GAV data integration under integrity constraints

Riccardo Rosati

Dipartimento di Informatica e Sistemistica Università di Roma "La Sapienza"

Corso di Seminari di Ingegneria del Software, a.a. 2005/06

Lecture overview, part one

Query answering in GAV data integration systems:

- retrieved global database
- unfolding
- query answering
- complexity of query answering

Query answering in GAV under integrity constraints:

- the role of global integrity constraints
- inclusion dependencies
- query reformulation under inclusion dependencies
 - chase
 - canonical model
 - query rewriting algorithm
- key dependencies
- decidability and separation

3

Global-as-view (GAV)

(Reminder)

GAV mapping assertions $g \rightsquigarrow \phi_{\mathcal{S}}$ have the logical form:

 $\forall \mathbf{x} \ \phi_{\mathcal{S}}(\mathbf{x}) \rightarrow g(\mathbf{x})$

where ϕ_S is a conjunctive query, and g is an element of \mathcal{G} .

(Reminder)

We refer only to databases over a fixed infinite domain Γ .

Given a source database ${\mathcal C}$ for a system ${\mathcal I},$ a global database ${\mathcal B}$ is legal for

 $(\mathcal{I},\mathcal{C})$ if it satisfies the mapping with respect to \mathcal{C}

model for $(\mathcal{I}, \mathcal{C})$ = legal database for $(\mathcal{I}, \mathcal{C})$

assumption of **sound mapping** (open-world assumption)

5

Semantics: Certain Answers

(Reminder)

- we are interested in certain answers
- a tuple t is a certain answer for a query Q if t is in the answer to Q for all (possibly infinite) legal databases for (I, C)
- the certain answers to Q are denoted by $cert(Q,\mathcal{I},\mathcal{C})$

Given a source database C, we call **retrieved global database**, denoted $ret(\mathcal{I}, C)$, the global database obtained by "applying" the queries in the mapping, and "transferring" to the elements of G the corresponding retrieved tuples.

GAV: example

7

Consider $\mathcal{I} = \langle \mathcal{G}, \mathcal{S}, \mathcal{M} \rangle$, with

Global schema \mathcal{G} :

student(code, name, city)

university(*code*, *name*)

enrolled(*Scode*, *Ucode*)

Source schema \mathcal{S} : relations $s_1(X, Y, W, Z)$, $s_2(X, Y)$, $s_3(X, Y)$

Mapping \mathcal{M} :

$$student(X, Y, Z) \quad \rightsquigarrow \quad \{ (X, Y, Z) \mid \mathsf{s}_1(X, Y, Z, W) \}$$

university(X,Y)
$$\rightsquigarrow \quad \{ (X,Y) \mid \mathsf{s}_2(X,Y) \}$$

enrolled(X,W)
$$\rightsquigarrow \quad \{ (X,W) \mid \mathsf{s}_3(X,W) \}$$

Example of source database C and retrieved global database $ret(\mathcal{I}, C)$

9

GAV: minimal model

GAV mapping assertions $g \rightsquigarrow \phi_S$ have the logical form:

$$\forall \mathbf{x} \ \phi_{\mathcal{S}}(\mathbf{x}) \to g(\mathbf{x})$$

where ϕ_S is a conjunctive query, and g is an element of \mathcal{G} .

In general, given a source database ${\cal C}$ there are several databases that are legal with respect to $({\cal I},{\cal C})$

However, it is easy to see that $ret(\mathcal{I}, \mathcal{C})$ is the intersection of all such databases, and therefore, is the **only** "minimal" model of \mathcal{I} .

GAV: query answering

- If q is a conjunctive query, then $\mathbf{t} \in cert(q, \mathcal{I}, \mathcal{C})$ if and only if $\mathbf{t} \in q^{ret(\mathcal{I}, \mathcal{C})}$
- If q is query over \mathcal{G} , then the **unfolding** of q wrt \mathcal{M} , $unf_{\mathcal{M}}(q)$, is the query over \mathcal{S} obtained from q by substituting every symbol g in q with the query $\phi_{\mathcal{S}}$ that \mathcal{M} associates to g
- It is easy to see that evaluating a query q over $ret(\mathcal{I}, \mathcal{C})$ is equivalent to evaluating $unf_{\mathcal{M}}(q)$ over \mathcal{C} . It follows that, if q is a conjunctive query, then $\mathbf{t} \in cert(q, \mathcal{I}, \mathcal{C})$ if and only if $\mathbf{t} \in unf_{\mathcal{M}}(q)^{\mathcal{C}}$

Unfolding is therefore sufficient

• Data complexity of query answering is polynomial (actually LOGSPACE): the query $unf_{\mathcal{M}}(q)$ is first-order (in fact conjunctive)

13

GAV: example

- More expressive queries in the mapping?
 - Same results hold if we use any computable query in the mapping
- More expressive user queries?
 - Same results hold if we use Datalog queries as user queries
 - Same results hold if we use union of conjunctive queries with inequalities as user queries

GAV: another view

Let B_1 and B_2 be two global databases with values in $\Gamma \cup$ Var.

- A homomorphism $h:B_1 o B_2$ is a mapping from ($\Gamma \cup {\sf Var}(B_1)$) to
 - ($\Gamma \cup Var(B_2)$) such that
 - 1. h(c) = c, for every $c \in \Gamma$
 - 2. for every fact $R_i(t)$ of B_1 , we have that $R_i(h(t))$ is a fact in B_2 (where, if $t = (a_1, \ldots, a_n)$, then $h(t) = (h(a_1), \ldots, h(a_n))$
- B_1 is homomorphically equivalent to B_2 if there is a homomorphism $h: B_1 \to B_2$ and a homomorphism $h': B_2 \to B_1$

Let $\mathcal{I} = \langle \mathcal{G}, \mathcal{S}, \mathcal{M} \rangle$ be a data integration system. If \mathcal{C} is a source database, then a universal solution for \mathcal{I} relative to \mathcal{C} is a model J of \mathcal{I} relative to \mathcal{C} such that for every model J' of \mathcal{I} relative to \mathcal{C} , there exists a homomorphism $h: J \to J'$ (see [Fagin&al. ICDT'03]).

- Homomorphism preserves satisfaction of conjunctive queries: if there exists a homomorphism $h: J \to J'$, and q is a conjunctive query, then $\mathbf{t} \in q^J$ implies $\mathbf{t} \in q^{J'}$
- Let \$\mathcal{I} = \langle \mathcal{G}, \mathcal{S}, \mathcal{M} \rangle\$ be a GAV data integration system without constraints in the global schema. If \$\mathcal{C}\$ is a source database, then \$ret(\mathcal{I}, \mathcal{C})\$ is the minimal universal solution for \$\mathcal{I}\$ relative to \$\mathcal{C}\$
- We derive again the following results
 - if q is a conjunctive query, then $\mathbf{t} \in cert(q, \mathcal{I}, \mathcal{C})$ if and only if $\mathbf{t} \in q^{ret(\mathcal{I}, \mathcal{C})}$
 - complexity of query answering is polynomial

Global integrity constraints

- integrity constraints (ICs) posed over the global schema
- specify intensional knowledge about the domain of interest
- add semantics to the information
- but: data in the sources can conflict with global integrity constraints
- the presence of global integrity constraints rises semantic and computational problems
- open research problems

Most important ICs for the relational model:

- key dependencies (KDs)
- functional dependencies (FDs)
- inclusion dependencies (IDs)
- foreign keys (FKs)
- exclusion dependencies (EDs)

19

Inclusion dependencies (IDs)

- an ID states that the presence of a tuple in a relation implies the presence of a tuple in another relation where t' contains a projection of the values contained in t
- syntax: $r[i_1, \ldots, i_k] \subseteq s[j_1, \ldots, j_k]$
- e.g., the ID $r[1] \subseteq s[2]$ corresponds to the FOL sentence

 $\forall x, y, z \, . \, r(x, y, z) \rightarrow \exists x', z' \, . \, s(x', x, z')$

• IDs are a special form of tuple-generating dependencies

Semantics for GAV systems under integrity constraints

We refer only to databases over a fixed infinite domain Γ .

Given a source database C for a system I, a global database B is **legal** for (I, C) if:

- 1. it satisfies the ICs on the global schema
- 2. it satisfies the mapping with respect to C (i.e., \mathcal{B} is constituted by a superset of the retrieved global database $ret(\mathcal{I}, C)$)

21

Example

Global schema: player(*Pname*, *YOB*, *Pteam*) team(*Tname*, *Tcity*, *Tleader*)

Constraints: team[Tleader, Tname] \subseteq player[Pname, Pteam]

Mapping:player
$$\rightsquigarrow$$
 $\begin{cases} player(X, Y, Z) \leftarrow s_1(X, Y, Z) \\ player(X, Y, Z) \leftarrow s_3(X, Y, Z) \end{cases}$ team \rightsquigarrow team $(X, Y, Z) \leftarrow s_2(X, Y, Z)$

The ID on the global schema tells us that Del Piero is a player of Juve

All legal global databases for \mathcal{I} have **at least** the tuples shown above, where α is some value of the domain Γ .

Example (cont'd)

	Totti	1976	Roma				
player :	Vieri	1974	Inter	team :	Juve	Torino	Del Piero
	Del Piero	lpha	Juve				

The ID on the global schema tells us that Del Piero is a player of Juve

All legal global databases for ${\mathcal I}$ have **at least** the tuples shown above, where α is some value of the domain Γ .

Warning 1 there may be an infinite number of legal databases for ${\cal I}$

25

Example (cont'd)

	Totti	1976	Roma				
player :	Vieri	1974	Inter	team :	Juve	Torino	Del Piero
	Del Piero	α	Juve				

The ID on the global schema tells us that Del Piero is a player of Juve

All legal global databases for \mathcal{I} have **at least** the tuples shown above, where α is some value of the domain Γ .

Warning 1 there may be an infinite number of legal databases for ${\cal I}$

Warning 2 in case of cyclic IDs, legal databases for \mathcal{I} may be of infinite size

Example (cont'd)

	Totti	1976	Roma				
player :	Vieri	1974	Inter	team :	Juve	Torino	Del Piero
	Del Piero	lpha	Juve				

The ID on the global schema tells us that Del Piero is a player of Juve

All legal global databases for \mathcal{I} have **at least** the tuples shown above, where α is some value of the domain Γ .

Consider the query $q(X, Z) \leftarrow player(X, Y, Z)$:

27

Example (cont'd)

	Totti	1976	Roma				
player :	Vieri	1974	Inter	team :	Juve	Torino	Del Piero
	Del Piero	lpha	Juve				

The ID on the global schema tells us that Del Piero is a player of Juve

All legal global databases for \mathcal{I} have **at least** the tuples shown above, where α is some value of the domain Γ .

Consider the query $q(X, Z) \leftarrow player(X, Y, Z)$:

 $cert(q, I, C) = \{ \langle \mathsf{Totti}, \mathsf{Roma} \rangle, \langle \mathsf{Vieri}, \mathsf{Inter} \rangle, \langle \mathsf{Del} \mathsf{Piero}, \mathsf{Juve} \rangle \}$

- intuitive strategy: add new facts until IDs are satisfied
- problem: infinite construction in the presence of cyclic IDs

```
• example 1: r[2] \subseteq r[1]

suppose ret(\mathcal{I}, \mathcal{C}) = \{r(a, b)\}

1) add r(b, c_1)

2) add r(c_1, c_2)

3) add r(c_2, c_3)

....

(infinite construction)
```

Query processing under inclusion dependencies

• example 2: $r[1] \subseteq s[1]$, $s[2] \subseteq r[1]$ suppose $ret(\mathcal{I}, \mathcal{C}) = \{r(a, b)\}$ 1) add $s(a, c_1)$

- 2) add $r(c_1, c_2)$
- 3) add $s(c_1, c_3)$
- 4) add $r(c_3, c_4)$
- 5) add $s(c_{3}, c_{5})$

••••

(infinite construction)

Query processing under inclusion dependencies

why don't we use a finite number of existential constants in the chase? example: $r[1] \subseteq s[1]$, $s[2] \subseteq r[1]$ suppose $ret(\mathcal{I}, \mathcal{C}) = \{r(a, b)\}$ compute $chase(ret(\mathcal{I}, \mathcal{C}))$ with only one new constant c_1 : 0) r(a, b); 1) add $s(a, c_1)$; 2) add $r(c_1, c_1)$; 3) add $s(c_1, c_1)$ this database is **not** a canonical model for $(\mathcal{I}, \mathcal{C})$ e.g., for the query q(X) := r(X, Y), s(Y, Y):

- $a \in q^{\textit{chase}(ret(\mathcal{I},\mathcal{C}))} \text{ while } a \not\in cert(q,\mathcal{I},\mathcal{C})$
- \Rightarrow unsound method!

(and is unsound for any finite number of new constants)

31

The chase

- chase of a database: exhaustive application of a set of rules that transform the database, in order to make the database consistent with a set of integrity constraints
- the chase for IDs has only one rule, the ID-chase rule

- if the schema contains the ID $r[i_1, \ldots, i_k] \subseteq s[j_1, \ldots, j_k]$ and there is a fact in \mathcal{DB} of the form $r(a_1, \ldots, a_n)$ and there are no facts in \mathcal{DB} of the form $s(b_1, \ldots, b_m)$ such that $a_{i_\ell} = b_{j_\ell}$ for each $\ell \in \{1, \ldots, k\}$, then add to \mathcal{DB} the fact $s(c_1, \ldots, c_m)$, where for each h such that $1 \leq h \leq m$, if $h = j_\ell$ for some ℓ then $c_h = a_{i_\ell}$ otherwise c_h is a new constant symbol (not occurring already in \mathcal{DB})
- notice: new existential symbols are introduced (skolem terms)

Properties of the chase

- bad news: the chase is in general infinite
- good news: the chase identifies a canonical model
- canonical model = a database that "represents" of all the models of the system
- we can use the chase to prove soundness and completeness of a query processing method
- but: only for positive queries!

- basic idea: let's chase the query, not the data!
- query chase: dual notion of database chase
- IDs are applied from right to left
- advantage: much easier termination conditions! which imply:
 - decidability properties
 - efficiency

Query rewriting under inclusion dependencies

Given a user query Q over ${\mathcal G}$

- we look for a rewriting R of Q expressed over ${\mathcal S}$
- a rewriting R is perfect if $R^{\mathcal{C}} = cert(Q, \mathcal{I}, \mathcal{C})$ for every source database \mathcal{C} .

With a perfect rewriting, we can do **query answering by rewriting** Note that we avoid the construction of the retrieved global database $ret(\mathcal{I}, \mathcal{C})$ Intuition: Use the IDs as basic rewriting rules

 $\mathsf{q}(X,Z) \ \leftarrow \ \mathsf{player}(X,Y,Z)$

 $team[Tleader, Tname] \subseteq player[Pname, Pteam]$

as a logic rule: player $(W_3, W_4, W_1) \leftarrow \operatorname{team}(W_1, W_2, W_3)$

37

Query rewriting for IDs

Intuition: Use the IDs as basic rewriting rules

 $q(X,Z) \leftarrow player(X,Y,Z)$

 $team[Tleader, Tname] \subseteq player[Pname, Pteam]$

as a logic rule: $player(W_3, W_4, W_1) \leftarrow team(W_1, W_2, W_3)$

Basic rewriting step:

when the atom unifies with the head of the rule

substitute the atom with the body of the rule

We add to the rewriting the query

 $q(X,Z) \leftarrow team(Z,Y,X)$

Iterative execution of:

- 1. **reduction:** atoms that unify with other atoms are eliminated and the unification is applied
- 2. basic rewriting step

39

The algorithm ID-rewrite

Input: relational schema Ψ , set of IDs Σ_I , UCQ QOutput: perfect rewriting of Q Q' := Q; repeat $Q_{aux} := Q'$; for each $q \in Q_{aux}$ do (a) for each $g_1, g_2 \in body(q)$ do if g_1 and g_2 unify then $Q' := Q' \cup \{\tau(reduce(q, g_1, g_2))\}$; (b) for each $g \in body(q)$ do for each $I \in \Sigma_I$ do if I is applicable to g then $Q' := Q' \cup \{q[g/gr(g, I)]\}$ until $Q_{aux} = Q'$; return Q'

- ID-rewrite terminates
- ID-rewrite produces a perfect rewriting of the input query
- more precisely:
 - $unf_{\mathcal{M}}(q)$ = unfolding of the query q w.r.t. the GAV mapping \mathcal{M}
- Theorem: $unf_{\mathcal{M}}(\mathsf{ID}\text{-rewrite}(q))$ is a perfect rewriting of the query q
- Theorem: query answering in GAV systems under IDs is in PTIME in data complexity (actually in LOGSPACE)

Key dependencies (KDs)

- a KD states that a set of attributes functionally determines all the relation attributes
- syntax: $key(r) = \{i_1, \ldots, i_k\}$
- e.g., the KD $key(r) = \{1\}$ corresponds to the FOL sentence

 $\forall x, y, y', z, z'. r(x, y, z) \land r(x, y', z') \rightarrow y = y' \land z = z'$

- KDs are a special form of equality-generating dependencies
- we assume that only one key is specified on every relation

- possibility of inconsistencies (recall the **sound** mapping)
- when $ret(\mathcal{I}, \mathcal{C})$ violates the KDs, no legal database exists and query answering becomes trivial!

Theorem: Query answering under IDs and KDs is undecidable.

Proof: by reduction from implication of IDs and KDs.

43

Separation for IDs and KDs

Non-key-conflicting IDs (NKCIDs) are of the form

 $r_1[\mathbf{A}_1] \subseteq r_2[\mathbf{A}_2]$

where A_2 is **not** a strict superset of $key(r_2)$

Theorem (IDs-KDs separation): Under KDs and NKCIDs:

if $ret(\mathcal{I}, \mathcal{C})$ satisfies the KDs

then the KDs can be ignored wrt certain answers of a user query Q

Non-key-conflicting IDs (NKCIDs) are of the form

 $r_1[\mathbf{A}_1] \subseteq r_2[\mathbf{A}_2]$

where A_2 is **not** a strict superset of $key(r_2)$

Theorem (IDs-KDs separation): Under KDs and NKCIDs:

if $ret(\mathcal{I}, \mathcal{C})$ satisfies the KDs

then the KDs can be ignored wrt certain answers of a user query Q

the problem is undecidable as soon as we extend the language of the IDs

45

Separation for IDs and KDs

Non-key-conflicting IDs (NKCIDs) are of the form

$$r_1[\mathbf{A}_1] \subseteq r_2[\mathbf{A}_2]$$

where A_2 is **not** a strict superset of $key(r_2)$

Theorem (IDs-KDs separation): Under KDs and NKCIDs:

if $ret(\mathcal{I}, \mathcal{C})$ satisfies the KDs

then the KDs can be ignored wrt certain answers of a user query Q

the problem is undecidable as soon as we extend the language of the IDs

foreign keys (FKs) are a special case of NKCIDs

- global algorithm:
 - 1. verify consistency of $ret(\mathcal{I}, \mathcal{C})$ with respect to KDs
 - 2. compute ID-rewrite of the input query
 - 3. unfold the query computed at previous step
 - 4. evaluate the query over the sources
- the KD consistency check can be done by suitable CQs with inequality
- (exercise: choose a key dependency and write a query that checks consistency with respect to such a key)
- computation of $ret(\mathcal{I},\mathcal{C})$ can be avoided (by unfolding the queries for the KD consistency check)

Example: checking KD consistency

relation: player[Pname, Pteam]key dependency: $key(player) = \{Pname\}$

KD (in)consistency query:

 $q() \ \coloneqq \ \mathsf{player}(X,Y), \mathsf{player}(X,Z), Y \neq Z$

q true iff the instance of player violates the key dependency

Example: unfolding a KD consistency query

mapping:

$$\begin{array}{lll} \text{player}(X,Y) &\leftarrow & \mathsf{s}_1(X,Y) \\ \text{player}(X,Y) &\leftarrow & \mathsf{s}_2(X,Y) \end{array}$$

$$q' = \text{unfolding of } q:$$

$$q'() &= & \mathsf{s}_1(X,Y), \mathsf{s}_1(X,Z), Y \neq Z \lor \\ &\quad \mathsf{s}_1(X,Y), \mathsf{s}_2(X,Z), Y \neq Z \lor \\ &\quad \mathsf{s}_2(X,Y), \mathsf{s}_1(X,Z), Y \neq Z \lor \\ &\quad \mathsf{s}_2(X,Y), \mathsf{s}_2(X,Z), Y \neq Z \lor \end{array}$$

49

Query answering under separable KDs and IDs

Computational characterization:

• **Theorem:** query answering in GAV systems under KDs and NKCIDs is in PTIME in data complexity (actually in LOGSPACE)

- ID are "repaired" by the sound semantics
- KD violations are NOT repaired
- need for a more "tolerant" semantics
- issue studied by research in consistent query answering

More expressive queries

- under KDs and FKs, can we go beyond CQs?
- union of CQs (UCQs): YES

 ID -rewrite $(q_1 \lor \ldots \lor q_n) = \mathsf{ID}$ -rewrite $(q_1) \lor \ldots \lor \mathsf{ID}$ -rewrite (q_n)

- recursive queries: NO
- answering recursive queries under KDs and FKs is undecidable [Calvanese & Rosati, 2003]
- (same undecidability result holds in the presence of IDs only)