Conjunctive queries

Giuseppe De Giacomo Università di Roma "La Sapienza"

Corso di Seminari di Ingegneria del Software: Data and Service Integration Laurea Specialistica in Ingegneria Informatica Università degli Studi di Roma "La Sapienza" A.A. 2005-06

FOL queries

A FOL query is an (open) FOL formula.

Let ϕ be a FOL query with free variables (x_1, \ldots, x_k) , then we sometimes write it as $\phi(x_1, \ldots, x_k)$.

Given an interpretation \mathcal{I} , the assignments we are interested in are those that map the variables x_1, \ldots, x_k (and only those). We will write such assignment explicitly sometimes: i.e., $\alpha(x_i) = a_i$ $(i = 1, \ldots, k)$, is written simply as $\langle a_1, \ldots, a_k \rangle$.

Now we define the answer to a query $\phi(x_1,\ldots,x_k)$ as follows

$$\phi(x_1,\ldots,x_k)^{\mathcal{I}} = \{(a_1,\ldots,a_k) \mid \mathcal{I}, \langle a_1,\ldots,a_k \rangle \models \phi(x_1,\ldots,x_k)\}$$

Note: We will also use the notation: $\phi^{\mathcal{I}}$, keeping the free variables implicit, and $\phi(\mathcal{I})$ making apparent that ϕ becomes a functions from interpretations to set of tuples.

Conjunctive queries (CQs)

A conjunctive query (CQ) q is a query of the form

 $\exists \vec{y}.conj(\vec{x},\vec{y})$

where $conj(\vec{x}, \vec{y})$ is a conjunction (an "and") of atoms and equalities, with free variables \vec{x} and \vec{y} .

- CQs are the most frequently asked queries
- CQs correspond to relational algebra Select-Project-Join (SPJ) queries

CQs: datalog notation

A conjunctive query $q = \exists \vec{y}.conj(\vec{x},\vec{y})$ is denoted in datalog notation as

 $q(ec{x'}) \leftarrow conj'(ec{x'}, ec{y'})$

where $conj'(\vec{x'}, \vec{y'})$ is the list of atoms in $conj(\vec{x}, \vec{y})$ obtained after having equated the variables \vec{x}, \vec{y} according to the equalities in $conj(\vec{x}, \vec{y})$. As a result of such equality elimination, we have that $\vec{x'}$ and $\vec{y'}$ can actually contain constants and multiple occurrences of the same variable.

We call $q(\vec{x'})$ the head of q, and $conj'(\vec{x'}, \vec{y'})$ the body. Moreover, we call the variables in $\vec{x'}$ the distinguished variables of q and those in $\vec{y'}$ the non-distinguished variables.

Example

- Consider an interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, E^{\mathcal{I}})$, where $E^{\mathcal{I}}$ is a binary relation note that such interpretation is a (directed) graph;
- the following CQ q returns all nodes that participate to a triangle in the graph:

 $\exists y, z. E(x,y) \wedge E(y,z) \wedge E(z,x)$

• the query q in datalog notation becomes:

$$q(x) \leftarrow E(x,y), E(y,z), E(z,x)$$

• the query q in SQL is $(E(x, y) \rightsquigarrow Edge(F, S))$:

select e1.F
from Edge e1, Edge e2, Edge e3
where e1.S=e2.F, e2.S=e3.F, e3.S=e1.F

Nondeterministic CQ evaluation algorithm

```
 \begin{array}{ll} \text{boolean Truth}(\mathcal{I}, \alpha, \phi)) & \\ & \text{if}(\phi \text{ is } t_{-}1 & = & t_{-}2) \\ & \text{return TermEval}(t_{-}1) & = & \text{TermEval}(t_{-}2); \\ & \text{if}(\phi \text{ is } P(t_{-}1, \ldots, t_{-}k)) \\ & \text{return } P^{\uparrow}\mathcal{I}(\text{TermEval}(t_{-}1), \ldots, \text{TermEval}(t_{-}k)); \\ & \text{if}(\phi \text{ is } \psi \wedge \psi') \\ & \text{return Truth}(\mathcal{I}, \alpha, \psi) \wedge \text{Truth}(\mathcal{I}, \alpha, \psi'); \end{array}
```

```
o \in \Delta^{\mathcal{I}} TermEval(\mathcal{I}, \alpha, t) {
if (t is a variable x) return \alpha(x);
if (t is a constant c) return c^{\hat{\mathcal{I}}};
```

CQ evaluation: combined, data, query complexity	• time: exponential
Combined complexity: complexity of $\{\langle \mathcal{I}, \alpha, q \rangle \mid \mathcal{I}, \alpha \models q\}$, i.e., interpretation, tuple, and query part of the input:	• space: NP (NP-complete –see below for hardness)
• time: exponential	
• space: NP (NP-complete -see below for hardness)	
Data complexity: complexity of $\{\langle \mathcal{I}, \alpha \rangle \mid \mathcal{I}, \alpha \models q\}$, i.e., interpretation fixed (not part of the input): • time: polynomial • space: LOGSPACE (LOGSPACE-complete –see [Vardi82] for hardness)	
Query complexity: complexity of $\{\langle \alpha, q \rangle \mid \mathcal{I}, \alpha \models q\}$, i.e., query fixed (not part of the input):	
G. De Giacomo Conjunctive queries 8	G. De Giacomo Conjunctive queries 9

3-colorability

3-colorability: Given a graph G = (V, E), is it 3-colorable?

Thm: 3-colorability is NP-complete.

can we deduce 3-colorability to conjunctive query evaluation? $\ensuremath{\mathsf{YES}}$

Reduction from 3-colorability to CQ evaluation

Let G = (V, E) be a graph, we define:

- Interpretation: $\mathcal{I} = (\Delta^{\mathcal{I}}, E^{\mathcal{I}})$ where:
 - $-\Delta^{\mathcal{I}} = \{\mathbf{r}, g, \mathbf{b}\}$
 - $E^{\mathcal{I}} = \{(r,g), (g,r), (r,b), (b,r), (b,g), (g,b)\}$
- Conjunctive query: Let $V = \{x_1, \ldots, x_n\}$, then consider the boolean conjunctive query q defined as:

$$\exists x_1,\ldots,x_n.igwedge_{(x_i,x_j)\in E}E(x_i,x_j)\wedge E(x_j,x_i)$$

Thm: G is 3-colorable iff $\mathcal{I} \models q$.

Thm: CQ evaluation is NP-hard in query and combined complexity.

Homomorphism

Let $\mathcal{I} = (\Delta^{\mathcal{I}}, P^{\mathcal{I}}, \dots, c^{\mathcal{I}}, \dots)$ and $\mathcal{J} = (\Delta^{\mathcal{J}}, P^{\mathcal{J}}, \dots, c^{\mathcal{J}}, \dots)$ be two interpretation over the same alphabet (for simplicity, we consider only constants as functions). Then an homomorphism form \mathcal{I} to \mathcal{J} is a mapping $h : \Delta^{\mathcal{I}} \to \Delta^{\mathcal{J}}$ such that:

- $h(c^{\mathcal{I}}) = c^{\mathcal{J}}$
- $h(P^{\mathcal{I}}(a_1,\ldots,a_k)) = P^{\mathcal{J}}(h(a_1),\ldots,h(a_k))$

Note: An isomorphism is a homomorphism, which is one-to-one and onto.

Thm: FOL is unable to distinguish between interpretations that are isomorphic – any standard book on logic.

Recognition problem and boolean query evaluation

Consider the recognition problem associated to the evaluation of a query q, then

$$\mathcal{I}, lpha \models q(ec{x})$$
 iff $\mathcal{I}' \models q(ec{c})$

where \mathcal{I}' is identical to \mathcal{I} but includes a new constant c which is interpreted as $c^{\mathcal{I}'} = \alpha(x)$.

That is, we can reduce the recognition problem to the evaluation of a boolean query.

Canonical interpretation of a (boolean) CQ

Let q be a conjunctive query

 $\exists x_1, \ldots, x_n.conj$

then the canonical interpretation \mathcal{I}_q associated with q is the interpretation $\mathcal{I}_q = (\Delta^{\mathcal{I}_q}, P^{\mathcal{I}_q}, \dots, c^{\mathcal{I}_q}, \dots)$, where

- $\Delta^{\mathcal{I}_q} = \{x_1,\ldots,x_n\} \cup \{c \mid c ext{ constant occurring in } q\}$, i.e., all the variables and constants
- $c^{\mathcal{I}_q} = c$ for all constants in q
- ullet $(t_1,t_2)\in P^{\mathcal{I}_q}$ iff the atom $P(t_1,t_2)$ occurs in q

Sometime the procedure for obtaining the canonical interpretation is call freezing of q.

Example Given the boolean query q:

$$q(c) \leftarrow E(c,y), E(y,z), E(z,c)$$

the canonical structure \mathcal{I}_q is defined as

$${\mathcal I}_q \;=\; (\Delta^{{\mathcal I}_q}, E^{{\mathcal I}_q}, c^{{\mathcal I}_q})$$

where

- $\Delta^{\mathcal{I}_q} = \{y, z, c\}$
- $c^{\mathcal{I}_q} = c$
- $E^{\mathcal{I}_q} = \{(c,y), (y,z), (z,c)\}$

Canonical interpretation and query evaluation

Thm [Chandra&Merlin77]: For (boolean) CQs, $\mathcal{I} \models q$ iff there exists an homomorphism from \mathcal{I}_q to \mathcal{I} .

Proof.

 \Rightarrow Let $\mathcal{I} \models q$, let α be the assignment to an existential variables that makes the query true in \mathcal{I} , and let $\bar{\alpha}$ be its extension to constants. Then $\bar{\alpha}$ is an homomorphism from \mathcal{I}_q to \mathcal{I} .

 \leftarrow Let *h* be an homomorphism from \mathcal{I}_q to \mathcal{I} , then restricting *h* to the variables only we obtain an assignment of the existential variables that makes *q* true in \mathcal{I} . \Box

In other words (the recognition problem associated to) query evaluation can be reduced to finding an homomorphism.

G. De Giacomo

Query containment

Query containment: given two FOL queries ϕ and ψ check whether $\phi \subseteq \psi$ for all interpretations \mathcal{I} and all assignments α we have that

$$\mathcal{I}, \alpha \models \phi \text{ implies } \mathcal{I}, \alpha \models \psi$$

(In logical terms check whether $\phi \models \psi$.)

Note: of special interest in query optimization.

Thm: For FOL queries, query containment is undecidible. *Proof:* Reduction from FOL logical implication.□

Finding an homomorphism between two interpretations (aka relational structure) is also known as solving a CSP (Constraint Satisfaction Problem), well-studied in AI –see also [Kolaitis&Vardi98].

Query containment for CQs

For CQs, query containment can be reduced to query evaluation!

Step 1 – freeze the free variables: $q(\vec{x}) \subseteq q'(\vec{x})$ iff

- $\mathcal{I}, \alpha \models q(\vec{x})$ implies $\mathcal{I}, \alpha \models q'(\vec{x})$, for all \mathcal{I} and α ; or equivalently
- $\mathcal{I}' \models q(\vec{c})$ implies $\mathcal{I}' \models q'(\vec{c})$, for all \mathcal{I}' , where \vec{c} are new constants, and \mathcal{I}' extends \mathcal{I} to the new constants as follows $c^{\mathcal{I}'} = \alpha(x)$.

Step 2 – construct the canonical interpretation of the CQ on the left $q(\vec{c})$ consider the canonical interpretation $\mathcal{I}_{q(\vec{c})}$...

Step 3 – evaluate the CQ on the right $q'(\vec{c})$ on $\mathcal{I}_{q(\vec{c})}$ check whether $\mathcal{I}_{q(\vec{c})} \models q'(\vec{c})$.

G. De Giacomo

1

16

. De Giacomo

Union of conjunctive queries (UCQs)

A union of conjunctive queries (UCQ) q is a query of the form

$$\bigvee_{i=1,\ldots,n} \exists \vec{y_i}. \textit{conj}_i(\vec{x}, \vec{y_i}$$

where each $conj_i(\vec{x}, \vec{y_i})$ is, as before, a conjunction of atoms and equalities with free variables \vec{x} and $\vec{y_i}$.

Note: Obviously, conjunctive queries are a subset of union of conjunctive queries.

UCQs: datalog notation

The datalog notation is then extended to union of conjunctive queries as follows. A union of conjunctive queries

$$q = \bigvee_{i=1,\dots,n} \exists \vec{y_i.conj}_i(\vec{x}, \vec{y_i})$$

is denoted in datalog notation as

$$q = \set{q_1, \ldots, q_n}$$

where each q_i is the datalog expression corresponding to the conjunctive query $q_i = \{ \vec{x} \mid \exists \vec{y_i}.conj_i(\vec{x}, \vec{y_i}) \}.$

UCQs: query evaluation

Form the definition of FOL query we have that:

$$\mathcal{I}, \alpha \models \bigvee_{i=1, \dots, n} \exists \vec{y_i}. \textit{conj}_i(\vec{x}, \vec{y_i})$$

iff

 $\mathcal{I}, \alpha \models \exists \vec{y_i}.conj_i(\vec{x}, \vec{y_i})$ for some $i = 1, \dots, n$.

Hence to evaluate a UCQ q, we simply evaluate a number (linear in the size of q of conjunctive queries in isolation.

Hence, evaluating UCQs has the same complexity of evaluating CQs.

UCQs: combined, data, query complexity

Combined complexity: complexity of $\{ \langle \mathcal{I}, \alpha, q \rangle \mid \mathcal{I}, \alpha \models q \}$, i.e., interpretation, tuple, and query part of the input:

- time: exponential
- space: NP-complete

Data complexity: complexity of $\{ \langle \mathcal{I}, \alpha \rangle \mid \mathcal{I}, \alpha \models q \}$, i.e., interpretation fixed (not part of the input):

- time: polynomial
- space: LOGSPACE-complete

Query complexity: complexity of $\{ \langle \alpha, q \rangle \mid \mathcal{I}, \alpha \models q \}$, i.e., query fixed (not part of the input):

• time: exponential

• space: NP-complete

Query containment for UCQs

Thm: For UCQs, $\{q_1, \ldots, q_k\} \subseteq \{q'_1, \ldots, q'_n\}$ iff for all q_i there is a q'_j such that $q_i \subseteq q'_j$.

Proof.

 \Leftarrow Obvious.

 \Rightarrow If the containment holds, then we have

 $\{q_1(\vec{c}), \ldots, q_k(\vec{c})\} \subseteq \{q'_1(\vec{c}), \ldots, q'_n(\vec{c})\}$, where \vec{c} are new variables:

- now consider $\mathcal{I}_{q_i(\vec{c})}$, we have $\mathcal{I}_{q_i(\vec{c})} \models q_i(\vec{c})$, and hence $\mathcal{I}_{q_i(\vec{c})} \models \{q_1(\vec{c}), \dots, q_k(\vec{c})\};$
- by the containment we have that $\mathcal{I}_{q_i(\vec{c})} \models \{q'_1(\vec{c}), \dots, q'_n(\vec{c})\}$, that is there exists a $q'_i(\vec{c})$ such that $\mathcal{I}_{q_i(\vec{c})} \models q'_i(\vec{c})$;
- hence, by the Thm[Chandra&Merlin77] on containment of CQs, we have

24

that $q_i \subseteq q'_j$. \square		