
A Brief Introduction to Web A Brief Introduction to Web
Services and Related Services and Related

TechnologiesTechnologies

Massimo Mecella

Alcune delle figure presentate in queste slide sono Copyright Springer Verlag Berlin
Heidelberg 2004.
Esse sono state fornite dagli autori al docente per soli scopi didattici.

Some of the figures presented in these slides are Copyright Springer Verlag Berlin
Heidelberg 2004.
They have been provided directly by the authors for teaching purposes.

Seminari di Ingegneria del Software
A.A. 2005/2006

Materiale didattico per questa parte:

- Slide

- Alonso, Casati et al.: Web Services.
Springer Verlag, 2004. Cap. 5 – 8

- Berardi et al. @ IJCIS 2005

- Baina et al. @ CAiSE 2004

- Berardi et al. @ AISC 2006

Materiale didattico per questa parte:

- Slide

- Alonso, Casati et al.: Web Services.
Springer Verlag, 2004. Cap. 5 – 8

- Berardi et al. @ IJCIS 2005

- Baina et al. @ CAiSE 2004

- Berardi et al. @ AISC 2006

2

(naive) Business-to-Business Integration

web
server

internal
infrastructure

supplier

customer

warehouse

web
server

internal
infrastructure

internal
infrastructure

internal
procurement
requests

B2B interactions occur
by accessing Web
pages, filling Web
forms, or via email

[from ACKM04]

3

WSs: the Evolution of Middleware and EAI Technologies (1)

internal infrastructure

supplier

warehouse

middleware for
supplier-customer

interaction

middleware for
supplier-warehouse

interaction

middleware for
supplier-XYZ
interaction

m
id

d
le

w
ar

e
fo

r
in

te
g

ra
ti

n
g

th

e
m

id
d

le
w

ar
e

customer

another party
(XYZ)

yet another party (ABC)

middleware for
supplier-ABC
interaction

supplier’s
adapters

supplier’s
adapters

supplier’s
adapters

[from ACKM04]

4

internal
service

middleware

client

internal
service

Web
service

Web
service

Company A
(provider)

internal
service

middleware

internal
service

Company B
(client)

WSs: the Evolution of Middleware and EAI Technologies (2)

wide area
network
(Internet)

[from ACKM04]

5

(WS-based) Business-to-Business Integration

internal
infrastructure

supplier

customer

warehouse

internal
infrastructure

internal
infrastructure

internal
procurement
requests

Web
service

Web
service

Web
service

Interactions based on
protocols redesigned for
peer to peer and B2B
settings

Standardized languages and
protocols, eliminating the need
for many different middleware
infrastructures (need only the
Web services middleware)

Internal functionality
made available as a
service

[from ACKM04]

6

When Web Services
Should Be Applied ?

When it is no possible to easily manage deployment so that
all requesters and providers are upgraded at once
When components of the distributed system run on different
platforms and vendor products
When an existing application needs to be exposed over a
network for use by unknown requesters

Web Services Architecture,
W3C Working Group Note, 11 Feb. 2004, http://www.w3.org/TR/ws-
arch/

7

internal
service logic

internal
service logic

Company A
(provider)

Web service interface

Logic for accessing to
internal systems

internal architecture
& middleware

internal architecture
& middleware

Web service

client

Company D
(client)

Web
service

Web
service

Web
service

Web
service

Web
service

external
architecture &

middleware

external
architecture &

middleware

Company B
(provider)

Company C
(provider)

Two Architectures
(and Middlewares) (1)

[from ACKM04]

8

The Internal Architecture

resource
manager

resource
manager

middleware

service interface

integration logic

resource
manager

resource
manager

middleware

service interface

integration logic

middleware

service interface

integration logic

other tiers

resource
manager

resource
manager

middleware

service interface

integration logic

resource
manager

resource
manager

middleware

service interface

integration logic

service interface

integration logic

resource
manager

resource
manager

middleware

service interface

integration logic

resource
manager

resource
manager

middleware

service interface

integration logic

service interface

integration logic

middleware

service interface

integration logic

service interface

integration logic

other tiers

Web service interface

access to internal systems

Web service interface

access to internal systems

conventional middleware
(includes middleware services)

service interface

integration logic

service interface

integration logic

other tiers other tiers

Company A (service provider)

clients
from other
companies

Conventional
middleware provides
lots of services (load
balancing, transaction
support, etc).
Current Web services
middleware is quite
poor in this respect.

Web services middleware (internal)

9

The External Architecture

Web service client

Company A (service requester)

other tiers

Web service

other tiers

Company B (service provider)

Company C (directory service provider)

service descriptions

1. publish the service description2. find

3. interact

the abstraction
and
infrastructure
provided by the
registry are part
of the external
middleware

Web services middleware
(internal)

Web services middleware
(internal)

Web services middleware
(internal)

Web services middleware
(internal)

10

Web service
client

other tiers

Web service

other tiers

Company A
(service requester)

Company B
(service provider)

internal
middleware

transaction
mgmt internal

middleware

Company C
(directory service provider)

service descriptions

composition
engine

other protocol
infrastructure

transaction
mgmt

composition
engine

other protocol
infrastructure

external middleware

The External Middleware

11

service providerservice requestor

application object
(client)

application object
(service provider)

SOAP-based
middleware

SOAP-based
middlewareSOAP messages

exchanged on top of,
HTTP, SMTP, or other
transport

converts procedure calls to/from XML
messages sent through HTTP or other
protocols.

A Minimalist Infrastructure for Web Service

12

service providerservice requestor

application object
(client)

application object
(service provider)

stub skeleton

WSDL of
service provider

WSDL compiler
(server side)

WSDL compiler
(client side)

<operation name="orderGoods">
<input message = "OrderMsg"/>

</operation>

SOAP-based
middleware

SOAP-based
middlewareSOAP messages

From Interfaces to Stub/Skeleton

13

service descriptions

SOAP-based middleware

UDDI registry

service providerservice requestor

application object
(client)

application object
(service provider)

stub skeleton

SOAP-based
middleware

SOAP-based
middlewareSOAP messages

SOAP messages
(to look for services)

SOAP messages
(to publish service description)

service descriptions

SOAP-based middleware

UDDI registry

service providerservice requestor

application object
(client)

application object
(service provider)

stub skeleton

SOAP-based
middleware

SOAP-based
middlewareSOAP messages

SOAP messages
(to look for services)

SOAP messages
(to publish service description)

Registry

14

SOAP envelope

SOAP header

header block

SOAP body

body block

SOAP (1)

SOAP envelope

SOAP body

PurchaseOrder
document

-product item
-quantity

SOAP envelope

SOAP body

Acknowledgement
document
-order id

SOAP envelope

SOAP body
method name
orderGoods
input parameter 1
product item

input parameter 2
quantity

SOAP envelope

SOAP body

method return

return value
order id

(a) Document-style interaction

(b) RPC-style interaction

15

<ProductItem>
<name>…</name>
<type>…</type>
<make>…</make>

</ProductItem>

<ProductItem
name=“…”
type=“…”
make=“…”

/>

<ProductItem name=“…”
<type>…</type>
<make>…</make>

</ProductItem>

SOAP (2)

<?xml version='1.0' ?>

<env:Envelope xmlns:env="http://www.w3.org/2002/06/soap-envelope" >

<env:Header>
<t:transactionID

xmlns:t="http://intermediary.example.com/procurement"
env:role="http://www.w3.org/2002/06/soap-envelope/role/next"
env:mustUnderstand="true" >
57539

</t:transactionID>
</env:Header>

<env:Body>
<m:orderGoods

env:encodingStyle="http://www.w3.org/2002/06/soap-encoding"
xmlns:m="http://example.com/procurement">

<m:productItem>
<name>ACME Softener</name>

</m:productItem>
<m:quantity>

35
</m:quantity>
</m:orderGoods>
</env:Body>

</env:Envelope>

header

body

blocks

envelope
<?xml version='1.0' ?>

<env:Envelope xmlns:env="http://www.w3.org/2002/06/soap-envelope" >

<env:Header>
<t:transactionID

xmlns:t="http://intermediary.example.com/procurement"
env:role="http://www.w3.org/2002/06/soap-envelope/role/next"
env:mustUnderstand="true" >
57539

</t:transactionID>
</env:Header>

<env:Body>
<m:orderGoods

env:encodingStyle="http://www.w3.org/2002/06/soap-encoding"
xmlns:m="http://example.com/procurement">

<m:productItem>
<name>ACME Softener</name>

</m:productItem>
<m:quantity>

35
</m:quantity>
</m:orderGoods>
</env:Body>

</env:Envelope>

header

body

blocks

envelope

Different
encoding
styles

Different
encoding
styles

16

RPC with SOAP

service provider

SOAP
engine

service implementation
(other tiers)

HTTP
engine

service requestor

HTTP
engine

client implementation
(other tiers)

SOAP
engine

SOAP envelope

SOAP header

transactional
context

SOAP body

name of the
procedure

input parameter 1

input parameter 2

HTTP Post

SOAP envelope

SOAP header

transactional
context

SOAP body

return
parameter

SOAP envelope

SOAP header

transactional
context

SOAP body

return
parameter

HTTP Post

17

service requestor

client
implementation

HTTP engine

client stub

SOAP engine

invokes the service
as a local call

invoke SOAP engine to
prepare SOAP message

packages SOAP into HTTP and
passes it to an HTTP client that
sends it to the provider

service provider

service
implementation

HTTP server

server stub

SOAP router

invokes the local procedure of
the service implementation

the router parses the message,
identifies the appropriate stub,
and delivers the parsed message

passes the content of the HTTP
message to the router

The Simplest SOAP Middleware

18

Web Service Definition Language (WS-DL)

WS-DL (v2.0) provides a framework for defining

• Interface: operations and input/output formal parameters

• Access specification: protocol bindings (e.g., SOAP)

• Endpoint: the location of service

provide
ServiceService

1..n

implement
1

BindingBinding

EndpointEndpoint

specify (how to invoke)

1..n

support
InterfaceInterface

MessageMessage

consist ofextend

consist of

PartPart

1..n

1..2

1..n

0..n OperationOperation

Service
implementation
(concrete definition)

Service interface
(abstract definition)

19

Message Exchange Patterns (1)

Client Service

input

in-only (no faults)

Client Service
output

out-only (no faults)

Client Service

input

robust in-only (message triggers fault)

fault

Client Service
output

robust out-only (message triggers fault)

fault

20

Message Exchange Patterns (2)

in-out (fault replaces message)

Client Service

(1) input

(2) output
(2’) fault

Client Service

(2) input

(1) output

(2’) fault

out-in (fault replaces message) out-optional-in
(message triggers fault)

Client Service

(?) input

output

fault

in-optional-out
(message triggers fault)

Client Service

input

(?) output

fault

21

An Example (1)
<definitions … >

<types>
<element name="ListOfSong_Type">

<complexType><sequence>
<element minOccurs="0" maxOccurs="unbound“

name="SongTitle" type="xs:string"/>
</sequence></complexType>

</element>
<element name="SearchByTitleRequest">

<complexType><all>
<element name="containedInTitle“

type="xs:string"/>
</all></complexType>

</element>
<element name="SearchByTitleResponse">

<complexType><all>
<element name="matchingSongs“

xsi:type="ListOfSong_Type"/>
</all></complexType>

</element>

Definition of a
message and its
formal
parameter

22

An Example (2)

<element name="SearchByAuthorRequest">
<complexType><all>

<element name="authorName“
type="xs:string"/>

</all></complexType>
</element>
<element name="SearchByAuthorResponse">

<complexType><all>
<element name="matchingSongs“

xsi:type="ListOfSong_Type"/>
</all></complexType>

</element>
<element name="ListenRequest">

<complexType><all>
<element name="selectedSong“

type="xs:string"/>
</all></complexType>

</element>

23

An Example (3)

<element name="ListenResponse">

<complexType><all>

<element name="MP3fileURL" type="xs:string"/>

</all></complexType>

</element>

<element name="ErrorMessage">

<complexType><all>

<element name="cause" type="xs:string"/>

</all></complexType>

</element>

</types>

24

An Example (4)

<interface name="MP3ServiceType">
<operation name="search_by_title" pattern="in-out">

<input message="SearchByTitleRequest"/>
<output message="SearchByTitleResponse"/>
<outfault message="ErrorMessage"/>

</operation>
<operation name="search_by_author" pattern="in-out">

<input message="SearchByAuthorRequest"/>
<output message="SearchByAuthorResponse"/>
<outfault message="ErrorMessage"/>

</operation>
<operation name="listen" pattern="in-out">

<input message="ListenRequest"/>
<output message="ListenResponse"/>
<outfault message="ErrorMessage"/>

</operation>
</interface>

</definitions> Definition of an
operation and its
message exchange
pattern

Definition of a
service interface

25

UDDI Data Structures

businessEntity
name
contacts
description
identifiers
categories

businessService
service key
name
description
categories

bindingTemplate
binding key
description
address
detailed info
references to tModels

bindingTemplate
binding key
description
address
detailed info
references to tModels

bindingTemplate
binding key
description
address
detailed info
references to tModels

tModel
key
name
description
overviewDoc
identifiers
categories

tModel
key
name
description
overviewDoc
identifiers
categories

tModel
key
name
description
overviewDoc
identifiers
categories

tModel
key
name
description
overviewDoc
identifiers
categories

Specs stored
at the

provider’s
site

Stored in the UDDI registry

tModel
key
name
description
overviewDoc
identifiers
categories

tModel
key
name
description
overviewDoc
identifiers
categories

tModel
key
name
description
overviewDoc
identifiers
categories

tModel
key
name
description
overviewDoc
identifiers
categories

tModel
key
name
description
overviewDoc
identifiers
categories

tModel
key
name
description
overviewDoc
identifiers
categories

26

<tModel tModelKey=”uddi:uddi.org:v3_publication”>
<name>uddi-org:publication_v3</name>
<description>UDDI Publication API V3.0</description>
<overviewDoc>

<overviewURL useType=”wsdlInterface”>
http://uddi.org/wsdl/uddi_api_v3_binding.wsdl#UDDI_Publication_SoapBinding

</overviewURL>
</overviewDoc>
<overviewDoc>

<overviewURL useType=”text”>
http://uddi.org/pubs/uddi_v3.htm#PubV3

</overviewURL>
</overviewDoc>

<categoryBag>
<keyedReference keyName=”uddi-org:types:wsdl”

keyValue="wsdlSpec"
tModelKey="uddi:uddi.org:categorization:types”/>

<keyedReference keyName=”uddi-org:types:soap”
keyValue="soapSpec"
tModelKey="uddi:uddi.org:categorization:types”/>

<keyedReference keyName=”uddi-org:types:xml”
keyValue="xmlSpec"
tModelKey="uddi:uddi.org:categorization:types”/>

<keyedReference keyName=”uddi-org:types:specification”
keyValue="specification"
tModelKey="uddi:uddi.org:categorization:types”/>

</categoryBag>

</tModel>

overviewDoc
(refer to WSDL
specs and to API
specs)

classification
information
(specifies that this
tModel is about
XML, WSDL, and
SOAP specs)

A Registry Not
a Repository

27

service descriptions

Web service interface

Inquiry API Publishers API

UDDI registry

service requestor service provider

WSDL service
descriptions

SOAP/HTTP SOAP/HTTPS

tModeltModel

businessEntity
businessService

bindingTemplatebindingTemplatebindingTemplate

UDDI and WSDL

28

<?xml version="1.0"?>
<find_tModel generic="1.0" xmlns="urn:uddi-org:api">

<categoryBag>
<keyedReference tModelKey="UUID:C25893AF-1977-3528-36B5-4192C2AB9E2C"

keyName="uddi-org:types" keyValue="wsdlSpec"/>
<keyedReference tModelKey="UUID:A15019C5-AE14-236C-331C-650857AE0221"

keyName="book pricing"
keyValue="36611349"/>

</categoryBag>

service requestor

service descriptions

Web service interface

SOAP/HTTP

Inquiry API Publishers API

service provider

SOAP/HTTPS

UDDI registry A

service descriptions

Web service interface

Inquiry API Publishers API

UDDI registry B

Subscription,
Replication, and
Custody
transfer APIs
(SOAP/HTTPS)

UDDI API

29

service provider service
implementation

HTTP engine

server stub

SOAP router

WSDL
generator

1

Inquiry API

UDDI registry

WSDL service
descriptions

WSDL compiler
2

UDDI publisher

3

Publishers API

tModel

businessEntity
businessService

bindingTemplate

service provider service
implementation

HTTP engine

server stub

SOAP router

WSDL
generator

1

Inquiry API

UDDI registryUDDI registry

WSDL service
descriptions

WSDL compiler
2

UDDI publisher

3

Publishers API

tModeltModel

businessEntity
businessService

bindingTemplatebindingTemplatebindingTemplate

Putting All Together

30

The “Stacks” of Service Technologies

Messaging

Single Service

Multiple Interacting
Services

WSDL-based Semantic-basedebXML-based

Registry/Repository
& Discovery

31

WS-DLWS-DL

The WSDL-based
“Stack”

WS-Policy, WSLAWS-Policy, WSLA

WS Reliable MessagingWS Reliable Messaging

WS-Routing, WS-AddressingWS-Routing, WS-Addressing

XML Protocol – XMLP (SOAP)XML Protocol – XMLP (SOAP)

XML & XML Schema, …XML & XML Schema, …

HTTP, SMTP, …HTTP, SMTP, …

advanced messaging

basic messaging

content

transport

description (interface definition)

non-functional features, QoS

(i)
fo

rm
er

ly
al

so
W

S
E

L
 (

W
eb

 S
er

vi
ce

E
n

d
p

oi
nt

L
a

n
g

u
a

g
e)

 b
y

IB
M

(ii
)

a
ls

o
th

e
 r

es
e

a
rc

h
/a

cc
a

d
e

m
ic

pr
o

p
o

sa
l

W
eb

 S
er

vi
ce

O
ff

er
in

g
L

a
n

g
u

a
g

e
[W

S
O

L] WSCL, CS-WSWSCL, CS-WS
conversation description /
interaction protocol

Both the Web Service Conversation
Language (WSCL, by HP) and
Conversation Support for Web
Services (CS-WS, by IBM) proposals
are no more supported

WS-BPELWS-BPEL orchestration

repository & discovery

WS-TransactionWS-Transaction

WS-CoordinationWS-Coordination
transaction management

WS Composite
Application Framework
(WS-CAF)

WS Composite
Application Framework
(WS-CAF)

WS-CDLWS-CDL choreography

WSFL, XLANGWSFL, XLANG

WSCIWSCI

BPMLBPML

UDDIUDDI

F
or

m
er

ly
B

P
E

L
4

W
S

(B

P
E

L
fo

r
sh

or
t)

Includes 3 specifications:
(i) Web Service Context (WS-CTX)
(ii) Web Service Coordination

Framework (WS-CF)
(iii) Web Service Transaction

Management (WS-TXM)

32

Conversations

A service is not simply a set of
independent operations
• Using a service typically

involves performing sequences
of operations in a particular
order (conversations)

• During a conversation, the client
typically chooses the next
operation to invoke (on the basis
of previous results, etc.) among
the ones that the service allows
at that point

Client Service

(1) requestQuote

(2) orderGoods

(3) confirmOrder

(4) makePayment

QuoteRequested

[requestQuote]

GoodsOrdered

[orderGoods]

[confirmOrder(FALSE)]

OrderConfirmed

[confirmOrder(TRUE)]

[makePayment]

33

Choreography: Coordination of Conversations of
N Services

Global specification of the conversations of N peer
services (i.e., multi-party conversations)
• Roles
• Message exchanges
• Constraints on the order in which such exchanges

should occur

suppliercustomer

1:requestQuote

2:orderGoods

5:makePayment

warehouse

3:checkShipAvailable
7:getShipmentDetail

8:confirmShipment 9:confirmShipment

6:orderShipment

4:confirmOrder

34

Choreography: Coordination of Conversations of
N Services

requestQuote
(to supplier)

checkShipAvailable
(to warehouse)

confirmOrder
(to customer)

orderGoods
(to supplier)

cancelOrder
(to customer)

makePayment
(to supplier)

orderShipment
(to warehouse)

getShipmentDetails
(to customer)

confirmShipment
(to warehouse)

confirmShipment
(to supplier)

supplier warehousecustomer

warehouse
confirms

warehouse
cancels

requestQuote

orderGoods

confirmOrder

getShipmentDetail

confirmShipment

suppliercustomer warehouse

checkShipAvailable

makePayment

orderShipment

confirmShipment

[from ACKM04]

35

Composition

Deals with the implementation of an application (in
turn offered as a service) whose application logic
involves the invocation of operations offered by other
services

• The new service is the composite service

• The invoked services are the component services

36

The Composition Engine/Middleware

development
environment

composite service
execution data

schema
definitions

House hunting
service

Packaging service Flight reservation
service

Shipment service
Phone line

installation service

Internet DSL line
installation service

run-time environment
(orchestration engine)

composition
schema
designer

Orchestration: the run-time environment
executes the composite service business
logic by invoking other services (through
appropriate protocols)

Web service composition middleware

other Web Services middleware
(e.g., SOAP invocation engine)

Supplier WS

Component
services
offered by
other providers

Warehouse WS

Accounting WSComposite service provider

Through the development environment, a composition
schema is synthesized, either manually or
(semi-)automatically. A service composition model and a
language (maybe characterized by a graphical and a textual
representation) are adopted

composition
schema

[from ACKM04]

37

Synthesis and Orchestration

(Composition) Synthesis: building the specification of the
composite service (i.e., the composition schema)
• Manual
• Automatic

Orchestration: the run-time management of the composite service
(invoking other services, scheduling the different steps, etc.)
• Composition schema is the “program” to be executed
• Similarities with WfMSs (Workflow Management Systems)

38

Composition Schema

A composition schema specifies the “process” of the
composite service

• The “workflow” of the service

Different clients, by interacting with the composite
service, satisfy their specific needs (reach their goals)

• A specific execution of the composition schema
for a given client is an orchestration instance

39

Choreography (Coordination) vs. Composition
(Orchestration)

Composition is about implementing new services
• From the point of view of the client, a composite service and a

basic (i.e., implemented in a traditional programming
language) one are indistinguishable

Choreography is about global modeling of N peers, for proving
correctness, design-time discovery of possible partners and run-
time bindings

N.B.: There is a strong relationship between a service internal
composition and the external choreographies it can participate in
• if A is a composite service that invokes B, the A’s

composition schema must reflect the coordination protocol
governing A – B interactions

• in turn, the composition schema of A determines the
coordination protocols that A is able to support (i.e., the
choreographies it can participate in)

40

Business Process Execution Language
for Web Services (WS-BPEL)

Allows specification of composition
schemas of Web Services
• Business processes as

coordinated interactions of Web
Services

• Business processes as Web
Services

Allows abstract and executable
processes
Influenced from
• Traditional flow models
• Structured programming
• Successor of WSFL and XLANG

Component Web Services described in
WS-DL (v1.1)

Activity A

Activity B

Activity C

Client
of the com

posite service

41

WS-BPEL Specification

An XML document specifying
Roles exchanging messages with the
composite service/process
The (WSDL) interfaces supported by such
roles

invoke
checkLocalStock

invoke
checkShipAvailable

invoke confirmOrderinvoke cancelOrder

receive orderGoods

supplier

customer

warehouse

local service
offered by the

supplier

interfaces

Orchestration
- variables and data transfers,
- exception handling,
- correlation information (for instance routing)

Variables:
warehouse: URI
inStock, shippingAvail: bool
customer: String
…

roles

The orchestration of the
process

• Variables and
data transfer

• Exception
handling

• Correlation
information

42

Process Model
(Activities)

Primitive
• invoke: to invoke a Web Service (in-out) operation
• receive: to wait for a message from an external source
• reply: to reply to an external source message
• wait: to remain idle for a given time period
• assign: to copy data from one variable to another
• throw: to raise exception errors
• empty: to do nothing

Structured
• sequence: sequential order
• switch: conditional routing
• while: loop iteration
• pick: choices based on events
• flow: concurrent execution (synchronized by links)
• scope: to group activities to be treated “transactionally” (managed by

the same fault handler, within the same transactional context)

A link connects exactly one source
activity S to exactly one target
activity T; T starts only after S
ends. An activity can have multiple
incoming (possibly with join
conditions) and outgoing links. Links
can be guarded

43

Process Model
(Data Manipulation and Exception Handling)

Blackboard approach
• a blackboard of variables is associated to each

orchestration instance (i.e., a shared memory within an
orchestration instance)

• variables are not initialized at the beginning; they are
modified (read/write) by assignments and messages

• manipulation through XPath
Try-catch-throw approach
• definition of fault handlers
• … but also event handlers and compensation handlers

(for managing transactionality as in the SAGA model)

44

Choreography
(As Reported in Literature: Classical Ballet Style)

Consider a dance with more than one dancer
• Each dancer has a set of steps that they will perform.

They orchestrate their own steps because they are in
complete control of their domain (their body)

• A choreographer ensures that the steps all of the
dancers make is according to some overall, pre-defined
scheme. This is a choreography

• The dancers have no control over the steps they make:
their steps must conform to the choreography

• The dancers have a single view-point of the dance
• The choreographer has a multi-party or global view-

point of the dance

45

Choreography
(A Possible Evolution: Jam Session Style)

Consider a jazz band with many players

• There is a rhythm and a main theme. This is the
choreography

• Each player executes his piece by improvising
variations over the main theme and following the given
rhythm

• The players still have a single view-point of the music;
in addition they have full control over the music they
play

• There is a multi-party or global view-point of the music,
but this is only a set of “sketchy” guidelines

46

WS-BPEL vs. WS-CDL

Orchestration/WS-BPEL is about describing and
executing a single peer

Choreography/WS-CDL is about describing and
guiding a global model
(N peers)

You should derive the single peer from the global
model by projecting based on participant

47

WS-CDL Basics (1)

Participants & Roles
• Role type

– Enumerate the observable behavior that a collaborating
participant exhibits

– Behavior type specifies the operations supported
Optional WSDL interface type

• Relationship type
– Specify the mutual commitments, in terms of the

Roles/Behavior types, two collaborating participants are
required to provide

– Note: all multi-party relationships are transformed into
binary ones

• Participant type
– Enumerate a set of one or more Roles that a collaborating

participant plays

48

WS-CDL Basics (2)
Channels
• A channel realizes a dynamic point of collaboration, through which

collaborating participants interact
– Where & how to communicate a message

Specify the Role/Behavior and the Reference of a collaborating participant
Identify an Instance of a Role

– Identify an instance of a conversation between two or more collaborating
participants

A conversation groups a set of related message exchanges
One or more channel(s) MAY be passed around from a Role to one or more
other Role(s), possibly in a daisy fashion through one or more intermediate
Role(s), creating new points of collaboration dynamically
• A Channel type MAY restrict the types of Channel(s) allowed to be

exchanged between the Web Services participants, through this
Channel

• A Channel type MAY restrict its usage, by specifying the number of
times a Channel can be used

49

WS-CDL Basics (3)

Activities are the building blocks of a choreography
• Basic Activity

– Interaction: message exchange between participants
Only in-out and in-only

– Assign: within one role, assign the value of a variable to another
one

Variables can be about information (exchanged documents),
states and channels

– No action: do null

• Ordering structure
– Sequence (P.Q)
– Parallel (P | Q)
– Choice (P + Q)

• Perform: a complete, separately defined choreography is
performed

– Basis for scalable modeling

Attention: a choreography
performing another one is
referred to as “choreography
composition” in the standard

50

WS-CDL Basics (4)

A Choreography combines all previous elements, forming a
collaboration unit of work

• Enumerate all the binary relationships interactions act
in

• Localize the visibility of variables
– Using variable definitions

• Prescribe alternative patterns of behavior
– Using work/units and reactions

• Enable Recovery
– Using work/units and reactions

– Backward: handle exceptional conditions

– Forward: finalize already completed activities

Introducing Automatic Composition

52

Automatic Composition Synthesis (1)

Given:

• a set (S1, …, Sn) of component services

• a client service request T

Automatically build:

• a composition schema CS that fulfills T by suitably
orchestrating (S1, …, Sn)

53

Automatic Composition Synthesis (2)

AbstractionAbstraction
ModuleModule

SynthesisSynthesis EngineEngine

AbstractAbstract serviceservice
descriptionsdescriptions ((e.ge.g., .,
TSsTSs))

RealizationRealization
ModuleModule

AbstractAbstract
specificationspecification of of
the the compositioncomposition
schema (schema (e.ge.g., .,
TS) TS)

WSWS--BPEL BPEL specificationspecification
of the composite of the composite
serviceservice toto bebe enactedenacted

ClientClient serviceservice requestrequestWSDL + WSDL + behavioralbehavioral
descriptionsdescriptions ((i.ei.e., .,
specificationsspecifications of of
supportedsupported conversationsconversations))
of of servicesservices [Berardi etal VLDB-TES04]

Abstracting over Technologies

Modeling Services as
Transition Systems

55

Services

… and possibly by constraints on the
possible conversations

• Using a service typically
involves performing sequences
of operations in a particular
order (conversations)

• During a conversation, the client
typically chooses the next
operation to invoke (on the basis
of previous results, etc.) among
the ones that the service allows
at that point

Client Service

requestQuote

orderGoods

confirmOrder

makePayment

QuoteRequested

[requestQuote]

GoodsOrdered

[orderGoods]

[confirmOrder(FALSE)]

OrderConfirmed

[confirmOrder(TRUE)]

[makePayment]

• A service is characterized by the
set of (atomic) operations that it
exports …

(1)
(2)

(3)

(4)

Transition
system

56

Transition Systems

A transition system (TS) is a tuple
T = < A, S, S0, δ, F > where:

• A is the set of actions

• S is the set of states

• S0 ⊆ S is the set of initial

states

• δ ⊆ S × A × S is the

transition relation

• F ⊆ S is the set of final

states

Ven

2pInserted

ChoiceB

ChoiceL

1pInserted

2p

1p

collectB
collectL

big

little

57

Process Algebras and TSs

Process theory:
• a process is a term of an

algebraic language
• a transition E →a F means

that process E may
become F by performing
(participating in, or
accepting) action a

• structured rules guide the
derivation

A graph:
• nodes are process terms
• labelled directed arcs

between nodes

Ven = 2p.2pInserted + 1p.1pInserted

2pInserted = big.ChoiceB

1pInserted = little.ChoiceL

ChoiceB = collectB.Ven

ChoiceL = collectL.Ven

Ven

2pInserted

ChoiceB

ChoiceL

1pInserted

2p

1p

collectB
collectL

big

little

58

Automata vs.
Transition Systems

Automata
• define sets of runs (or traces or strings): (finite) length

sequences of actions
TSs
• … but I can be interested also in the alternatives

“encountered” during runs, as they represent client’s
“choice points”

a

b

c e

d

a

b

c e

d

a
Different as
TSs

As automata they
recognize the
same language:
abc* + ade*

59

WS-DL is the Set of Actions

A message exchange pattern (and the related
operation) represents an interaction with the service
client

• an action that the service can perform by
interacting with its client

Abstracting from formal parameters, we can associate
a different symbol to each operation …

… thus obtaining the alphabet of actions

60

An Example

The MP3ServiceInterface defines 3
actions:

• search_by_title / st

• search_by_author / sa

• listen / l

Formally A = {st,sa,l}

start

readyToPlay

st sal

61

From a TS to WS-BPEL (1)

<process name = “…”>

</process>

<partnerLinks>
…

</partnerLinks>

<flow>
<links>

…
</links>
<!-- state skel. -->
…
<!-- state skel. -->

</flow>

<variables>
…

</variables>

Transition
Skeletons

State
Skeletons

WS-BPEL Specification
Skeleton

Transition
System

Mapping transitions

Mapping states

Connecting state
skeletons on the
basis of the graph

62

From a TS to WS-BPEL (2)
Intuition [Baina etal CAISE04, Berardi etal VLDB-TES04]

1. Each transition corresponds to a WS-BPEL pattern consisting of (i) an
<onMessage> operation (in order to wait for the input from the client of the
composite service), (ii) followed by the effective logic of the transition, and then
(iii) a final operation for returning the result to the client. Of course both before
the effective logic and before returning the result, messages should be copied
forth and back in appropriate variables

2. All the transitions originating from the same state are collected in a <pick>
operation, having as many <onMessage> clauses as transitions originating from
the state

3. The WS-BPEL file is built visiting the graph in depth, starting from the initial state
and applying the previous rules.

N.B.: (1) and (2) works for in-out interactions (the ones shown in the following). Simple modifications are needed for
in-only, robust-in-only and in-optional-out. The other kinds of interactions implies a proactive behaviour of the
composite service, possibly guarded by <onAlarm> blocks.
(3) works for acyclic TS. See later for cycle management.

63

Transition Skeletons

<onMessage … >
<sequence>

<assign>
<copy>

<from variable="input" ... />
<to variable=“transitionData“ ... />

</copy>
</assign>
< !-- logic of the transition -->
<assign>

<copy>
<from variable=“transitionData" ... />
<to variable="output" ... />

</copy>
</assign>
<reply ... />

</sequence>
</onMessage>

64

State Skeletons

N transitions from state Si are mapped onto:

<pick name = “Si”>
<!-- transition #1 -->
<onMessage … >

<!-- transition skeleton -->
</onMessage>
… … …
<!-- transition #N -->
<onMessage … >

<!-- transition skeleton -->
</onMessage>

</pick>

65

Mapping the TS

All the <pick> blocks are enclosed in a surrounding
<flow>; the dependencies are modeled as <link>s

• <link>s are controlled by specific variables Si-
to-Sj that are set to TRUE iff the transition Si → Sj

is executed
• Each state skeleton has many outgoing <link>s

as states connected in output, each going to the
appropriate <pick> block

66

Mapping Cyclic TSs
(Intuition)

Identify all the cycles
Enclose the involved state skeletons inside a <while> block
controlled by a condition (!exit) (exit is a variable defined ad
hoc)
• exit is set to TRUE by any transition that “goes out” of the

cycle
• The overall <while> block is connected to other state

skeletons by appropriate <link>s
Special cases:
• A state S with self-transitions can be represented as a <pick>

block enclosed in a <while> block controlled by a condition
(Vs) (the variable VS is set to FALSE by other non self-
transitions)

• Cycles starting from the initial state should not be
considered, as they can be represented as the start of a new
instance

67

An Example (1)

<partnerLinks>

<!-- The “client” role represents the requester of this composite service -->
<partnerLink name="client"

partnerLinkType="tns:Transition"
myRole="MP3ServiceTypeProvider"
partnerRole="MP3ServiceTypeRequester"/>

<partnerLink name="service"
partnerLinkType="nws:MP3CompositeService"
myRole="MP3ServiceTypeRequester"
partnerRole="MP3ServiceTypeProvider"/>

</partnerLinks>

st

sa

l

l

start

2

1

68

An Example (2)
<variables>

<variable name="input" messageType="tns:listen_request"/>
<variable name="output“ messageType="tns:listen_response"/>
<variable name=“dataIn" messageType="nws:listen_request"/>
<variable name=“dataOut" messageType="nws:listen_response"/>

</variables>

<pick>
<onMessage partnerLink="client"

portType="tns:MP3ServiceType"
operation="listen"
variable="input">
<sequence>

<assign>
<copy>

<from variable="input" part="selectedSong"/>
<to variable=“dataIn" part="selectedSong"/>

</copy>
</assign>
… …
<assign>

<copy>
<from variable=“dataOut" part="MP3FileURL"/>
<to variable="output" part="MP3FileURL"/>

</copy>
</assign>
<reply name="replyOutput"

partnerLink="client"
portType="tns:MP3ServiceType"
operation="listen"
variable="output"/>

</sequence>
</onMessage>
… …

</pick>

69

An Example (3)
<process suppressJoinFailure = “no”>

<flow>
<links>

<link name=“start-to-1”/>
<link name=“start-to-2”/>

</links>

<pick createInstance = “yes”>
<onMessage=“sa">

<sequence>
<copy>...</copy>
… …
<copy>...</copy>
<reply ... />

</sequence>
</onMessage>
<onMessage=“st">

<sequence>
<copy>...</copy>
… …
<copy>...</copy>
<reply ... />

</sequence>
</onMessage>
<source linkName=“start-to-1” transitionCondition = “bpws:getVariableData(‘start-to-1’) = ‘TRUE’ “ />
<source linkName=“start-to-2” transitionCondition = “bpws:getVariableData(‘start-to-2’) = ‘TRUE’ “ />

</pick>

The <sa> transition skeleton
should set variables:
start-to-1 = TRUE
start-to-2 = FALSE

The <st> transition skeleton
should set variables:
start-to-1 = FALSE
start-to-2 = TRUE

A new instance is created in the
initial state. This resolve also the
presence of the cycles without the
need of enclosing <while>

70

An Example (4)
<pick>

<onMessage="l">
<sequence>

<copy>...</copy>
… …

<copy>...</copy>
<reply ... />

</sequence>
</onMessage>
<target linkName=“start-to-1” />

</pick>
<pick>

<onMessage="l">
<sequence>

<copy>...</copy>
… …

<copy>...</copy>
<reply ... />

</sequence>
</onMessage>
<target linkName=“start-to-2” />

</pick>
</process>

71

TSs and Choreography
(only an intuition :-))

A Choreography can be seen as the specification of a set of
concurrent peers, each one exposing a TS, that fulfills the global
model

start

readyToPlay

st sal

l

sa

l

st

72

References

[ACKM04] - G. Alonso, F. Casati, H. Kuno, V. Machiraju: Web Services.
Concepts, Architectures and Applications. Springer-Verlag 2004
[VLDBJ01] - F. Casati, M.C. Shan, D. Georgakopoulos (eds.): Special Issue
on e-Services. VLDB Journal, 10(1), 2001

Based on the 1st International Workshop on Technologies for e-
Services (VLDB-TES 2001)

[CACM03] – M.P. Papazoglou, D. Georgakopoulos (eds.): Special Issue on
Service Oriented Computing. Communications of the ACM 46(10), 2003
[WSOL] - V.Tosic, B. Pagurek, K. Patel, B. Esfandiari, W. Ma: Management
Applications of the Web Service Offerings Language (WSOL). To be
published in Information Systems, Elsevier, 2004.

An early version of this paper was published in Proc. of CAiSE'03,
LNCS 2681, pp. 468-484, 2003

[Berardi etal WSCC04] - D. Berardi, R. Hull, M. Gruninger, S. McIlraith:
Towards a First-Order Ontology for Semantic Web Services. Proc. W3C
International Workshop on Constraints and Capabilities for Web Services
(WS-CC), 2004, http://www.w3.org/2004/06/ws-cc-cfp.html
[Benatallah etal IJCIS04] - B. Benatallah, F. Casati, H. Skogsrud, F.
Toumani: Abstracting and Enforcing Web Service Protocols, International
Journal of Cooperative Information Systems (IJCIS), 13(4), 2004

73

References

[Baina etal CAISE04] K. Baina, B. Benatallah, F. Casati, F. Toumani: Model-
driven Web Service Development, Proc. of CAiSE'04, LNCS 3084, 2004

[Berardi etal ICSOC03] - D. Berardi, D. Calvanese, G. De Giacomo, M.
Lenzerini, M. Mecella: Proc. of ICSOC'03, LNCS 2910, 2004

[Berardi etal VLDB-TES04] - D. Berardi, D. Calvanese, G. De Giacomo, M.
Lenzerini, M. Mecella: Post-proc. of VLDB-TES'04
[Stirling Banff ‘96] - C. Stirling: Modal and Temporal Logics for Processes.
Banff Higher Order Workshop, LNCS 1043, 1996. Available at:
http://homepages.inf.ed.ac.uk/cps/banff.ps

[ebpml] - Jean-Jacques Dubray: the ebPML.org Web Site,
http://www.ebpml.org/
[DAML-S] – DAML Semantic Web Services, http://www.daml.org/services

74

References

[WS-Policy] - Web Services Policy Framework (WS-Policy), September
2004, http://www-106.ibm.com/developerworks/library/specification/ws-
polfram/

[WSCL] - Web Services Conversation Language (WSCL) 1.0. W3C Note, 14
March 2002, http://www.w3.org/TR/wscl10/

[WSLA] - A. Dan, D. Davis et al: Web Services On Demand: WSLA-driven
Automated Management. IBM Systems Journal, 43(1), 2004

[ebXML] - Electronic Business using eXtensible Markup Language,
http://www.ebxml.org/

[OASIS] - Organization for the Advancement of Structured Information
Standards, http://www.oasis-open.org/home/index.php
[WSDL] - R. Chinnici, M. Gudgin, J.J. Moreau, J. Schlimmer, and S.
Weerawarana, Web Services Description Language (WSDL) 2.0, Available
on line: http://www.w3.org/TR/wsdl20, 2003, W3C Working Draft.
[BPEL4WS] - T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F.
Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and S.
Weerawarana, Business Process Execution Language for Web Services
(BPEL4WS) -Version 1.1, http://www-
106.ibm.com/developerworks/library/ws-bpel/, 2004

75

References

[WS-CDL] - N. Kavantzas, D. Burdett, G. Ritzinger, Y. Lafon: Web Services
Choreography Description Language (WS-CDL) Version 1.0, Available on
line at: http://www.w3.org/TR/ws-cdl-10/, W3C Working Draft.

[UDDI] – Universal Discovery, Description and Integration,
http://www.uddi.org/
[WS-C] – Web Services Coordination (WS-C), http://www-
106.ibm.com/developerworks/library/ws-coor/
[WS-T] - Web Services Transaction (WS-Transaction), http://www-
106.ibm.com/developerworks/webservices/library/ws-transpec/
[WS-CAF] – Web Services Composite Application Framework,
http://developers.sun.com/techtopics/webservices/wscaf/

State of the Art on
Service Composition

(approfondimento opzionale)

77

functional
requirements
of the
target
service

non-functional
requirements
of the target
service

Synthesis

available
service 1non-

functional
features

functional
features

service
descriptions

available
service 1
available
service 1non-

functional
features

functional
features

service
descriptions

… … …

specification of
the process of
the composite
service

Orchestration

Monitoring

available
service
invocation

clientclient

target
service
invocation

additional
requirements for
orchestration

available
service nnon-

functional
features

functional
features

service
descriptions

available
service n
available
service nnon-

functional
features

functional
features

service
descriptions

Service Composition System

78

Composition Synthesis:
Input:
• client request
• set of available services

Output:
– specification of composite service

2. Orchestration:
Input:

• specification of composite service
Output:

• coordination of available services according to the
composition schema

• data flow and control flow monitoring

Service composition How to model
client request ?

How to model
available services ?

How to orchestrate
the composite
service ?

How to model the
composite service ?

79

Service description

Services export a view of their behavior

• I/O interface
– Data Access

focus on data

for information gathering

– Atomic Actions

focus on actions

world altering services

• Complex Behavioral Description
(typically represented using finite states, e.g., TSs)

information
oriented services

services as
atomic actions

services as
processes

80

Composition as
(classical)

planning

The whole picture

Bouguettaya’s
group *

Papazoglou’s
group *

Knoblock’s
group

Traverso’s
group

Hull’s group

The Roman
group

St
at

ic
s

of
 t

he
 s

ys
te

m

Dynamics of component services

Dynam
ics o

f tar
get s

ervic
e

McIlraith’s
group

Diagram inspired
from Hull&Su 2004
SIGMOD tutorial

* do not tackle
automatic composition

81

Key dimensions in service
composition (1)

Statics of the composition system
(i.e., static semantics):

• e.g, ontologies of services (for sharing semantics of
data/information), inputs and outputs, etc.

Dynamics of component services
(i.e., dynamic semantics, process):

• e.g., behavioral features, complex forms of
dataflow, transactional attitudes, adaptability to
varying circumstances

82

Key dimensions in service
composition (2)

Dynamics of the target service
(i.e., dynamic semantics, process)

The target service exposed as:

• single step

• (set of) sequencial steps

• (set of) conditional steps

• while/loops, running batch

• while/loops, running under an external control

atomic
action

process

83

Key dimensions in service
composition: the 4thdimension

Degree of (in)completeness in the
specification of:

• Static Aspects (of the composition system)

• Dynamic Aspects (of component services)

• Target service specification

Note: Orthogonal to previous dimensions

For simplicity
not shown in
the following

slides

84

What is addressed from the technical point of
view?

Automatic composition techniques?

• Which formal tools?

• Sound and complete techniques?

• Techniques/Problem investigated from
computational point of view?

85

Analyzed works
Papazoglou’s group

Bouguettaya’s group

Knoblock’s group (information oriented services)

Composition as Planning (services as atomic actions)

Traverso’s group

McIlraith’s group

Hull’s group

The Roman group

as called by Rick Hull
in his SIGMOD 2004
tutorial

(services as processes)

(not automatic composition)

86

Papazoglou’s group
J. Yang and M.P. Papazoglou: Service Components for Managing the Life-cycle of

Service Compositions, Information Systems 29 (2004), no. 2, 97 – 125

available services: I/O interfaces
• service component: simple or complex pre-existing service wrapped

into a web component
• they are stored in a service component class library
• operations offered through a uniform interface

composite service: complex behavioral description
• set of service components (from service component class library)

“glued” together by composition logics
– composition logics defines execution order (either sequential or

concurrent) of service components within composition,
dependencies among input and output parameters, etc.

• support for manual composition: designer specifies composite
service using the Service Scheduling Language and the Service
Composition Execution Language

87

Papazoglou’s group
St

at
ic
s

of
 t

he
 s

ys
te

m

Dynamics of component services

Dynam
ics o

f tar
get s

ervic
e

Papazoglou’s
group

88

Bouguettaya’s group
B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid: Composing Web services on the

Semantic Web, Very Large Data Base Journal 12 (2003), no. 4, 333–351

available services: atomic actions

• semantically described in terms of their I/O interfaces
and non-functional properties such as their purpose,
their category and their quality

• Available services stored into an ontology on the basis
of their non-functional properties

89

Bouguettaya’s group

client request:
• expressed in the Composite Service Specification Language

(CSSL): it specifies the sequence of desired operations that the
composite service should perform and control flow between
operations

service composition problem:
• Input: (i) I/O descr. of available services

(ii) client request expr. in CSSL
• Output: composite service as sequence of operations (semi-

automatically) obtained from the client specification by
identifying, for each operation, the operation(s) of available
services that matches it, on the basis of their I/O interface and
non-functional features

90

Bouguettaya’s group

St
at

ic
s

of
 t

he
 s

ys
te

m

Dynamics of component services

Dynam
ics o

f tar
get s

ervic
e

Papazoglou’s
groupBouguettaya’s

group

91

Knoblock’s group
M. Michalowski, J.L. Ambite, S. Thakkar, R. Tuchinda, C.A. Knoblock, and S. Minton:

Retrieving and semantically integrating heterogeneous data from the web. IEEE
Intelligent Systems, 19 (2004), no. 3, pp.72 – 79

available service: data query

• basic idea: informative services as views over data
sources

• each service described in terms of I/O parameters (of
course, the latter being provided by the data source),
binding patterns and additional constraints on the
source

client request:

• data query, expressed in terms of inputs provided by
the client and requested outputs

92

Knoblock’s group

service composition problem:
• Input: (i) available services modeled as data-sources,

and (ii) client request as user query
• Output: (automatically obtained) composite service as

integration plan for a generalized user query, so that all
the user queries that differ only for intensional input
values can be answered by the same (composite)
service. Integration plan as a sequence of source
queries, taking binding pattern into account

93

Knoblock’s group

Knoblock’s
group

St
at

ic
s

of
 t

he
 s

ys
te

m

Dynamics of component services

Dynam
ics o

f tar
get s

ervic
e

Bouguettaya’s
group

Papazoglou’s
group

94

Composition as Planning

available services: atomic actions
client request: client (propositional) goal
service composition problem: planning problem
• Input: (i) client goal (also encodes initial condition)

(ii) available services as atomic actions
• Output: composite service as a (possibly conditional) plan,

i.e., sequence of actions that transform the initial state into a
state satisfying the goal.

– Sirin, Parsia, Wu, Hendler & Nau [Sirin etal ICWS03]

– ICAPS 2003 Planning for Web Services workshop [P4WS03]

– ICAPS 2004 Planning for Web and Grid Services workshop
[P4WGS04]

NOTE: the client has not influence over the control flow of the
composite service

95

Example (1)
Component Services

• S1: True → {S1:bookFlight} FlightBooked ∧ MayBookLimo
MayBookLimo → {S1:bookLimo} LimoBooked

• S2: True → {S2:bookHotel} HotelBooked
HotelBooked → {S2:bookShuttle} ShuttleBooked

• S3: True → {S3:bookEvent} EventBooked

Ontology:
• TravelSettledUp ≡ FlightBooked ∧ HotelBooked ∧ EventBooked
• CommutingSettled ≡ ShuttleBooked ∨ LimoBooked ∨

TaxiAvailablilityChecked
• ...

Client Service Request:
•• Find a composition of the actions (i.e., a sequence, a program uFind a composition of the actions (i.e., a sequence, a program using sing

such actions as basic instructions) such that a given property isuch actions as basic instructions) such that a given property is fulfilleds fulfilled

96

Example (2)
Component Services

• S1: True → {S1:bookFlight} FlightBooked ∧ MayBookLimo
MayBookLimo → {S1:bookLimo} LimoBooked

• S2: True → {S2:bookHotel} HotelBooked
HotelBooked → {S2:bookShuttle} ShuttleBooked

• S3: True → {S3:bookEvent} EventBooked

Ontology:
• TravelSettledUp ≡ FlightBooked ∧ HotelBooked ∧ EventBooked
• CommutingSettled ≡ ShuttleBooked ∨ LimoBooked ∨ TaxiAvailablilityChecked
• ...

Client Service Request:
•• Starting from: Starting from: ¬¬FlightBookedFlightBooked ∧∧ ¬¬ HotelBookedHotelBooked ∧∧

¬¬EventBookedEventBooked ∧∧ ¬¬CommutingSettledCommutingSettled
•• Achieve: Achieve: TravelSettledUpTravelSettledUp ∧∧ CommutingSettledCommutingSettled

97

Example (3)
Component Services

• S1: True → {S1:bookFlight} FlightBooked ∧ MayBookLimo
MayBookLimo → {S1:bookLimo} LimoBooked

• S2: True → {S2:bookHotel} HotelBooked
HotelBooked → {S2:bookShuttle} ShuttleBooked

• S3: True → {S3:bookEvent} EventBooked

Ontology:

• TravelSettledUp ≡ FlightBooked ∧ HotelBooked ∧ EventBooked

• CommutingSettled ≡ ShuttleBooked ∨ LimoBooked ∨ TaxiAvailablilityChecked
• ...

Client Service Request:

Starting from:Starting from:
¬¬FlightBookedFlightBooked ∧∧ ¬¬ HotelBookedHotelBooked ∧∧ ¬¬EventBookedEventBooked ∧∧ ¬¬CommutingSettledCommutingSettled

achieve: achieve:
TravelSettedUpTravelSettedUp ∧∧ CommutingSettledCommutingSettled

Compositions:

• S1:bookFlight; S1:bookLimo; S2:bookHotel; S3:bookEvent

• S3:bookEvent; S2:bookHotel; S1:bookFlight; S2:bookShuttle

98

Another Example (1)
Component Services:
• S1: Registered → {S1:bookFlight} FlightBooked

¬Registered → {S1:register} Registered

• S2: True → {S2:bookHotel} HotelBooked
HotelBooked → {S2:bookShuttle} ShuttleBooked

• S3: True → {S3:bookEvent} EventBooked

Ontology:
• TravelSettedUp ≡ FlightBooked ∧ HotelBooked ∧ EventBooked

Client Service Request:

Starting from: Starting from:
¬¬FlightBookedFlightBooked ∧∧ ¬¬ HotelBookedHotelBooked ∧∧ ¬¬EventBookedEventBooked

Achieve: Achieve:
TravelSettedUpTravelSettedUp

99

Another Example (2)

Client Service Request:
•• Starting from: Starting from: ¬¬FlightBookedFlightBooked ∧∧ ¬¬ HotelBookedHotelBooked ∧∧ ¬¬EventBookedEventBooked

•• Achieve: Achieve: TravelSettedUpTravelSettedUp
What about Registered?

The client does not know whether he/she/it is registered or not.
The composition must resolve this at runtime:
if (¬Registered){

S1:register;
}
S1:bookFlight;
S2:bookHotel;
S3:bookEvent

100

Composition as Planning

Knoblock’s
group

Composition as
(classical)

planning

St
at

ic
s

of
 t

he
 s

ys
te

m

Dynamics of component services

Dynam
ics o

f tar
get s

ervic
e

Bouguettaya’s
group

Papazoglou’s
group

101

Planning is a Rich Area!!!

Sequential Planning (plans are sequences of actions)
Conditional Planning (plans are programs with if’s and while’s)
Conformant Planning (plans the work in spite of incomplete -non
observable- information)
Knowledge Producing Actions/Sensing (distinction between truth
and knowledge)
Plan Monitoring
Interleaving Deliberation and Execution
Form of the Goals:
• Achieve something
• Achieve something while keeping something else
• Temporal goals
• Main goal + exception handling

102

References on Planning

Read and exploit planning and reasoning about actions literature!
Books
Chapters on Planning and on Reasoning about Actions in any Artificial Intelligence

textbook.
[GNT04] M. Ghallab, D. Nau, P. Traverso. Automated Planning: Theory and

Practice. Morgan Kaufmann, 2004.
[Reiter02] R.Reiter: Knowledge in Action. MIT Press, 2002.

Interesting papers
[Levesque AAAI/IAAI96] H. J. Levesque: What Is Planning in the Presence of Sensing?

AAAI/IAAI, Vol. 2 1996: 1139-1146
[Bacchus&Kabanza AAAI/IAAI96] F. Bacchus, F. Kabanza: Planning for Temporally

Extended Goals. AAAI/IAAI, Vol. 2 1996: 1215-1222
[Giunchiglia&Traverso ECP99] F. Giunchiglia, P. Traverso: Planning as Model Checking.

ECP 1999: 1-20
[Calvanese etal KR02] D. Calvanese, G. De Giacomo, M. Y. Vardi: Reasoning about Actions

and Planning in LTL Action Theories. KR 2002: 593-602
[De Giacomo&Vardi ECP99] G. De Giacomo, M. Y. Vardi: Automata-Theoretic Approach to

Planning for Temporally Extended Goals. ECP 1999: 226-238
[Bylander IJCAI91] Tom Bylander: Complexity Results for Planning. IJCAI 1991: 274-279

See how other service-researchers have used it!
• Proceedings of P4WGS – ICAPS Workshop 2004
• Proceedings of P4WS – ICAPS Workshop 2003

103

Traverso’s group

available services:
• non-deterministic transition systems characterized by a set of

initial states and by a transition relation that defines how the
execution of each action leads from one state to a set of states

• among such services, one represents the client

client request (called global goal):
• it specifies a main execution to follow, plus some side paths that

are typically used to resolve exceptional circumstances e.g., Do Φ
else Try Ψ

104

Traverso’s group

service composition problem: (extended) planning problem
• Input: (i) a set of services, including the one representing the client

(behavior), and (ii) the global goal,
• Output: a plan that specifies how to coordinate the execution of

various services in order to realize the global goal.

NOTE:
• the composition is not tailored towards satisfying completely the

client requested behavior, but concerns with the global behavior
of the system in which some client desired executions may
happen not to be fulfilled

105

Traverso’s group

Knoblock’s
group

Composition as
(classical)

planning

St
at

ic
s

of
 t

he
 s

ys
te

m

Dynamics of component services

Dynam
ics o

f tar
get s

ervic
e Traverso’s

group

Bouguettaya’s
group

Papazoglou’s
group

106

References on Traverso’s group

Papers on Planning as Model Checking
[Giunchiglia&Traverso ECP99]F. Giunchiglia, P. Traverso: Planning as Model Checking.

ECP 1999: 1-20
[Pistore&Traverso IJCAI01] M. Pistore, P. Traverso: Planning as Model Checking for

Extended Goals in Non-deterministic Domains. IJCAI 2001: 479-486
[Bertoli etal IJCAI01] P. Bertoli, A. Cimatti, M. Roveri, P. Traverso: Planning in

Nondeterministic Domains under Partial Observability via Symbolic Model Checking.
IJCAI 2001: 473-478

[Dal Lago etal AAAI/IAAI02] U. Dal Lago, M. Pistore, P. Traverso: Planning with a Language
for Extended Goals. AAAI/IAAI 2002: 447-454

[Cimatti etal AIJ03] A. Cimatti, M. Pistore, M. Roveri, P. Traverso: Weak, strong, and strong
cyclic planning via symbolic model checking. Artif. Intell. 147(1-2): 35-84 (2003)

[Bertoli etal ICAPS03] P. Bertoli, A. Cimatti, M. Pistore, P. Traverso: A Framework for
Planning with Extended Goals under Partial Observability. ICAPS 2003: 215-225

Papers on Service Composition
[Pistore&Traverso ISWC04] M. Pistore, P. Traverso: Automated Composition of Semantic

Web Services into Executable Processes. ISWC2004.
[Pistore etal P4WGS04] M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, P. Traverso: Planning

and Monitoring Web Service Composition. P4WGS – ICAPS WS 2004
[Pistore etal AIMSA04] M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, P. Traverso: Planning

and Monitoring Web Service Composition. AIMSA 2004: 106-115

107

McIlraith’s group

both available and composite service: behavioral
description seen as procedures invokable by clients

• Golog procedure, atomically executed, i.e., seen by its
client as an atomic Situation Calculus action,
presenting an I/O interface

• each service stored in an OWL-S ontology

108

McIlraith’s group

client request:
• skeleton of a Golog procedure expressing also client

constraints and preferences
service composition problem:
• Input: (i) OWL-S ontology of services as atomic actions,

and (ii) client request
• Output: Golog procedure obtained by automatically

instantiating the client request with services contained
in the ontology, by also taking client preferences and
constraints into account

NOTE: the client has not influence over the control flow of the
composite service

109

McIlraith’s group

Knoblock’s
group

Composition as
(classical)

planning

St
at

ic
s

of
 t

he
 s

ys
te

m

Dynamics of component services

Dynam
ics o

f tar
get s

ervic
e Traverso’s

group

McIlraith’
s group

Bouguettaya’s
group

Papazoglou’s
group

110

References on McIlraith’s group

Background
[McCarthy IFIP62] J. L. McCarthy: Towards a Mathematical Science of Computation. IFIP Congress

1962: 21-28
[McCarthy&Hayes MI69] J. L. McCarthy and P. C. Hayes: Some Philosophical Problems from the

Standpoint of Artificial Intelligence. Machine Intelligence 4, 1969
[Reiter 2002] R. Reiter: Knowledge in Action. MIT Press, 2002.
[Levesque etal JLP2000] H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, R. B. Scherl: GOLOG: A

Logic Programming Language for Dynamic Domains. J. Log. Program. 31(1-3): 59-83 (1997)
[De Giacomo etal AIJ2000] G. De Giacomo, Y. Lespérance, H. J. Levesque: ConGolog, a concurrent

programming language based on the situation calculus. Artif. Intell. 121(1-2): 109-169 (2000)
[De Giacomo etal KR02] G. De Giacomo, Y. Lespérance, H. J. Levesque, S. Sardiña: On the

Semantics of Deliberation in IndiGolog: From Theory to Implementation. KR 2002: 603-614
[Scherl&Levesque AIJ03] R. B. Scherl, H. J. Levesque: Knowledge, action, and the frame problem.

Artif. Intell. 144(1-2): 1-39 (2003)

Papers
[McIlraith etal IEEE01] S. A. McIlraith, T. Cao Son, H. Zeng: Semantic Web Services. IEEE Intelligent

Systems 16(2): 46-53 (2001)
[Narayanan&McIlraith WWW02] S. Narayanan, S. A. McIlraith: Simulation, verification and

automated composition of web services. WWW 2002:
[McIlraith&Son KR02] S. A. McIlraith, T. Cao Son: Adapting Golog for Composition of Semantic

Web Services. KR 2002: 482-496
[Burstein etal ISWC02] M. H. Burstein, J. R. Hobbs, O. Lassila, D. Martin, D. V. McDermott, S. A.

McIlraith, S. Narayanan, M. Paolucci, T. R. Payne, K. P. Sycara: DAML-S: Web Service
Description for the Semantic Web. International Semantic Web Conference 2002: 348-363

[Narayanan&McIlraith CN03] Srini Narayanan, Sheila A. McIlraith: Analysis and simulation of Web
services. Computer Networks 42(5): 675-693 (2003)

[McIlraith&Martin IEEE03] S. A. McIlraith, D. L. Martin: Bringing Semantics to Web Services. IEEE
Intelligent Systems 18(1): 90-93 (2003)

111

Hull’s group

both available and composite service (peer): behavioral
description
• Mealy machine, that exchanges messages with other

peers according to a predefined communication
topology (channels among peers)

• peers equipped with (bounded) queue to store
messages received but not yet processed

• Conversation: sequence of messages exchanged by
peers

• At each step, a peer can either (i) send a message, or
(ii) receive a message, or (iii) consume a message from
the queue, or (iv) perform an empty move, by just
changing state

112

Hull’s group

Choreography mapping problem:
• Input: (i) a desired global behavior (i.e., set of desired

conversations) as a Linear Temporal Logic formula, and
(ii) an infrastructure (a set of channels, a set of peer
names and a set of messages)

• Output: Mealy machines (automatically obtained) for all
the peers such that their conversations are compliant
with the LTL specification

NOTE: not yet a “jam session style” choreography

113

Hull’s group

Knoblock’s
group

Composition as
(classical)

planning

St
at

ic
s

of
 t

he
 s

ys
te

m

Dynamics of component services

Dynam
ics o

f tar
get s

ervic
e Traverso’s

group

McIlraith’
s group

Hull’s group

Bouguettaya’s
group

Papazoglou’s
group

114

References on Hull’s group

[Hull etal PODS03] R. Hull, M. Benedikt, V. Christophides, J. Su: E-
services: a look behind the curtain. PODS 2003: 1-14

[Hull etal SIGMOD03] R. Hull, J. Su: Tools for Design of Composite
Web Services. SIGMOD Conference 2004: 958-961

[Bultan etal WWW03] T. Bultan, X. Fu, R. Hull, J. Su: Conversation
specification: a new approach to design and analysis of e-
service composition. WWW 2003: 403-410

115

The Roman group

available service: behavioral description

• service as an interactive program: at each step it
presents the client with a set of actions among which to
choose the next one to be executed

• client choice depends on outcome of previously
executed actions, but the rationale behind this choice
depends entirely on the client

• behavior modeled by a finite state transition system,
each transition being labeled by a deterministic
(atomic) action, seen as the abstraction of the effective
input/output messages and operations offered by the
service

116

The Roman group
client request (target service):
• set of executions organized in a (finite state) transition system of

the activities he is interested in doing
service composition problem:
• Input: (i) finite state transition system of available services, and

(ii) finite state transition system of target service
• Output: (automatically obtained) composite service that realizes

the client request, such that each action of the target service is
delegated to at least one available service, in accordance with
the behavior of such service.

NOTE: the client “strongly” influence the composite service control flow

117

Composition as
(classical)

planning

The Roman group

Bouguettaya’s
group

Papazoglou’s
group

Knoblock’s
group

Traverso’s
group

Hull’s group

St
at

ic
s

of
 t

he
 s

ys
te

m

Dynamics of component services

Dynam
ics o

f tar
get s

ervic
e

The Roman
groupMcIlraith’

s group

118

References on the Roman group

[Berardi etal ICSOC03] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, M. Mecella:
Automatic Composition of E-services That Export Their Behavior. ICSOC 2003: 43-58

[Berardi etal ICSOC04] D. Berardi, G. De Giacomo, M. Lenzerini, M. Mecella, D. Calvanese:
Synthesis of Underspecified Composite e-Services based on Automated Reasoning.
ICSOC 2004

[Berardi etal WES03] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, M. Mecella: A
Foundational Vision of e-Services. WES 2003: 28-40

[Berardi etal P4WS03] D. Berardi, D. Calvanese, G. De Giacomo, and M. Mecella:
Composing e-Services by Reasoning about Actions, ICAPS 2003 Workshop on
Planning for Web Services (P4WS03).

[Berardi etal DL03] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, M. Mecella: e-
Service Composition by Description Logics Based Reasoning. Description Logics
2003

[Berardi etal P4WGS04] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, M. Mecella:
Synthesis of Composite e-Services based on Automated Reasoning. ICAPS 2004
Workshop on Planning and Scheduling for Web and Grid Services (P4WGS04).

[Berardi etal TES04] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, M. Mecella:
ESC: A Tool for Automatic Composition of e-Services based on Logics of Programs,
VLDB-TES 2004

[Berardi Ph.D] D. Berardi Automatic Service Composition.Models, Techniques and Tools.
Ph.D. thesis, Dipartimento di Informatica e Sistemistica – Universita’ di Roma “La
Sapienza”, Rome, Italy, 2005.

[IJCIS 2004] D. Berardi, G. De Giacomo, M. Lenzerini, M. Mecella, D. Calvanese: Automatic
Service Composition based on Behavioral Description. To appear in IJCIS 2005

[Gerede etal ICSOC04] C. E. Gerede, R. Hull, O. H. Ibarra, J. Su: Automated Composition of
E-services: Lookaheads. ICSOC 2004

119

Composition as
(classical)

planning

The whole picture

Bouguettaya’s
group *

Papazoglou’s
group *

Knoblock’s
group

Traverso’s
group

Hull’s group

The Roman
group

St
at

ic
s

of
 t

he
 s

ys
te

m

Dynamics of component services

Dynam
ics o

f tar
get s

ervic
e

McIlraith’s
group

* do not tackle
automatic composition

120

Other Relevant Works

Approaches proposing interesting conceptual
models for services, not targeted towards
composition:

• Vianu ‘s group

• Benatallah & Casati’s group

121

Vianu’s group
A. Deutsch, L. Sui, and V. Vianu: Specification and Verification of Data-driven Web Services, In Proceedings of the 23nd

ACM SIGACT SIGMOD SIGART Symposium on Principles of Database Systems (PODS 2004), ACM, 2004, pp. 71–82

available service: data query + behavioral descr.
• service as a data-driven entity characterized by a database and a

tree of web pages
• At each step, set of input choices presented to client: some

generated as queries over the database; specific client data treated
as constants. The client chooses one of such inputs, and in
response, the service produces as output updates over the service
database and/or performs some actions, and makes a transition
from a web page to another

automatic verification of service properties:
• both over runs (linear setting) and over sets of runs (branching

setting)
• they characterize the complexity of verifying such properties for

various classes of services

122

Benatallah & Casati’s group
B. Benatallah, F. Casati, and F. Toumani:

Web services conversation modeling: The Cornerstone for E-Business Automation.
IEEE Internet Computing, 8 (2004), no. 1, pp.46 – 54

available service: behavioral description
• behavior of a service as finite state transition system in

terms of message exchanged with the clients
(conversations)

• transitions labeled by messages, and states labeled with
the status of the conversation (e.g., effect of the message
exchange leading to it, if clearly defined)

they study how to automatically generate the skeleton of a
BPEL4WS spec. starting from the transition system
modeling the service behavior
they also study properties of service behavior in order for
two services to correctly interact

123

(Only) Orchestration

Two main kinds of orchestration [Hull etal PODS03] :

• (i) the mediated approach, based on a hub-and-spoke
topology, in which one service is given the role of
process mediator/delegator, and all the interactions
pass through such a service, and

• (ii) the peer-to-peer approach, in which there is no
centralized control

124

Mediated Orchestration Engines

e-Flow [Casati & Shan, IS01] :
• Platform for specifying, enacting and monitoring composite service
• Composite E-Service (CES) is a service process engine offered as

(meta-) service that performs coordination of services, with some
process adaption/evolution mechanisms

• A provider can offer a value added service as coordination of
different services: it registers the new service to the CES and let the
CES enact its execution

AZTEC [Christophides etal TES01] :
• Framework for orchestration of session-oriented, long running

telecommunication services is studied. It is based on active
flowcharts thus coping with asynchronous events that can happen
during active telecom sessions

125

Mediated Orchestration Engines

WISE [Lazcano etal CSSE2000] :
• Orchestration engine that coordinates the execution of

distributed applications (virtual processes), and a set of
brokers enables the interaction with already existing
systems that are to be used as building blocks.

• Process meta-model based on Petri Nets, with the
possibility to add Event-Condition-Action (ECA) rules

MENTOR-lite [Shegalov etal VLDBJ01] :
• Workow management system based on a XML mediator

for coordinating services which are distributed among
different organizations and deployed on heterogeneous
platforms

• Process meta-model is based on a specific statechart
dialect

126

Peer-to-Peer
Orchestration Engines

Self-Serv [Benatallah etal IEEE03] :

• Platform for composing services and executing new composed services
in a decentralized way, through peer-to-peer interactions

• Composite service modeled as an activity diagram

• Its enactment carried out through the coordination of different state
coordinators (one for each service involved in the specification and
one for the composite service itself)

PARIDE Orchestrator [Mecella etal VLDB-TES02] :

• A composition schema, modeled as a specific Coloured Petri Net, is
orchestrated by a set of organizations, which moves it (as a “token”)
along the execution

• Separation between the responsibility of the orchestration and the
providing of services (suitable in specific scenarios)

• Services can be substituted with other compatibles

127

References

[Casati & Shan, IS01] - F. Casati and M.C. Shan, Dynamic and Adaptive Composition of e-Services,
Information Systems 6 (2001), no. 3, 143 – 163.

[Christophides etal TES01] - V. Christophides, R. Hull, G. Karvounarakis, A. Kumar, G. Tong, and M. Xiong.
Beyond Discrete e-Services: Composing Session-oriented Services in Telecommunications. In Proc. of
VLDB-TES, 2001.

[Lazcano etal CSSE2000] - A. Lazcano, G. Alonso, H. Schuldt, and C. Schuler, The WISE approach to
Electronic Commerce, International Journal of Computer Systems Science & Engineering 15 (2000), no. 5

[Shegalov etal VLDBJ01] - G. Shegalov, M. Gillmann, and G. Weikum, XML-enabled Workflow Management
for e- Services across Heterogeneous Platforms, Very Large Data Base Journal 10 (2001), no. 1, 91–103.

[Benatallah etal IEEE03] - B. Benatallah, Q. Z. Sheng, and M. Dumas. The Self-Serv Environment for Web
Services Composition. IEEE Internet Computing, 7(1):40–48, 2003

[Mecella etal VLDB-TES02] – M. Mecella, F. Parisi Presicce, B. Pernici: Modeling e-Service Orchestration
Through Petri Nets. Proc. VLDB-TES 2002, LNCS 2444. An extended version as M. Mecella, B. Pernici:
Building Flexible and Cooperative Applications Based on eServices, Technical Report 21-02, DIS Univ.
Roma “La Sapienza”, 2002

128

ebXML

(approfondimento opzionale)

129

ebXML

ebXML is more a standardized “conceptual framework”, a
“reference model”, than a real stack of standard technologies
• Stable version in 2001/2002

– Technical Architecture Specification (v1.04)
– Business Process Specification Schema (v1.01)
– Registry Information Model (v2.0)
– Registry Services Specification (v2.0)
– Requirements Specification (v1.06)
– Collaboration-Protocol Profile and Agreement Specification

(v2.0)
– Message Service Specification (v2.0)

Currently in revision
• Indeed, many Technical Committees (TCs) are working in

synergy with the promoters of the W3C/WSDL-based “stack”
– E.g., UDDI v2 has been developed in the context of

ebXML/OASIS, currently WS-BPEL and WS-CAF are being
evolved/developed in the context of specific TCs, etc.

130

ebXML: Aims

To define an open & public infrastructure, based on XML, for
distributed electronic commerce

• Special attention to SMEs and developing countries

Process
Management

Process
Execution

Electronic
Business

Collaboration

Registry/
Repository

Message Service,
Business Service Interface

Partner
Sign-up

Partner
Discovery

Process
Definition

Collaboration
Protocol
Profile

Business Process,
Core Components

Collaboration
Protocol

Agreement

Process
Evolution

Electronic
Plug-in

Business
Service

Interface

131

ebXML: How ?

Model to XML ConversionModel to XML Conversion

Business Process and Information Models
(compliant to the Meta Model)

Internal
Business

Application

Internal
Business

Application

Business
Service

Interface

Business
Service

Interface

RegistriesRegistries

Registry Service InterfaceRegistry Service Interface

by using BPSS
(Business Process
Specification Schema)

register

Internal
Business

Application

Internal
Business

Application

Business
Service

Interface

Business
Service

Interface

Collaboration Protocol
Profile (CPP)

register

Collaboration Protocol
Profile (CPP)

register

implementers

retrieve
models and
profiles

retrieve profiles & new/updated models

buildbuild

Collaboration Protocol
Agreement (CPA)

retrieve profiles &
new/updated models

(message) payload(message) payload

govern

exchangeexchange

derive

derive

governgovern

in a sense, this is the
“maximum intersection”
choreography

132

ebXML: BPSS, CPP e CPA (1)

BPSS is used for modeling a business process, thus
obtaining a BPS (Business Process Specification)

• Partners, roles, collaborations and document
exchanges (business transactions)

• Collaboration: set of activities; an activity is a business
transaction or again a collaboration

• Business transaction: a partner is the requester, the
other is the responder, in a business document flow

CPP: expresses the capabilities of a partner in partecipating
in a BPS

133

ebXML: BPSS, CPP e CPA (2)

A wants to make electronic business with B; A is the acquirer
and B the vendor; the process underlying the business is
already defined in a BPS
A discovers the B ’s CPP in a registry

A CPA is created, as the intersection of A ’s CPP and B ’s
CPP
On the basis of the CPA, the A ’s and B ’s business service
interfaces are configured in order to support the business
transactions

134

ebXML: BPSS, CPP e CPA (3)

Each partner has registered its own
CPP in the registry

Partner A discovers B in the registry
and download CPPB on its
system

Partner A creates CPAA and B and
sends it to B

After a negotiation (both manual or
automatic), both A and B register
identical copies of the agreed
upon CPAA and B in their systems

Both A and B configure their systems
for runtime on the basis of CPAA
and B

Finally A and B engage their e-
Commerce process

B’s server

A’s server

Registry

CPPZ

CPPYCPPX

(1)

(1)

(2)
(6)

(3 - 4)

CPAA and B

CPPB

CPPA

(5)

(5)

CPAA and B

Semantic Web Services
(approfondimento opzionale)

136

OWL-S (formely DAML-S)

An emerging standard to add semantics
• An upper ontology for describing properties &

capabilities of Web Services using OWL
Enable automation of various activities (e.g., service
discovery & selection)

[from DAML-S]

137

OWL-S Service Profile
(What it does)

High-level characterization/summary of a service

– Provider & participants
– Capabilities
– Functional attributes (e.g., QoS, region served)

Used for

– Populating service registries
• A service can have many profiles

– Automated service discovery
– Service selection (matchmaking)

One can derive:

– Service advertisements
– Service requests

138

Provenance Provenance
DescriptionDescription

Functional AttributesFunctional Attributes

Capability DescriptionCapability Description
OWL-S Service Profile

[from DAML-S]

139

Specification of what the
service provides

• High-level functional
representation in terms of:

– preconditions

– inputs

– (conditional) outputs

– (conditional) effects

Capability Description

140

IOPE

Inputs
• Set of necessary inputs that the requester should provide to

invoke the service

(Conditional) Outputs
• Results that the requester should expect after interaction

with the service provider is completed

Preconditions
• Set of conditions that should hold prior to service

invocation

(Conditional) Effects
• Set of statements that should hold true if the service is

invoked successfully
• Often refer to real-world effects, e.g., a package being

delivered, or a credit card being debited

141

Provide supporting information about the
service, including:

• geographical scope
Pizza Delivery only within
the Pittsburgh area

• quality descriptions and
guarantees

Stock quotes delivered
within 10 secs

• service types, service categories
Commercial / Problem
Solving, etc.

• service parameters
Average Response time is
currently ...

Functional Attributes

142

OWL-S Service Model
(How it works)

[from DAML-S]

143

OWL-S Process Ontology

Atomic processes: directly invokable, no
subprocesses, executed in a single step

Composite processes: consist of other (non-
composite or composite) processes

Simple processes: a virtual view of atomic process or
composite process (as a “black box”)

144

Process Model

Constructs for complex processes
• Sequence
• Concurrency: Split; Split+Join; Unordered
• Choice
• If-Then-Else
• Looping: Repeat-Until; Iterate (non-deterministic)

Data Flow
• No explicit variables, no internal data store
• Predicate “sameValues” to match input of composite

service and input of subordinate service

Less refined than, e.g., WS-BPEL

145

Enhancements

Recent proposals aim at improving and detailing process
modeling and dynamic semantics …

• WSMO (Web Service Modeling Ontology)

• SWSL (Semantic Web Service Language)

… work in progress !!

