
Data Integration

Local as View: View-based Query Processing

Giuseppe De Giacomo

Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”

Seminari di Ingnegneria del Software: Integrazione di Dati e Servizi
Corso di Laurea Specialistica in Ingegneria Informatica

Univesità degli Studi di Roma “La Sapenza”
A.A. 2005/06

View-based query processing

Basic Idea: Computing the answer to a query based on a set of views,

rather than on the raw data in the database.

Significance: Relevant problem in query optimization, query answering with

incomplete information, data warehousing, data integration, etc.

Two approaches:

• View-based query rewriting (indirect)

• View-based query answering (direct)

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 1

Part 1

View-based query processing: Computing the answer to a query based on

a set of views, rather than on the raw data in the database.

• View-based query rewriting (indirect)

• View-based query answering (direct)

• Relationship between query answering and query rewriting

We study view-based query processing within the relational data model,

focusing on conjunctive queries (CQs).

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 2

LAV: formal framework

The integrated database (DB) DB is simply a set of structures
(relations, in the relational model), one for each symbol in an alphabet
AG

• the structure of the global view is specified in the schema language
LG over AG

• each source structure is modeled as a view over the global view,
expressed in the view language LV over AG

• queries are issued over the global view, and are expressed in the
query language LQ over AG

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 3

LAV: formal framework

• The global view G is specified as a set of constraints in LG , and
associated to each source structure we have a set (its extension)

• We have a view Vi for each source structure, with

– extension ext(Vi),

– definition def (Vi), i.e., a query Vi(�x) -: vi(�x, �y), where vi(�x, �y) is
expressed in the language LV over AG

– assumption as(Vi), i.e., how to interpret ext(Vi) wrt the tuples
satisfying Vi

• A query Q is expressed in the language LQ over AG . If DB satisfies
G, ans(Q,DB) is the set of objects in DB that satisfy Q

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 4

LAV: formal framework

The specification as(Vi) determines how accurate is the extension of the
the view with respect to the specification def (Vi)

• Sound Views: a database DB is coherent with the sound view Vi,
if ext(Vi) ⊆ ans(def (Vi),DB)

• Complete Views: a database DB is coherent with the complete
view Vi, if ext(Vi) ⊇ ans(def (Vi),DB)

• Exact Views: a database DB is coherent with the exact view Vi, if
ext(Vi) = ans(def (Vi),DB)

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 5

LAV: formal framework

Suppose we have the extensions of the source structures. Let G be the
specification (or, schema) of the global view, Q a query of arity n, and
�d = (d1, . . . , dn) a tuple of constants

Query answering is defined as follows:

�d ∈ cert(Q,V) iff (d1, . . . , dn) ∈ ans(Q,DB), for each DB such
that:

• DB satisfies G
• DB is coherent with V1, . . . , Vm

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 6

View-based query answering

Basic Idea: Given a query Q, a set of views V with definitions def (V) and

extensions ext(V), compute the tuples t which are in the answer to Q in all

databases consistent with the views (certain tuples).

Rh

def (V1) Q

maybe (possible tuple)
no!

R1

is t in Q?

Inaccessible database

def (Vk)

· · ·

· · ·

yes! (certain tuple)

Accessible views

ext(V1) ext(Vk)

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 7

View-based query rewriting

Basic Idea: Given a query Q and a set of views V with definitions def (V),

reformulate Q into a new query Q′ expressed in some language on the

alphabet of the view names V.

def (Vk)

Rh

Q

no!

R1

is t in Q?

Inaccessible database

⊆

Rewriting

def (V1)

· · ·

yes! (certain tuple)

maybe (possible tuple)

Q′

· · ·

Accessible views

ext(V1) ext(Vk)

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 8

Query rewriting

There are many results on view-based query rewriting.

• Conjunctive queries

• Limitations on binding patterns

• Queries with aggregates

• Under constraints (Functional dependencies, Inclusions dependencies,

etc.)

• Description Logics queries

• Recursive queries

• Queries for semi-structured data

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 9

Query rewriting: the setting studied here

• View definitions are CQs over the global schema

• View are all sound

• Queries are CQs, or also UCQs, i.e., union of conjunctive queries, over

the global schema

• Rewritings are UCQs, i.e., finite sets of CQs, in the alphabet of the

views.

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 10

Query rewriting

Query answering by rewriting:

• Rewrite the query in the alphabet of the view names;

• Evaluate the rewriting on the view extension.

Typically people are interested in rewritings that are:

• Contained in the original query;

• Expressed in a given query language;

• Maximal for the given class of queries;

• Exact(??), i.e., rewritings that are logically equivalent to the query, if

possible (observe that such rewritings may not exists).

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 11

Exact rewriting: example

Global schema:

nonstop(Airline, Number, From, To).

Views:

flights_by_United(From, To) -: nonstop(’UA’, Number, From, To)

flights_from_SFO(Airline, Number, To) -:

nonstop(Airline, Number, ’SFO’, To)

Query:

q(Airline, Number) :- nonstop(Airline, Number, ’SFO’, ’LAX’)

An exact rewriting exists! Namely:

q(Airline, Number) :- flight_from_SFO(Airline, Number, ’LAX’)

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 12

Maximal rewriting: example

Global schema:

nonstop(Airline, Number, From, To).

Views:

flights_by_UA(Number, From, To) -: nonstop(’UA’, Number, From, To)

flights_from_SFO(From, To) -: nonstop(Flight, Number, ’SFO’, To)

Query:

q(Airline, Number) :- nonstop(Airline, Number, ’LAX’, ’PHX’)

A maximal rewriting (wrt UCQs) is:

q(’UA’, Number) :- flight_by_UA(Number, ’LAX’, ’PHX’)

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 13

Rewriting: extensions are not considered!

Observe that in computing the rewriting we are taking into account only the

view definitions, not the view extensions!

How should such definitions be interpreted wrt to the possible extensions?

• A view definition gives properties that the tuples produced by the view

must have.

• The view definition is not a guarantee that all such tuples are provided

by the view (i.e., views are only sound in general).

• There is not even guarantee that the results produced by two views are

consistent (they may need to be reconciled).

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 14

Example: a richer domain

Global schema:

emp(E) E is an employee

phone(E,P) P is E’s phone

office(E,O) O is E’s office

mgr(E,M) M is E’s manager

dept(E,D) D is E’s department

Views:

v1(E,P,M) -: emp(E), phone(E,P), mgr(E,M)

v2(E,O,D) -: emp(E), office(E,O), dept(E,D)

v3(E,P) -: emp(E), phone(E,P), dept(E,’ToyDept’)

• v1 gives information about employees, their phones and managers.

• v2 gives information about employees, their offices and department.

• v3 gives information about employees and their phones but only of the

Toy Department.

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 15

Example: a richer domain (cont.)

Query: “What are Sally’s phone and office?”

q(P,O) :- phone(’Sally’,P), office(’Sally’,O)

Maximal rewriting (wrt UCQs):

q(P,O) :- v1(’Sally’,P,M), v2(’Sally’,O,D)

q(P,O) :- v3(’Sally’,P), v2(’Sally’,O,D)

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 16

Example: view expansion (cont.)

If we expand the views in the rewriting above, we can compare the

rewriting with the original query:

q(P,O) :- emp(’Sally’), phone(’Sally’,P), mgr(’Sally’,M),

emp(’Sally’), office(’Sally’,O), dept(’Sally’,D)

q(P,O) :- emp(’Sally’), phone(’Sally’,P), dept(’Sally’,’ToyDept’),

emp(’Sally’), office(’Sally’,O), dept(’Sally’,D);

Observe:

• Both CQs are contained in the original query.

• The original query is contained in neither of them, nor in their union,

i.e., the rewriting is not exact.

• These are the CQs that come closest to the original query while still

constructable from the views (their union is a maximal rewriting wrt

UCQs).

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 17

Rewriting algorithms

Given a query and a collection of views that are both CQs, there is a

maximal rewriting made up of finite set of CQs (i.e., a UCQ)!

We can use two algorithms to compute maximal rewritings:

• Bucket algorithm

• Inverse-rules algorithm

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 18

Bucket algorithm: basis

Theorem 1 If R is a CQ rewriting for a query Q, and R has more atoms

then Q, then there exists a CQ rewriting R′ such that R ⊆ R′.

Proof. Rexpd ⊆ Q (rewriting), hence there is a homomorphism μ from IQ to

IRexpd (the canonical models of Q and Rexpd, respectively).

If R has more atoms that Q, then there is an atom α such that no atoms of Q

is mapped by μ to any atom that comes from αexpd.

If we delete α from R we get a new rewriting R′ (R′expd ⊆ Q, since μ is an

homomorphism from Q to R′expd
).

Moreover R ⊆ R′ (identity mapping on atoms gives us the

homomophism). �

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 19

Bucket algorithm: raw form

for all (CQs on the alphabet of the views with a number of atoms

that is less or equal to than those in Q) {
if (Rexpd ⊆ Q) add R to the returned solution, else discard R

}

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 20

Bucket algorithm: refined form

/* bucket initialization */

Create a bucket for each atom α in the query Q, that will contain views that

are relevant to answering the subgoal

Put a view V in the bucket for α if the definition of V contains an atom β

that unifies with α

/* solution generation */

for all (CQs R on the alphabet of the views

formed by taking one atom from each bucket) {
if (Rexpd ⊆ Q) add R to the returned solution, else discard R

}

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 21

Bucket algorithm: example

Views:

v1(E,P,M) -: emp(E), phone(E,P), mgr(E,M)

v2(E,O,D) -: emp(E), office(E,O), dept(E,D)

v3(E,P) -: emp(E), phone(E,P), dept(E,’ToyDept’)

Query: “What are Sally’s phone and office?”

q(P,O) :- phone(’Sally’,P), office(’Sally’,O)

Buckets:

B1 B2

v1(’Sally’,P,M) v2(’Sally’,O,D)

v3(’Sally’, P)

Rewriting:

q(P,O) :- v1(’Sally’,P,M), v2(’Sally’,O,D)

q(P,O) :- v3(’Sally’,P), v2(’Sally’,O,D)

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 22

Bucket algorithm: main result

Theorem 2 The rewriting generated by the bucket algorithm is the maximal

rewriting wrt UCQs.

Proof. For the raw form, immediate.

For the refined form [Grahne&Mendelzon, ICDT’99] �

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 23

Inverse-rule algorithm: basis

Obtain inverse rules by:

1. Replace existential variable in the body of each view definition by a

Skolem function.

Recall v(X) -: a1(X,Y), a2(X,Y) stands for:

∀x.v(x) ⇒ ∃y.a1(x, y) ∧ a2(x, y).

By applying Skolemization we get ∀x.v(x) ⇒ a1(x, f(x)) ∧ a2(x, f(x)).

2. Split the body of the rules.

Recall that ∀x.v(x) ⇒ a1(x, f(x)) ∧ a2(x, f(x)) is equivalent to

(∀x.v(x) ⇒ a1(x, f(x))) ∧ (∀x.v(x) ⇒ a2(x, f(x))), thus we obtain:

a1(X,f(X)) :- v(X)

a2(X,f(X)) :- v(X)

Evaluate the query considering inverse rules as IDB and views as EDB.

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 24

Inverse-rule algorithm: observations

• Because all functions symbols are in the head of the inverse rules, we

never introduce a function symbol within a function symbol, leading to a

finite process.

• Bottom-up evaluation can produce tuples with function symbols, but

these cannot be real answers to the query and need to be discarded.

• The algorithm works for datalog (recursive) queries (but CQ views) as

well.

• For non recursive queries we can easily get an equivalent UCQs by

evaluating the query a la prolog.

• If required, functional symbols can be polynomially eliminated by adding

new predicates.

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 25

Inverse-rule algorithm: example

Views:

v1(E,P,M) -: emp(E), phone(E,P), mgr(E,M)

v2(E,O,D) -: emp(E), office(E,O), dept(E,D)

v3(E,P) -: emp(E), phone(E,P), dept(E,’ToyDept’)

Inverse rules:

emp(E) :- v1(E,P,M) mgr(E,M) :- v1(E,P,M)

emp(E) :- v2(E,O,D)

emp(E) :- v3(E,P) office(E,O) :- v2(E,O,D)

phone(E,P) :- v1(E,P,M) dept(E,D) :- v2(E, O, D)

phone(E,P) :- v3(E,P) dept(E, ’ToyDept’) :- v3(E,P)

Query: “What are Sally’s phone and office?”

q(P,O) :- phone(’Sally’,P), office(’Sally’,O)

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 26

Inverse-rule algorithm: example (cont.)

Observe, if we unfold the query

q(P,O) :- phone(’Sally’,P), office(’Sally’,O)

using the inverse rules

emp(E) :- v1(E,P,M) mgr(E,M) :- v1(E,P,M)

emp(E) :- v2(E,O,D)

emp(E) :- v3(E,P) office(E,O) :- v2(E,O,D)

phone(E,P) :- v1(E,P,M) dept(E,D) :- v2(E, O, D)

phone(E,P) :- v3(E,P) dept(E, ’ToyDept’) :- v3(E,P)

we get

q(P,O) :- v1(’Sally’,P,M), v2(’Sally’,O,D)

q(P,O) :- v3(’Sally’,P), v2(’Sally’,O,D)

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 27

Inverse-rule algorithm: main result

Theorem 3 For CQs (and UCQs) the rewriting generated by the inverse-rule

algorithm is the maximal rewriting wrt UCQs.

For datalog (recursive) queries the rewriting generated by the inverse-rule

algorithm is the maximal rewriting wrt datalog queries.

Proof. See [Duschka&Genesereth, PODS’97]. �

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 28

Maximal rewriting vs certain answers

Query answering (QA) is defined as follows:

t ∈ cert(Q,V) iff t ∈ ans(Q,DB), for each DB such that:

• DB satisfies G
• DB is coherent with V1, . . . , Vm

For sound views, LAV mapping and no constraint on the global view, the

definition of certain answers becomes as follows:

cert(Q,V) = {t | ∀DB . ext(V) ⊆ ans(def (V), DB) ⇒ t ∈ ans(Q,DB)}

Next we show that for CQs the maximal rewriting wrt UCQs, coincides with

the certain answers.

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 29

Maximal rewriting vs certain answers (cont.)

Theorem 4 Every answer generated by evaluating the maximal rewriting

RmaxUCQs(Q,V) is a certain answer in cert(Q,V).

Proof. Assume not. Let R = RmaxUCQs(Q,V), then there is a

t ∈ ans(R, ext(V)) such that t �∈ cert(Q,V).

Now for all DB such that ext(V) ⊆ ans(def (V), DB) we have that

t ∈ ans(Rexpd,DB).

Since R is a rewriting, we have that Rexpd ⊆ Q, and hence t ∈ ans(Q,DB).

That is, for all DB such that ext(V) ⊆ ans(def (V),DB) we have that

t ∈ ans(Q,DB), i.e., t ∈ cert(Q,V). Contradiction. �

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 30

Maximal rewriting vs certain answers (cont.)

Theorem 5 Every certain answer in cert(Q,V) is generated by evaluating

the maximal rewriting RmaxUCQs(Q,V).

Proof. Suppose not. Let t ∈ cert(Q,V) such that

t �∈ ans(RmaxUCQs(Q,V), ext(V)). Consider the CQ Ct on the alphabet of

the views defined as:

Ct(x) :- x = t, V1(t11), · · · , V1(t1k1), · · · , Vn(tn1), · · · , Vn(tnkn)

or simply,

Ct(t) :- V1(t11), · · · , V1(t1k1), · · · , Vn(tn1), · · · , Vn(tnkn)

where V = {V1, . . . , Vn}, and ext(vi) = {ti,1 . . . , tiki} for each i = 1, . . . , n.

(cont...)

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 31

Then, Cexpd
t ⊆ Q, indeed

• since t ∈ cert(Q,V), we have that for all DB conforming with the views

ans(Cexpd
t , DB) = {t} ⊆ ans(Q,DB)

• while for those DB ′ not conforming with the views

ans(Cexpd
t ,DB′) = ∅ ⊆ ans(Q,DB ′).

Being Ct a CQ on the alphabet of the views and being Cexpd
t ⊆ Q it follows

Ct ⊆ RmaxUCQs(Q,V). Contradiction! �

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 32

Part 1: conclusions

For the setting considered here, i.e,

• View definitions are CQs over the global schema

• View are all sound

• Queries are CQs, or also UCQs, i.e., union of conjunctive queries, over

the global schema

• Rewritings are UCQs, i.e., finite sets of CQs, in the alphabet of the

views

everything works fine:

• We can focus on maximal rewriting wrt UCQs.

• Maximal rewriting computes exactly the certain answers.

• Maximal rewriting is expressible in a simple (LOGSPACE in data

complexity) query language.

Does these nice results extend to more general settings? See Part 2 and Part 3.

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 33

Part 2

View-based query processing: Computing the answer to a query based on

a set of views, rather than on the raw data in the database.

• View-based query rewriting (indirect)

• View-based query answering (direct)

• Relationship between query answering and query rewriting

We are studying view-based query processing within the relational data

model.

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 34

View-based query answering

Basic Idea: Given a query Q, a set of views V with definitions def (V) and

extensions ext(V), compute the tuples t which are in the answer to Q in all

databases consistent with the views (certain tuples).

Rh

def (V1) Q

maybe (possible tuple)
no!

R1

is t in Q?

Inaccessible database

def (Vk)

· · ·

· · ·

yes! (certain tuple)

Accessible views

ext(V1) ext(Vk)

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 35

View-based query rewriting

Basic Idea: Given a query Q and a set of views V with definitions def (V),

reformulate Q into a new query Q′ expressed in some language on the

alphabet of the view names V.

def (Vk)

Rh

Q

no!

R1

is t in Q?

Inaccessible database

⊆

Rewriting

def (V1)

· · ·

yes! (certain tuple)

maybe (possible tuple)

Q′

· · ·

Accessible views

ext(V1) ext(Vk)

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 36

View-based query answering

There are several results also on view-based query answering.

• Complexity for several query and view languages

• CQs and UCQs under Description Logics constraints

• Regular path queries

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 37

View-based query answering

As said above query answering (QA) is defined as follows:

t ∈ cert(Q,V) iff t ∈ ans(Q,DB), for each DB such that:

• DB satisfies G
• DB is coherent with V1, . . . , Vm

For sound views, LAV mapping and no constraint on the global view, the

definition of certain answers becomes as follows:

cert(Q,V) = {t | ∀DB . ext(V) ⊆ ans(def (V), DB) ⇒ t ∈ ans(Q,DB)}

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 38

View-based query answering and query containment

There is a strong relationship between QA and QC when the views are

sound.

For query languages at least as powerful as CQs (CQs, UCQs,

datalog, FOL, etc.).

QA and QC are mutually reducible one into the other in

polynomial time!

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 39

Reduction to query containment

Consider the query Q′ on the alphabet of the views defined as:

Q′(x) :- x = t ∧ V1(t11) ∧ · · · ∧ V1(t1k1) ∧ · · · ∧ Vn(tn1) ∧ · · · ∧ Vn(tnkn)

where V = {V1, . . . Vn}, and ext(Vi) = {ti,1 . . . , tiki} for each i = 1, . . . , n.

Theorem 6 t ∈ cert(Q,V) iff Q′expd ⊆ Q.

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 40

Proof.

⇒ If t ∈ cert(Q,V) then

• for all DB conforming with the views

ans(Q′expd
, DB) = {t} ⊆ ans(Q,DB)

• while for those DB ′ not conforming with the views

ans(Q′expd
, DB′) = ∅ ⊆ ans(Q,DB ′).

hence Q′expd ⊆ Q.

⇐ Assume Q′expd ⊆ Q. For all DB conforming with the views

ans(Q′expd
,DB) = {t} and since Q′expd ⊆ Q, we have t ∈ ans(Q,DB). �

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 41

Reduction from query containment

Let Q1 and Q2 be two queries (x is a tuple of variables):

Q1(x) :- Φ1(x)

Q2(x) :- Φ2(x)

Consider a single view V :

• def (V): V (x) :- x = c ∧ ∃y.(Φ(y) ∧ p(y)), where p is a new predicate

• ext(V) = {c}
• as(V) = sound

and the query Q defined as

Q(x) :- x = c ∧ ∃y.(Φ(y) ∧ p(y))

Theorem 7 Q1 ⊆ Q2 iff c ∈ cert(Q, {V }).

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 42

Proof.

⇒
If c �∈ cert(Q,V), then there exists a database DB conforming with the views

such that c �∈ ans(Q,DB). This implies that there exists a tuple in

t ∈ ans(Q1,DB) but t �∈ ans(Q2,DB), i.e., Q1 �⊆ Q2.

⇐ Assume Q1 �⊆ Q2. Then there exists a database DB and a tuple t such

that t ∈ ans(Q1,DB) but t �∈ ans(Q2,DB). We can extend DB by assigning

to new predicate p the interpretation ans(p,DB) = {t}. But then we have

that DB conforms to the view V while ans(Q,DB) = ∅. Hence

c �∈ cert(Q,V). �

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 43

QA and QC: observations

• We can transfer upper-bounds from QC to QA, using the reduction

form QA to QC.

• We can transfer lower-bounds from QC to QA, using the reduction

from QC to QA.

• We can use algorithms for query containment to get algorithms for

query answering.

• What kind of complexity are we characterizing for QA? Combined

complexity.

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 44

Combined complexity of QA for sound views

QC[Q1, Q2] CQs PQs* datalog FOL

CQs NP NP EXPTIME undec.

PQ Πp
2 Πp

2 EXPTIME undec.

datalog 2EXPTIME 2EXPTIME undec. undec.

FOL undec. undec. undec. undec.

QA[V, Q] CQs PQs datalog FOL

CQs NP NP EXPTIME undec.

PQs Πp
2 Πp

2 EXPTIME undec.

datalog 2EXPTIME 2EXPTIME undec. undec.

FOL undec. undec. undec. undec.

* PQs, i.e., are UCQs that allow to nest disjunctions in conjunctions.

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 45

What about data complexity?

We want to refine the complexity analysis to take into account that data in

the database are orders of magnitude bigger that the size of the queries.

In other words we would like to characterize the data complexity of QA!

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 46

Complexity of view based query answering

Can be measured in three different ways:

data complexity: as a function of the size of the view extensions

ext(V1) ∪ · · · ∪ ext(Vk)

expression complexity: as a function of the size of the query Q and of the

view definitions def (V1), . . . , def (Vk)

combined complexity: as a function of the size of both

ext(V1) ∪ · · · ∪ ext(Vk) and the expressions Q, def (V1), . . . , def (Vk)

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 47

QA coNP-hard for UCQs views

Theorem 8 Let LQ and LV be UCQs, and let view be sound. Then QA is

coNP-hard in data complexity.

Proof. Reduction from graph 3-colorability.

Views: Vs(x, y) -: Rs(x, y)

VG(x, y) -: Rrg(x, y) ∨ Rgr(x, y) ∨ Rrb(x, y) ∨ Rbr(x, y) ∨ Rgb(x, y) ∨ Rbg(x, y)

Vf (x, y) -: Rf (x, y)

Query: Q(x, y) :-
∨

β �=γ ∃z, v, w.(Rs(x, z) ∧ Rαβ(z, v) ∧ Rγδ(v, w) ∧ Rf (w, y))

Only the view extensions depend on graph G = (N, E)

d

Vs

Vf

c

VG

1

2 3

4

Extensions: ext(Vs) = {(c, a) | a ∈ N}
ext(VG) = {(a, b), (b, a) | (a, b) ∈ E}
ext(Vf) = {(a, d) | a ∈ N}

G is 3-colorable iff (c, d) is not a certain answer

of Q.

Note: queries and view definitions used in this proof are UPQs! See Part 3.

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 48

QA for PQs views: algorithm

Let n be the number of tuples in ext(V) and k the number of atoms in the

longest (wrt atoms) view definition.

Theorem 9 Let LV be PQs and LQ be datalog, then t �∈ cert(Q,V) iff there

exists a database DB ′ of size nk conforming with the views such that

t �∈ ans(Q,DB). (For both sound and exact views).

Proof. Since t �∈ cert(Q,V), there exists a database DB conforming with the

views such that t �∈ ans(Q,DB).

Consider the database DB ′ ⊆ DB having only the nk tuples required by the

views. DB ′ still conforms with the views, moreover still have t �∈ ans(Q,DB ′)

(it is sufficient only that Q is monotone!). �

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 49

QA for PQs views: algorithm (cont.)

Theorem 10 Let LV be PQs and LQ be datalog, then QA is in coNP. (For

both sound and exact views.)

Algorithm:

bool certain (tuple t, query Q, views V)
{

guess(a database DB ′ of size nk) { (nondet.)

verify whether DB ′ conforms to the views (poly.)

verify whether t �∈ ans(Q,DB ′) (poly.)

if (both test positive) return false

}
return true;

}

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 50

Data complexity for sound views

Sound Views CQ PQ datalog FOL

CQ PTIME* PTIME* PTIME* undec.

PQ coNP coNP coNP undec.

datalog coNP coNP undec. undec.

FOL undec. undec. undec. undec.

* This is shown, by proving that the maximal rewriting wrt a PTIME query language (namely CQs,
PQs, datalog) computes exactly the certain answers. See Part 1.

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 51

What about exact views?

Till now we have focused on sound views. What happen when we consider

exact views?

QA becomes coNP-hard even for views defined by CQs! See below.

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 52

QA coNP-hard for exact CQs views

Theorem 11 Let LV and LQ be CQs, and let as(V) = exact. Then verifying

whether c ∈ cert(Q,V) is coNP-hard in data complexity.

Proof. Reduction from graph 3-colorability. Let G = (N, E) be an arbitrary

graph. Consider three exact views V = {V1, V2, V3}:

definitions

V1(x) -: color(x, y)

V2(y) -: color(x, y)

V3(y) -: edge(x, y)

extensions

ext(V1) = N

ext(V2) = {red, green, blue}
ext(V3) = E

and the query Q:

Q(c) :- edge(x, y), color(x, z), color(y, z)

Then c ∈ cert(Q,V) iff the graph G is not 3-colorable. �

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 53

Data complexity for exact views

Complete Views CQ PQ datalog FOL

CQ coNP coNP coNP undec.

PQ coNP coNP coNP undec.

datalog undec. undec. undec. undec.

FOL undec. undec. undec. undec.

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 54

Part 2: conclusions

We have gathered a lot of results on query rewriting (Part 1) and on query

answering (Part 2).

What can we say now about the relationships between these two ways of

performing view-based query processing? See Part 3.

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 55

Part 3

View-based query processing: Computing the answer to a query based on

a set of views, rather than on the raw data in the database.

• View-based query rewriting (indirect)

• View-based query answering (direct)

• Relationship between query answering and query rewriting

We are studying view-based query processing within the relational data

model.

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 56

View-based query answering

Basic Idea: Given a query Q, a set of views V with definitions def (V) and

extensions ext(V), compute the tuples t which are in the answer to Q in all

databases consistent with the views (certain tuples).

Rh

def (V1) Q

maybe (possible tuple)
no!

R1

is t in Q?

Inaccessible database

def (Vk)

· · ·

· · ·

yes! (certain tuple)

Accessible views

ext(V1) ext(Vk)

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 57

View-based query rewriting

Basic Idea: Given a query Q and a set of views V with definitions def (V),

reformulate Q into a new query Q′ expressed in some language on the

alphabet of the view names V.

def (Vk)

Rh

Q

no!

R1

is t in Q?

Inaccessible database

⊆

Rewriting

def (V1)

· · ·

yes! (certain tuple)

maybe (possible tuple)

Q′

· · ·

Accessible views

ext(V1) ext(Vk)

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 58

Previous results

There are many previous results on view-based query processing.

View-based query rewriting:

• Conjunctive queries

• Queries with aggregates

• Under constraints (inclusion and functional dependencies)

• Recursive queries

• Description Logics queries

• Queries for semi-structured data

View-based query answering:

• Complexity for several query and view languages

• Under Description Logics constraints

• Regular path queries

But: For a long time, no clear understanding of the relationships between

query answering and query rewriting!!!

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 59

Query rewriting vs. query answering

Query answering by rewriting:

• Rewrite the query in the alphabet of the view names;

• Evaluate the rewriting on the view extension.

Typically people are interested in rewritings that are:

• Contained in the original query

• Expressed in a given query language

• Maximal for the given class of queries

• Exact(??), i.e., rewritings that are logically equivalent to the query, if

possible (observe that such rewritings may not exists).

But:

• Q1: When is the rewriting also complete – i.e., computes all certain

tuples?

• Q2: What do we gain or lose by focusing on a given class of queries?

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 60

Perfect rewriting

Query answering: Let cert(Q, def (V), ext(V)) be the function that

computes the certain tuples for Q wrt def (V) and ext(V).

Perfect rewriting:

Define cert [Q,def (V)] to be the Currying of cert wrt Q and def (V).

⇒ – cert [Q,def (V)] is a query on the alphabet of the view names that given

ext(V) returns the certain tuples for the query Q wrt def (V) and

ext(V);

– cert [Q,def (V)] is a (sound) rewriting of Q wrt def (V);

– cert [Q,def (V)] is complete (no better rewritings may exist);

– cert [Q,def (V)] is called the perfect rewriting of Q wrt def (V).

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 61

Comparing with the perfect rewriting

• Q1: Can we express the perfect rewriting in a certain query language?

• Q2: How does maximal rewriting for a given class of queries compare

with the perfect rewriting?

– From a semantical point of view?

– From a computational point of view?

• Which is the computational complexity of the perfect rewriting?

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 62

The case of conjunctive queries

Rewriting: [Levy,Mendelzon,Sagiv,Srivastava-PODS95], [DuschkaGenesereth-PODS97],

[AbiteboulDuschka-PODS98])

Let Q and def (V) be CQs, and let Q′ be the union of all maximal

rewritings for the class of CQs. Then:

• Q′ is the maximal rewriting for the class of unions of conjunctive queries

(UCQs);

• Query answering: generate Q′, evaluate Q′ on ext(V);

• Q′ is the perfect rewriting;

• Q′ is a PTIME query (in fact, LOGSPACE).

• Q′ is an exact rewriting, if an exact rewriting exists.

Q: Does this “ideal situation” carry on to cases where Q and def (V) allow for

union?

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 63

Unions of path queries (UPQs)

Very simple query language defined as follows:

Q −→ P | Q1 ∪ Q2

P −→ R | P1 ◦ P2

where R denotes a binary database relation, P denotes a path query,

which is a chaining of database relations, and Q denotes a union of path

queries.

Observe: UPQs are a simple form of:

• Unions of conjunctive queries;

• Regular path queries.

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 64

View-based query processing for UPQs

Thm: View-based query answering for UPQs is coNP-complete in data

complexity [Calvanese,DeGiacomo,Lenzerini,Vardi-ICDE’00].

In other words: cert(Q, def (V), ext(V)) with Q and def (V) fixed is

coNP-complete.

⇒ The perfect rewriting cert [Q,def (V)] is a coNP-complete query.

Bad news: For query languages that include UPQs the perfect rewriting is

coNP-hard!

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 65

PTIME perfect rewritings

Typically we are interested in PTIME queries, (or even better LOGSPACE

queries).

Program: Isolate those UPQs Q and def (V) for which the perfect rewriting

is PTIME (assuming P�=NP).

Unfortunately, this reduces to one of the most difficult open questions in

computer science: the non-uniform CSP PTIME dicotomy (here phrased

directly on homomorphisms): Characterize the structures B such that for

each strcture A over the same alphabet, findingchecking the existence of an

homorphism from A to B is PTIME[Calvanese,DeGiacomo,Lenzerini,Vardi-LICS’00].

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 66

Rewritings in PTIME query languages

Fall back Program: Fix the language of the rewriting, choosing a PTIME

query language.

Observe: This is exactly what is done in most papers on rewriting!!!

Important problem:

• How can we test the rewriting obtained for perfectness?

In general is an hard problem, see also [Calvanese,DeGiacomo,Lenzerini,Vardi-ICDT’05].

Giuseppe De Giacomo Data integration – Local As View: View-based Query Processing 67

