomorphism is a homomorphism, which is one-to-one and onto.

Thm: FOL is unable to distinguish between interpretations that are isomorphic

– any standard book on logic.
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Recognition problem and boolean query evaluation

Consider the recognition problem associated to the evaluation of a query q,

then

I, α |= q(�x) iff I ′ |= q(�c)

where I ′ is identical to I but includes a new constant c which is interpreted as

cI′
= α(x).

That is, we can reduce the recognition problem to the evaluation of a boolean

query.
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Canonical interpretation of a (boolean) CQ

Let q be a conjunctive query

∃x1, . . . , xn.conj

then the canonical interpretation Iq associated with q is the interpretation
Iq = (ΔIq , P Iq , . . . , cIq , . . .), where

• ΔIq = {x1, . . . , xn} ∪ {c | c constant occurring in q} , i.e., all the
variables and constants

• cIq = c for all constants in q

• (t1, t2) ∈ P Iq iff the atom P (t1, t2) occurs in q

Sometime the procedure for obtaining the canonical interpretation is call
freezing of q.
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Example Given the boolean query q:

q(c) ← E(c, y), E(y, z), E(z, c)

the canonical structure Iq is defined as

Iq = (ΔIq , EIq , cIq)

where

• ΔIq = {y, z, c}
• cIq = c

• EIq = {(c, y), (y, z), (z, c)}
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Canonical interpretation and query evaluation

Thm [Chandra&Merlin77]: For (boolean) CQs, I |= q iff there exists an

homomorphism from Iq to I.

Proof.

⇒ Let I |= q, let α be the assignment to an existential variables that makes

the query true in I, and let ᾱ be its extension to constants. Then ᾱ is an

homomorphism from Iq to I.

⇐ Let h be an homomorphism from Iq to I, then restricting h to the variables

only we obtain an assignment of the existential variables that makes q true in

I. �

In other words (the recognition problem associated to) query evaluation can be

reduced to finding an homomorphism.
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Finding an homomorphism between two interpretations (aka relational

structure) is also known as solving a CSP (Constraint Satisfaction Problem),

well-studied in AI –see also [Kolaitis&Vardi98].
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Query containment

Query containment: given two FOL queries φ and ψ check whether φ ⊆ ψ for

all interpretations I and all assignments α we have that

I, α |= φ implies I, α |= ψ

(In logical terms check whether φ |= ψ.)

Note: of special interest in query optimization.

Thm: For FOL queries, query containment is undecidible.

Proof: Reduction from FOL logical implication.�
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Query containment for CQs

For CQs, query containment can be reduced to query evaluation!

Step 1 – freeze the free variables: q(�x) ⊆ q′(�x) iff

• I, α |= q(�x) implies I, α |= q′(�x), for all I and α; or equivalently

• I ′ |= q(�c) implies I ′ |= q′(�c), for all I ′, where �c are new constants, and
I ′ extends I to the new constants as follows cI′

= α(x).

Step 2 – construct the canonical intepretation of the CQ on the left q(�c)

consider the canonical interpretation Iq(�c) ...

Step 3 – evaluate the CQ on the right q′(�c) on Iq(�c)

.... check whether Iq(�c) |= q′(�c).
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Query containment for CQs (cont.)

Thm [Chandra&Merlin77]: For CQs, q(�x) ⊆ q′(�x) iff Iq(�c) |= q′(�c), where �c

are new constants.

Proof.

⇒ Assume that q(�c) ⊆ q′(�c):

• since Iq(�c) |= q(�c) it follows that Iq(�c) |= q′(�c).

⇐ Assume that Iq(�c) |= q′(�c).

• by Thm[Chandra&Merlin77] on homomorphism, for every I such that
I |= q(�c) there exists an homomorphism h from Iq(�c) to I;

• on the other hand, since Iq(�c) |= q′(�c), again by Thm[Chandra&Merlin77]
on homomorphism, there exists an homomorphism h′ from Iq′(�c) to Iq(�c);

• the mapping h ◦ h′ obtained composing h and h′ is an homomorphism
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from Iq′(�c) to I. Hence, once again for Thm[Chandra&Merlin77] on

homomorphism, I |= q′(�c).

So we can conclude q(�c) ⊆ q′(�c). �

Thm: Containment of CQs is NP-complete.
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Union of conjunctive queries (UCQs)

A union of conjunctive queries (UCQ) q is a query of the form
∨

i=1,...,n

∃�yi.conj i(�x, �yi)

where each conj i(�x, �yi) is, as before, a conjunction of atoms and equalities

with free variables �x and �yi.

Note: Obviously, conjunctive queries are a subset of union of conjunctive

queries.
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UCQs: datalog notation

The datalog notation is then extended to union of conjunctive queries as

follows. A union of conjunctive queries

q =
∨

i=1,...,n

∃�yi.conj i(�x, �yi)

is denoted in datalog notation as

q = { q1, . . . , qn }

where each qi is the datalog expression corresponding to the conjunctive

query qi = { �x | ∃�yi.conj i(�x, �yi) }.
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UCQs: query evaluation

Form the definition of FOL query we have that:

I, α |=
∨

i=1,...,n

∃�yi.conj i(�x, �yi)

iff

I, α |= ∃�yi.conj i(�x, �yi) for some i = 1, . . . , n.

Hence to evaluate a UCQ q, we simply evaluate a number (linear in the size of

q of conjunctive queries in isolation.

Hence, evaluating UCQs has the same complexity of evaluating CQs.
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UCQs: combined, data, query complexity

Combined complexity: complexity of {〈I, α, q〉 | I, α |= q}, i.e.,
interpretation, tuple, and query part of the input:

• time: exponential

• space: NP-complete

Data complexity: complexity of {〈I, α〉 | I, α |= q}, i.e., interpretation fixed
(not part of the input):

• time: polynomial

• space: LOGSPACE-complete

Query complexity: complexity of {〈α, q〉 | I, α |= q}, i.e., query fixed (not
part of the input):

G. De Giacomo Conjunctive queries 25



• time: exponential

• space: NP-complete
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Query containment for UCQs

Thm: For UCQs, {q1, . . . , qk} ⊆ {q′
1, . . . , q′

n} iff for all qi there is a q′
j such

that qi ⊆ q′
j.

Proof.

⇐ Obvious.

⇒ If the containment holds, then we have
{q1(�c), . . . , qk(�c)} ⊆ {q′

1(�c), . . . , q′
n(�c)}, where �c are new variables:

• now consider Iqi(�c), we have Iqi(�c) |= qi(�c), and hence
Iqi(�c) |= {q1(�c), . . . , qk(�c)};

• by the containment we have that Iqi(�c) |= {q′
1(�c), . . . , q′

n(�c)}, that is
there exists a q′

j(�c) such that Iqi(�c) |= q′
j(�c);

• hence, by the Thm[Chandra&Merlin77] on containment of CQs, we have
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that qi ⊆ q′
j.�
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