
GAV data integration under integrity constraints

Riccardo Rosati
Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”

Corso di Seminari di Ingegneria del Software, a.a. 2005/06

Lecture overview, part one

Query answering in GAV data integration systems:

• retrieved global database

• unfolding

• query answering

• complexity of query answering

2

Lecture overview, part two

Query answering in GAV under integrity constraints:

• the role of global integrity constraints

• inclusion dependencies

• query reformulation under inclusion dependencies

– chase

– canonical model

– query rewriting algorithm

• key dependencies

• decidability and separation

3

Global-as-view (GAV)

(Reminder)

GAV mapping assertions g � φS have the logical form:

∀x φS(x) → g(x)

where φS is a conjunctive query, and g is an element of G.

4

Semantics for GAV systems

(Reminder)

We refer only to databases over a fixed infinite domain Γ.

Given a source database C for a system I , a global database B is legal for

(I, C) if it satisfies the mapping with respect to C
model for (I, C) = legal database for (I, C)

assumption of sound mapping (open-world assumption)

5

Semantics: Certain Answers

(Reminder)

• we are interested in certain answers

• a tuple t is a certain answer for a query Q if t is in the answer to Q for

all (possibly infinite) legal databases for (I, C)

• the certain answers to Q are denoted by cert(Q, I, C)

6

Retrieved global database

Given a source database C, we call retrieved global database, denoted

ret(I, C), the global database obtained by “applying” the queries in the

mapping, and “transferring” to the elements of G the corresponding retrieved

tuples.

7

GAV: example

Consider I = 〈G,S,M〉, with

Global schema G:

student(code,name, city)

university(code,name)

enrolled(Scode,Ucode)

Source schema S: relations s1(X, Y, W,Z), s2(X,Y), s3(X, Y)

Mapping M:

student(X, Y, Z) � { (X, Y, Z) | s1(X, Y, Z, W) }
university(X,Y) � { (X, Y) | s2(X,Y) }
enrolled(X,W) � { (X, W) | s3(X,W) }

8

GAV: example

student

oslobill15

florenceanne12

citynamecode

oslobill15

florenceanne12

citynamecode

university

uclaBN

bocconiAF

namecode

uclaBN

bocconiAF

namecode

enrolled

AF12

BN16

UcodeScode

AF12

BN16

UcodeScode

sC1
12 anne florence 21

15 bill oslo 24
sC2

AF bocconi

BN ucla
sC3

12 AF

16 BN

Example of source database C and retrieved global database ret(I, C)

9

GAV: minimal model

GAV mapping assertions g � φS have the logical form:

∀x φS(x) → g(x)

where φS is a conjunctive query, and g is an element of G.

In general, given a source database C there are several databases that are

legal with respect to (I, C)

However, it is easy to see that ret(I, C) is the intersection of all such

databases, and therefore, is the only “minimal” model of I .

10

Sources

Mapping

Global schema

One retrieved global
database M (C)

Source model

One minimal
model of I

=

11

GAV: query answering

• If q is a conjunctive query, then t ∈ cert(q, I, C) if and only if

t ∈ qret(I,C)

• If q is query over G, then the unfolding of q wrt M, unfM(q), is the

query over S obtained from q by substituting every symbol g in q with

the query φS that M associates to g

• It is easy to see that evaluating a query q over ret(I, C) is equivalent to

evaluating unfM(q) over C. It follows that, if q is a conjunctive query,

then t ∈ cert(q, I, C) if and only if t ∈unfM(q)C

Unfolding is therefore sufficient

12

GAV: complexity of query answering

• Data complexity of query answering is polynomial (actually

LOGSPACE): the query unfM(q) is first-order (in fact conjunctive)

13

GAV: example

student

oslobill15

florenceanne12

citynamecode

oslobill15

florenceanne12

citynamecode

university

uclaBN

bocconiAF

namecode

uclaBN

bocconiAF

namecode

{ x | student(15,x,y) }

unfolding

sC1
12 anne florence 21

15 bill oslo 24
sC2

AF bocconi

BN ucla
{ x | s1(15, x, y, z) }

14

GAV: more expressive queries?

• More expressive queries in the mapping?

– Same results hold if we use any computable query in the mapping

• More expressive user queries?

– Same results hold if we use Datalog queries as user queries

– Same results hold if we use union of conjunctive queries with

inequalities as user queries

15

GAV: another view

Let B1 and B2 be two global databases with values in Γ∪ Var.

• A homomorphism h : B1 → B2 is a mapping from (Γ ∪ Var(B1)) to

(Γ ∪ Var(B2)) such that
1. h(c) = c, for every c ∈ Γ
2. for every fact Ri(t) of B1, we have that Ri(h(t)) is a fact in B2

(where, if t = (a1, . . . , an), then h(t) = (h(a1), . . . , h(an))
• B1 is homomorphically equivalent to B2 if there is a homomorphism

h : B1 → B2 and a homomorphism h′ : B2 → B1

Let I = 〈G,S,M〉 be a data integration system. If C is a source database,

then a universal solution for I relative to C is a model J of I relative to C
such that for every model J ′ of I relative to C, there exists a homomorphism

h : J → J ′ (see [Fagin&al. ICDT’03]).

16

GAV: another view

• Homomorphism preserves satisfaction of conjunctive queries: if there

exists a homomorphism h : J → J ′, and q is a conjunctive query, then

t ∈ qJ implies t ∈ qJ ′

• Let I = 〈G,S,M〉 be a GAV data integration system without

constraints in the global schema. If C is a source database, then

ret(I, C) is the minimal universal solution for I relative to C
• We derive again the following results

– if q is a conjunctive query, then t ∈ cert(q, I, C) if and only if

t ∈ qret(I,C)

– complexity of query answering is polynomial

17

Global integrity constraints

• integrity constraints (ICs) posed over the global schema

• specify intensional knowledge about the domain of interest

• add semantics to the information

• but: data in the sources can conflict with global integrity constraints

• the presence of global integrity constraints rises semantic and

computational problems

• open research problems

18

Integrity constraints for relational schemas

Most important ICs for the relational model:

• key dependencies (KDs)

• functional dependencies (FDs)

• inclusion dependencies (IDs)

• foreign keys (FKs)

• exclusion dependencies (EDs)

19

Inclusion dependencies (IDs)

• an ID states that the presence of a tuple in a relation implies the

presence of a tuple in another relation where t′ contains a projection of

the values contained in t

• syntax: r[i1, . . . , ik] ⊆ s[j1, . . . , jk]

• e.g., the ID r[1] ⊆ s[2]
corresponds to the FOL sentence

∀x, y, z . r(x, y, z) → ∃x′, z′ . s(x′, x, z′)

• IDs are a special form of tuple-generating dependencies

20

Semantics for GAV systems under integrity

constraints

We refer only to databases over a fixed infinite domain Γ.

Given a source database C for a system I , a global database B is legal for

(I, C) if:

1. it satisfies the ICs on the global schema

2. it satisfies the mapping with respect to C (i.e., B is constituted by a

superset of the retrieved global database ret(I, C))

21

Example

Global schema: player(Pname,YOB ,Pteam)

team(Tname,Tcity ,Tleader)

Constraints: team[Tleader ,Tname] ⊆ player[Pname,Pteam]

Mapping: player �

⎧⎨
⎩

player(X, Y, Z) ← s1(X,Y, Z)

player(X, Y, Z) ← s3(X,Y, Z)

team � team(X, Y, Z) ← s2(X, Y, Z)

22

Example (cont’d)

Source database C

s1: Totti 1976 Roma s2: Juve Torino Del Piero

s3: Vieri 1974 Inter

Retrieved global database ret(I, C)

player:
Totti 1976 Roma

Vieri 1974 Inter
team: Juve Torino Del Piero

23

Example (cont’d)

player :

Totti 1976 Roma

Vieri 1974 Inter

Del Piero α Juve

team : Juve Torino Del Piero

The ID on the global schema tells us that Del Piero is a player of Juve

All legal global databases for I have at least the tuples shown above, where

α is some value of the domain Γ.

24

Example (cont’d)

player :

Totti 1976 Roma

Vieri 1974 Inter

Del Piero α Juve

team : Juve Torino Del Piero

The ID on the global schema tells us that Del Piero is a player of Juve

All legal global databases for I have at least the tuples shown above, where

α is some value of the domain Γ.

Warning 1 there may be an infinite number of legal databases for I

25

Example (cont’d)

player :

Totti 1976 Roma

Vieri 1974 Inter

Del Piero α Juve

team : Juve Torino Del Piero

The ID on the global schema tells us that Del Piero is a player of Juve

All legal global databases for I have at least the tuples shown above, where

α is some value of the domain Γ.

Warning 1 there may be an infinite number of legal databases for I
Warning 2 in case of cyclic IDs, legal databases for I may be of infinite size

26

Example (cont’d)

player :

Totti 1976 Roma

Vieri 1974 Inter

Del Piero α Juve

team : Juve Torino Del Piero

The ID on the global schema tells us that Del Piero is a player of Juve

All legal global databases for I have at least the tuples shown above, where

α is some value of the domain Γ.

Consider the query q(X,Z) ← player(X, Y, Z) :

27

Example (cont’d)

player :

Totti 1976 Roma

Vieri 1974 Inter

Del Piero α Juve

team : Juve Torino Del Piero

The ID on the global schema tells us that Del Piero is a player of Juve

All legal global databases for I have at least the tuples shown above, where

α is some value of the domain Γ.

Consider the query q(X,Z) ← player(X, Y, Z) :

cert(q, I, C) = {〈Totti, Roma〉, 〈Vieri, Inter〉, 〈Del Piero, Juve〉}

28

Query processing under inclusion dependencies

• intuitive strategy: add new facts until IDs are satisfied

• problem: infinite construction in the presence of cyclic IDs

• example 1: r[2] ⊆ r[1]

suppose ret(I, C) = {r(a, b)}
1) add r(b, c1)
2) add r(c1, c2)
3) add r(c2, c3)
....

(infinite construction)

29

Query processing under inclusion dependencies

• example 2: r[1] ⊆ s[1], s[2] ⊆ r[1]

suppose ret(I, C) = {r(a, b)}
1) add s(a, c1)
2) add r(c1, c2)
3) add s(c1, c3)
4) add r(c3, c4)
5) add s(c3, c5)
....

(infinite construction)

30

Query processing under inclusion dependencies

why don’t we use a finite number of existential constants in the chase?

example: r[1] ⊆ s[1], s[2] ⊆ r[1]

suppose ret(I, C) = {r(a, b)}
compute chase(ret(I, C)) with only one new constant c1:

0) r(a, b); 1) add s(a, c1); 2) add r(c1, c1); 3) add s(c1, c1)

this database is not a canonical model for (I, C)

e.g., for the query q(X) :– r(X,Y), s(Y, Y):

a ∈ qchase(ret(I,C)) while a �∈ cert(q, I, C)

⇒ unsound method!

(and is unsound for any finite number of new constants)

31

The chase

• chase of a database: exhaustive application of a set of rules that

transform the database, in order to make the database consistent with a

set of integrity constraints

• the chase for IDs has only one rule, the ID-chase rule

32

The ID-chase rule

• if the schema contains the ID r[i1, . . . , ik] ⊆ s[j1, . . . , jk]
and there is a fact in DB of the form r(a1, . . . , an)
and there are no facts in DB of the form s(b1, . . . , bm)

such that ai� = bj�
for each � ∈ {1, . . . , k},

then add to DB the fact s(c1, . . . , cm),

where for each h such that 1 ≤ h ≤ m,

if h = j� for some � then ch = ai�

otherwise ch is a new constant symbol

(not occurring already in DB)

• notice: new existential symbols are introduced (skolem terms)

33

Properties of the chase

• bad news: the chase is in general infinite

• good news: the chase identifies a canonical model

• canonical model = a database that “represents” of all the models of the

system

• we can use the chase to prove soundness and completeness of a query

processing method

• but: only for positive queries!

34

An algorithm for rewriting CQs under IDs

• basic idea: let’s chase the query, not the data!

• query chase: dual notion of database chase

• IDs are applied from right to left

• advantage: much easier termination conditions! which imply:

– decidability properties

– efficiency

35

Query rewriting under inclusion dependencies

Given a user query Q over G
• we look for a rewriting R of Q expressed over S
• a rewriting R is perfect if RC = cert(Q, I, C) for every source

database C.

With a perfect rewriting, we can do query answering by rewriting

Note that we avoid the construction of the retrieved global database

ret(I, C)

36

Query rewriting for IDs

Intuition: Use the IDs as basic rewriting rules

q(X, Z) ← player(X, Y, Z)

team[Tleader ,Tname] ⊆ player[Pname,Pteam]

as a logic rule: player(W3,W4,W1) ← team(W1,W2,W3)

37

Query rewriting for IDs

Intuition: Use the IDs as basic rewriting rules

q(X, Z) ← player(X, Y, Z)

team[Tleader ,Tname] ⊆ player[Pname,Pteam]

as a logic rule: player(W3,W4,W1) ← team(W1,W2,W3)

Basic rewriting step:

when the atom unifies with the head of the rule

substitute the atom with the body of the rule

We add to the rewriting the query

q(X, Z) ← team(Z, Y, X)

38

Query Rewriting for IDs: algorithm ID-rewrite

Iterative execution of:

1. reduction: atoms that unify with other atoms are eliminated and the

unification is applied

2. basic rewriting step

39

The algorithm ID-rewrite

Input: relational schema Ψ, set of IDs ΣI , UCQ Q

Output: perfect rewriting of Q

Q′ := Q;

repeat

Qaux := Q′;
for each q ∈ Qaux do

(a) for each g1, g2 ∈ body(q) do

if g1 and g2 unify then Q′ := Q′ ∪ {τ(reduce(q, g1, g2))};

(b) for each g ∈ body(q) do

for each I ∈ ΣI do

if I is applicable to g then Q′ := Q′ ∪ { q[g/gr(g, I)] }
until Qaux = Q′;
return Q′

40

Properties of ID-rewrite

• ID-rewrite terminates

• ID-rewrite produces a perfect rewriting of the input query

• more precisely:

– unf M(q) = unfolding of the query q w.r.t. the GAV mapping M
• Theorem: unf M(ID-rewrite(q)) is a perfect rewriting of the query q

• Theorem: query answering in GAV systems under IDs is in PTIME in

data complexity (actually in LOGSPACE)

41

Key dependencies (KDs)

• a KD states that a set of attributes functionally determines all the relation

attributes

• syntax: key(r) = {i1, . . . , ik}
• e.g., the KD key(r) = {1} corresponds to the FOL sentence

∀x, y, y′, z, z′.r(x, y, z) ∧ r(x, y′, z′) → y = y′ ∧ z = z′

• KDs are a special form of equality-generating dependencies

• we assume that only one key is specified on every relation

42

Query answering under IDs and KDs

• possibility of inconsistencies (recall the sound mapping)

• when ret(I, C) violates the KDs, no legal database exists and query

answering becomes trivial!

Theorem: Query answering under IDs and KDs is undecidable.

Proof: by reduction from implication of IDs and KDs.

43

Separation for IDs and KDs

Non-key-conflicting IDs (NKCIDs) are of the form

r1[A1] ⊆ r2[A2]

where A2 is not a strict superset of key(r2)

Theorem (IDs-KDs separation): Under KDs and NKCIDs:

if ret(I, C) satisfies the KDs

then the KDs can be ignored wrt certain answers of a user query Q

44

Separation for IDs and KDs

Non-key-conflicting IDs (NKCIDs) are of the form

r1[A1] ⊆ r2[A2]

where A2 is not a strict superset of key(r2)

Theorem (IDs-KDs separation): Under KDs and NKCIDs:

if ret(I, C) satisfies the KDs

then the KDs can be ignored wrt certain answers of a user query Q

the problem is undecidable as soon as we extend the language of the IDs

45

Separation for IDs and KDs

Non-key-conflicting IDs (NKCIDs) are of the form

r1[A1] ⊆ r2[A2]

where A2 is not a strict superset of key(r2)

Theorem (IDs-KDs separation): Under KDs and NKCIDs:

if ret(I, C) satisfies the KDs

then the KDs can be ignored wrt certain answers of a user query Q

the problem is undecidable as soon as we extend the language of the IDs

foreign keys (FKs) are a special case of NKCIDs

46

Query processing under separable KDs and IDs

• global algorithm:

1. verify consistency of ret(I, C) with respect to KDs

2. compute ID-rewrite of the input query

3. unfold the query computed at previous step

4. evaluate the query over the sources

• the KD consistency check can be done by suitable CQs with inequality

• (exercise: choose a key dependency and write a query that checks

consistency with respect to such a key)

• computation of ret(I, C) can be avoided (by unfolding the queries for

the KD consistency check)

47

Example: checking KD consistency

relation: player[Pname,Pteam]

key dependency: key(player) = {Pname}

KD (in)consistency query:

q() :– player(X,Y), player(X, Z), Y �= Z

q true iff the instance of player violates the key dependency

48

Example: unfolding a KD consistency query

mapping:
player(X,Y) ← s1(X, Y)

player(X,Y) ← s2(X, Y)

q′ = unfolding of q:

q′() = s1(X,Y), s1(X,Z), Y �= Z∨
s1(X,Y), s2(X,Z), Y �= Z∨
s2(X,Y), s1(X,Z), Y �= Z∨
s2(X,Y), s2(X,Z), Y �= Z

49

Query answering under separable KDs and IDs

Computational characterization:

• Theorem: query answering in GAV systems under KDs and NKCIDs is

in PTIME in data complexity (actually in LOGSPACE)

50

The inconsistency issue

• ID are “repaired” by the sound semantics

• KD violations are NOT repaired

• need for a more “tolerant” semantics

• issue studied by research in consistent query answering

51

More expressive queries

• under KDs and FKs, can we go beyond CQs?

• union of CQs (UCQs): YES

ID-rewrite(q1 ∨ . . . ∨ qn) = ID-rewrite(q1) ∪ . . . ∪ ID-rewrite(qn)

• recursive queries: NO

• answering recursive queries under KDs and FKs is undecidable

[Calvanese & Rosati, 2003]

• (same undecidability result holds in the presence of IDs only)

52

