Lecture overview, part one

GAV data integration under integrity constraints

Riccardo Rosati

Dipartimento di Informatica e Sistemistica Università di Roma "La Sapienza"

Corso di Seminari di Ingegneria del Software, a.a. 2005/06

Query answering in GAV data integration systems:

- retrieved global database
- unfolding
- query answering
- complexity of query answering

Lecture overview, part two

Query answering in GAV under integrity constraints:

- the role of global integrity constraints
- inclusion dependencies
- query reformulation under inclusion dependencies
 - chase
 - canonical model
 - query rewriting algorithm
- key dependencies
- decidability and separation

Global-as-view (GAV)

(Reminder)

GAV mapping assertions $g \leadsto \phi_{\mathcal{S}}$ have the logical form:

$$\forall \mathbf{x} \ \phi_{\mathcal{S}}(\mathbf{x}) \rightarrow q(\mathbf{x})$$

where ϕ_S is a conjunctive query, and g is an element of \mathcal{G} .

Semantics for GAV systems

Semantics: Certain Answers

(Reminder)

We refer only to databases over a fixed infinite domain Γ .

Given a source database $\mathcal C$ for a system $\mathcal I$, a global database $\mathcal B$ is **legal** for $(\mathcal I,\mathcal C)$ if it satisfies the mapping with respect to $\mathcal C$

model for $(\mathcal{I}, \mathcal{C})$ = legal database for $(\mathcal{I}, \mathcal{C})$

assumption of sound mapping (open-world assumption)

5

Retrieved global database

Given a source database \mathcal{C} , we call **retrieved global database**, denoted $ret(\mathcal{I},\mathcal{C})$, the global database obtained by "applying" the queries in the mapping, and "transferring" to the elements of \mathcal{G} the corresponding retrieved tuples.

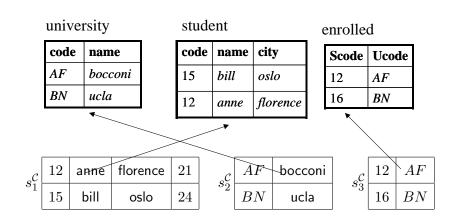
(Reminder)

- we are interested in certain answers
- a tuple t is a **certain answer** for a query Q if t is in the answer to Q for **all** (possibly infinite) legal databases for $(\mathcal{I}, \mathcal{C})$
- the certain answers to Q are denoted by $cert(Q, \mathcal{I}, \mathcal{C})$

6

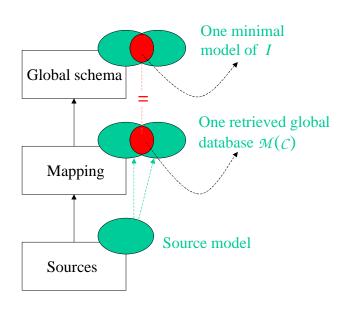
GAV: example

GAV: example



Example of source database $\mathcal C$ and retrieved global database $ret(\mathcal I,\mathcal C)$

9



GAV: minimal model

GAV mapping assertions $q \rightsquigarrow \phi_S$ have the logical form:

$$\forall \mathbf{x} \ \phi_{\mathcal{S}}(\mathbf{x}) \to g(\mathbf{x})$$

where ϕ_S is a conjunctive query, and g is an element of \mathcal{G} .

In general, given a source database $\mathcal C$ there are several databases that are legal with respect to $(\mathcal I,\mathcal C)$

However, it is easy to see that $ret(\mathcal{I},\mathcal{C})$ is the intersection of all such databases, and therefore, is the **only** "minimal" model of \mathcal{I} .

10

GAV: query answering

- If q is a conjunctive query, then $\mathbf{t} \in cert(q, \mathcal{I}, \mathcal{C})$ if and only if $\mathbf{t} \in q^{ret(\mathcal{I}, \mathcal{C})}$
- If q is query over \mathcal{G} , then the **unfolding** of q wrt \mathcal{M} , $\mathit{unf}_{\mathcal{M}}(q)$, is the query over \mathcal{S} obtained from q by substituting every symbol g in q with the query $\phi_{\mathcal{S}}$ that \mathcal{M} associates to g
- It is easy to see that evaluating a query q over $ret(\mathcal{I},\mathcal{C})$ is equivalent to evaluating $\mathit{unf}_{\mathcal{M}}(q)$ over \mathcal{C} . It follows that, if q is a conjunctive query, then $\mathbf{t} \in cert(q,\mathcal{I},\mathcal{C})$ if and only if $\mathbf{t} \in \mathit{unf}_{\mathcal{M}}(q)^{\mathcal{C}}$

Unfolding is therefore sufficient

GAV: complexity of query answering

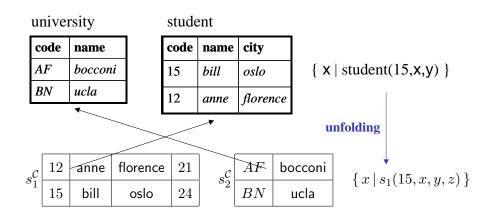
 Data complexity of query answering is polynomial (actually LOGSPACE): the query unf_M(q) is first-order (in fact conjunctive)

13

GAV: more expressive queries?

- More expressive queries in the mapping?
 - Same results hold if we use any computable query in the mapping
- More expressive user queries?
 - Same results hold if we use Datalog queries as user queries
 - Same results hold if we use union of conjunctive queries with inequalities as user queries

GAV: example



14

GAV: another view

Let B_1 and B_2 be two global databases with values in $\Gamma \cup$ Var.

- A homomorphism $h:B_1\to B_2$ is a mapping from $(\Gamma\cup {\sf Var}(B_1))$ to $(\Gamma\cup {\sf Var}(B_2))$ such that
 - 1. h(c) = c, for every $c \in \Gamma$
 - 2. for every fact $R_i(t)$ of B_1 , we have that $R_i(h(t))$ is a fact in B_2 (where, if $t=(a_1,\ldots,a_n)$, then $h(t)=(h(a_1),\ldots,h(a_n))$
- ullet B_1 is homomorphically equivalent to B_2 if there is a homomorphism $h:B_1 o B_2$ and a homomorphism $h':B_2 o B_1$

Let $\mathcal{I}=\langle \mathcal{G},\mathcal{S},\mathcal{M} \rangle$ be a data integration system. If \mathcal{C} is a source database, then a universal solution for \mathcal{I} relative to \mathcal{C} is a model J of \mathcal{I} relative to \mathcal{C} such that for every model J' of \mathcal{I} relative to \mathcal{C} , there exists a homomorphism $h:J\to J'$ (see [Fagin&al. ICDT'03]).

GAV: another view

- Homomorphism preserves satisfaction of conjunctive queries: if there exists a homomorphism $h:J\to J'$, and q is a conjunctive query, then $\mathbf{t}\in q^J$ implies $\mathbf{t}\in q^{J'}$
- Let $\mathcal{I}=\langle \mathcal{G},\mathcal{S},\mathcal{M} \rangle$ be a GAV data integration system without constraints in the global schema. If \mathcal{C} is a source database, then $ret(\mathcal{I},\mathcal{C})$ is the minimal universal solution for \mathcal{I} relative to \mathcal{C}
- We derive again the following results
 - if q is a conjunctive query, then $\mathbf{t}\in cert(q,\mathcal{I},\mathcal{C})$ if and only if $\mathbf{t}\in q^{ret(\mathcal{I},\mathcal{C})}$
 - complexity of query answering is polynomial

17

Integrity constraints for relational schemas

Most important ICs for the relational model:

- key dependencies (KDs)
- functional dependencies (FDs)
- inclusion dependencies (IDs)
- foreign keys (FKs)
- exclusion dependencies (EDs)

Global integrity constraints

- integrity constraints (ICs) posed over the global schema
- specify intensional knowledge about the domain of interest
- add semantics to the information
- but: data in the sources can conflict with global integrity constraints
- the presence of global integrity constraints rises semantic and computational problems
- open research problems

18

Inclusion dependencies (IDs)

- ullet an ID states that the presence of a tuple in a relation implies the presence of a tuple in another relation where t^\prime contains a projection of the values contained in t
- syntax: $r[i_1, \ldots, i_k] \subseteq s[j_1, \ldots, j_k]$
- ullet e.g., the ID $r[1] \subseteq s[2]$ corresponds to the FOL sentence

$$\forall x, y, z : r(x, y, z) \rightarrow \exists x', z' : s(x', x, z')$$

• IDs are a special form of tuple-generating dependencies

Semantics for GAV systems under integrity constraints

We refer only to databases over a fixed infinite domain Γ .

Given a source database $\mathcal C$ for a system $\mathcal I$, a global database $\mathcal B$ is **legal** for $(\mathcal I,\mathcal C)$ if:

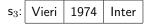
- 1. it satisfies the ICs on the global schema
- 2. it satisfies the mapping with respect to $\mathcal C$ (i.e., $\mathcal B$ is constituted by a superset of the retrieved global database $ret(\mathcal I,\mathcal C)$)

21

Example (cont'd)

Source database $\mathcal C$

$$s_1$$
: Totti 1976 Roma s_2 : Juve



Retrieved global database $ret(\mathcal{I},\mathcal{C})$

Torino

Del Piero

Example

 $\textbf{Global schema:} \quad \mathsf{player}(Pname,\,YOB,Pteam)$

team(Tname, Tcity, Tleader)

Constraints: team[Tleader, Tname] \subseteq player[Pname, Pteam]

22

Example (cont'd)

team : Juve Torino Del Piero

The ID on the global schema tells us that Del Piero is a player of Juve

All legal global databases for $\mathcal I$ have **at least** the tuples shown above, where α is some value of the domain Γ .

Example (cont'd)

team : Juve Torino Del Piero

The ID on the global schema tells us that Del Piero is a player of Juve

All legal global databases for $\mathcal I$ have **at least** the tuples shown above, where α is some value of the domain Γ .

Warning 1 there may be an infinite number of legal databases for ${\mathcal I}$

25

Example (cont'd)

player : $egin{array}{|c|c|c|c|c|}\hline Totti & 1976 & Roma \\\hline Vieri & 1974 & Inter \\\hline Del Piero & $lpha$ & Juve \\\hline \end{array}$

team : Juve Torino Del Piero

The ID on the global schema tells us that Del Piero is a player of Juve

All legal global databases for $\mathcal I$ have **at least** the tuples shown above, where α is some value of the domain Γ .

Consider the query $q(X,Z) \leftarrow player(X,Y,Z)$:

Example (cont'd)

team : Juve Torino Del Piero

The ID on the global schema tells us that Del Piero is a player of Juve

All legal global databases for $\mathcal I$ have **at least** the tuples shown above, where α is some value of the domain Γ .

Warning 1 there may be an infinite number of legal databases for \mathcal{I}

Warning 2 in case of cyclic IDs, legal databases for $\mathcal I$ may be of infinite size

26

Example (cont'd)

player : $\begin{array}{|c|c|c|c|c|}\hline {\sf Totti} & 1976 & {\sf Roma} \\ \hline {\sf Vieri} & 1974 & {\sf Inter} \\ \hline {\sf Del Piero} & \alpha & {\sf Juve} \\ \hline \end{array}$

team : Juve Torino Del Piero

The ID on the global schema tells us that Del Piero is a player of Juve

All legal global databases for $\mathcal I$ have **at least** the tuples shown above, where α is some value of the domain Γ .

$$\begin{split} & \text{Consider the query} \quad \mathsf{q}(X,Z) \ \leftarrow \ \mathsf{player}(X,Y,Z) : \\ & cert(\mathsf{q},\mathcal{I},\mathcal{C}) = \{ \langle \mathsf{Totti}, \mathsf{Roma} \rangle, \langle \mathsf{Vieri}, \mathsf{Inter} \rangle, \langle \mathsf{Del Piero}, \mathsf{Juve} \rangle \} \end{split}$$

Query processing under inclusion dependencies

- intuitive strategy: add new facts until IDs are satisfied
- problem: infinite construction in the presence of cyclic IDs
- example 1: $r[2] \subseteq r[1]$ suppose $ret(\mathcal{I},\mathcal{C})=\{r(a,b)\}$ 1) add $r(b,c_1)$ 2) add $r(c_1,c_2)$ 3) add $r(c_2,c_3)$
 (infinite construction)

29

Query processing under inclusion dependencies

• example 2: $r[1]\subseteq s[1]$, $s[2]\subseteq r[1]$ suppose $ret(\mathcal{I},\mathcal{C})=\{r(a,b)\}$ 1) add $s(a,c_1)$ 2) add $r(c_1,c_2)$ 3) add $s(c_1,c_3)$ 4) add $r(c_3,c_4)$ 5) add $s(c_3,c_5)$

(infinite construction)

30

Query processing under inclusion dependencies

why don't we use a finite number of existential constants in the chase?

example: $r[1]\subseteq s[1], \quad s[2]\subseteq r[1]$ suppose $ret(\mathcal{I},\mathcal{C})=\{r(a,b)\}$ compute $chase(ret(\mathcal{I},\mathcal{C}))$ with only one new constant c_1 : 0) r(a,b); 1) add $s(a,c_1)$; 2) add $r(c_1,c_1)$; 3) add $s(c_1,c_1)$ this database is **not** a canonical model for $(\mathcal{I},\mathcal{C})$

e.g., for the query $q(X) \ := \ r(X,Y), s(Y,Y)$:

 $a \in q^{\textit{chase}(ret(\mathcal{I},\mathcal{C}))}$ while $a \not\in cert(q,\mathcal{I},\mathcal{C})$

 \Rightarrow unsound method!

(and is unsound for any finite number of new constants)

The chase

- chase of a database: exhaustive application of a set of rules that transform the database, in order to make the database consistent with a set of integrity constraints
- the chase for IDs has only one rule, the ID-chase rule

The ID-chase rule

• if the schema contains the ID $r[i_1,\ldots,i_k]\subseteq s[j_1,\ldots,j_k]$ and there is a fact in \mathcal{DB} of the form $r(a_1,\ldots,a_n)$ and there are no facts in \mathcal{DB} of the form $s(b_1,\ldots,b_m)$ such that $a_{i_\ell}=b_{j_\ell}$ for each $\ell\in\{1,\ldots,k\}$, then add to \mathcal{DB} the fact $s(c_1,\ldots,c_m)$, where for each h such that $1\leq h\leq m$, if $h=j_\ell$ for some ℓ then $c_h=a_{i_\ell}$ otherwise c_h is a new constant symbol (not occurring already in \mathcal{DB})

• notice: new existential symbols are introduced (skolem terms)

33

An algorithm for rewriting CQs under IDs

- basic idea: let's chase the query, not the data!
- query chase: dual notion of database chase
- IDs are applied from right to left
- advantage: much easier termination conditions! which imply:
 - decidability properties
 - efficiency

Properties of the chase

- bad news: the chase is in general infinite
- good news: the chase identifies a canonical model
- canonical model = a database that "represents" of all the models of the system
- we can use the chase to prove soundness and completeness of a query processing method
- but: only for positive queries!

34

Query rewriting under inclusion dependencies

Given a user query Q over $\mathcal G$

- ullet we look for a rewriting R of Q expressed over ${\mathcal S}$
- a rewriting R is **perfect** if $R^{\mathcal{C}} = cert(Q, \mathcal{I}, \mathcal{C})$ for every source database \mathcal{C} .

With a perfect rewriting, we can do query answering by rewriting

Note that we avoid the construction of the retrieved global database $ret(\mathcal{I},\mathcal{C})$

Query rewriting for IDs

Intuition: Use the IDs as basic rewriting rules

$$\mathsf{q}(X,Z) \; \leftarrow \; \mathsf{player}(X,Y,Z)$$

 $team[Tleader, Tname] \subseteq player[Pname, Pteam]$

as a logic rule: player $(W_3, W_4, W_1) \leftarrow \text{team}(W_1, W_2, W_3)$

37

Query Rewriting for IDs: algorithm ID-rewrite

Iterative execution of:

- 1. **reduction:** atoms that unify with other atoms are eliminated and the unification is applied
- 2. basic rewriting step

Query rewriting for IDs

Intuition: Use the IDs as basic rewriting rules

$$q(X,Z) \leftarrow \mathsf{player}(X,Y,Z)$$

 $team[Tleader, Tname] \subseteq player[Pname, Pteam]$

as a logic rule: player $(W_3, W_4, W_1) \leftarrow \text{team}(W_1, W_2, W_3)$

Basic rewriting step:

when the atom unifies with the head of the rule

substitute the atom with the body of the rule

We add to the rewriting the query

$$q(X,Z) \leftarrow team(Z,Y,X)$$

The algorithm ID-rewrite

Input: relational schema Ψ , set of IDs Σ_I , UCQ QOutput: perfect rewriting of Q

Q' := Q;

repeat

 $Q_{aux} := Q';$

for each $q \in Q_{aux}$ do

(a) for each $g_1, g_2 \in body(q)$ do

if g_1 and g_2 unify then $Q' := Q' \cup \{\tau(reduce(q, g_1, g_2))\};$

(b) for each $g \in body(q)$ do

for each $I \in \Sigma_I$ do

if I is applicable to g then $Q' := Q' \cup \{ q[g/gr(g, I)] \}$

until $Q_{aux} = Q'$;

Properties of ID-rewrite

- ID-rewrite terminates
- ID-rewrite produces a perfect rewriting of the input query
- more precisely:
 - $-unf_{\mathcal{M}}(q)$ = unfolding of the query q w.r.t. the GAV mapping \mathcal{M}
- \bullet Theorem: $unf_{\mathcal{M}}(\mbox{ID-rewrite}(q))$ is a perfect rewriting of the query q
- Theorem: query answering in GAV systems under IDs is in PTIME in data complexity (actually in LOGSPACE)

41

Query answering under IDs and KDs

- possibility of inconsistencies (recall the **sound** mapping)
- when $ret(\mathcal{I},\mathcal{C})$ violates the KDs, no legal database exists and query answering becomes trivial!

Theorem: Query answering under IDs and KDs is undecidable.

Proof: by reduction from implication of IDs and KDs.

Key dependencies (KDs)

- a KD states that a set of attributes functionally determines all the relation attributes
- syntax: $key(r) = \{i_1, \ldots, i_k\}$
- e.g., the KD $key(r) = \{1\}$ corresponds to the FOL sentence

$$\forall x, y, y', z, z'. r(x, y, z) \land r(x, y', z') \rightarrow y = y' \land z = z'$$

- KDs are a special form of equality-generating dependencies
- we assume that only one key is specified on every relation

42

Separation for IDs and KDs

Non-key-conflicting IDs (NKCIDs) are of the form

$$r_1[\mathbf{A}_1] \subseteq r_2[\mathbf{A}_2]$$

where ${f A}_2$ is **not** a strict superset of $key(r_2)$

Theorem (IDs-KDs separation): Under KDs and NKCIDs:

if $ret(\mathcal{I}, \mathcal{C})$ satisfies the KDs

then the KDs can be ignored wrt certain answers of a user query ${\cal Q}$

Separation for IDs and KDs

Non-key-conflicting IDs (NKCIDs) are of the form

$$r_1[\mathbf{A}_1] \subseteq r_2[\mathbf{A}_2]$$

where ${\bf A}_2$ is **not** a strict superset of $key(r_2)$

Theorem (IDs-KDs separation): Under KDs and NKCIDs:

if $ret(\mathcal{I},\mathcal{C})$ satisfies the KDs

then the KDs can be ignored wrt certain answers of a user query Q

the problem is undecidable as soon as we extend the language of the IDs

45

Query processing under separable KDs and IDs

- global algorithm:
 - 1. verify consistency of $ret(\mathcal{I},\mathcal{C})$ with respect to KDs
 - 2. compute ID-rewrite of the input query
 - 3. unfold the query computed at previous step
 - 4. evaluate the query over the sources
- the KD consistency check can be done by suitable CQs with inequality
- (exercise: choose a key dependency and write a query that checks consistency with respect to such a key)
- \bullet computation of $ret(\mathcal{I},\mathcal{C})$ can be avoided (by unfolding the queries for the KD consistency check)

Separation for IDs and KDs

Non-key-conflicting IDs (NKCIDs) are of the form

$$r_1[\mathbf{A}_1] \subseteq r_2[\mathbf{A}_2]$$

where \mathbf{A}_2 is **not** a strict superset of $key(r_2)$

Theorem (IDs-KDs separation): Under KDs and NKCIDs:

if $ret(\mathcal{I}, \mathcal{C})$ satisfies the KDs

then the KDs can be ignored wrt certain answers of a user query Q

the problem is undecidable as soon as we extend the language of the IDs

foreign keys (FKs) are a special case of NKCIDs

46

Example: checking KD consistency

relation: player[Pname, Pteam]

key dependency: $key(player) = \{Pname\}$

KD (in)consistency query:

 $q() := \mathsf{player}(X,Y), \mathsf{player}(X,Z), Y \neq Z$

q true iff the instance of player violates the key dependency

Example: unfolding a KD consistency query

q' = unfolding of q:

$$\begin{array}{ll} q'() & = & \mathsf{s}_1(X,Y), \mathsf{s}_1(X,Z), Y \neq Z \vee \\ & \mathsf{s}_1(X,Y), \mathsf{s}_2(X,Z), Y \neq Z \vee \\ & \mathsf{s}_2(X,Y), \mathsf{s}_1(X,Z), Y \neq Z \vee \\ & \mathsf{s}_2(X,Y), \mathsf{s}_2(X,Z), Y \neq Z \end{array}$$

49

The inconsistency issue

- ID are "repaired" by the sound semantics
- KD violations are NOT repaired
- need for a more "tolerant" semantics
- issue studied by research in consistent query answering

Query answering under separable KDs and IDs

Computational characterization:

 Theorem: query answering in GAV systems under KDs and NKCIDs is in PTIME in data complexity (actually in LOGSPACE)

50

More expressive queries

- under KDs and FKs, can we go beyond CQs?
- union of CQs (UCQs): YES $\text{ID-rewrite}(q_1 \vee \ldots \vee q_n) = \text{ID-rewrite}(q_1) \cup \ldots \cup \text{ID-rewrite}(q_n)$
- recursive queries: NO
- answering recursive queries under KDs and FKs is undecidable [Calvanese & Rosati, 2003]
- (same undecidability result holds in the presence of IDs only)