
Description Logics

Giuseppe De Giacomo

Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”

Seminari di Ingegneria del Software: Integrazione di Dati e Servizi

Parte 4 - Ontologie

A.A. 2005/06

What are Description Logics?

In modeling an application domain we typically need to represent a situation in

terms of

• objects

• classes

• relations (or associations)

and to reason about the representation

Description Logics are logics specifically designed to represent and reason on

• objects

• classes – called concepts in DLs

• (binary) relations – called roles in DLs

Giuseppe De Giacomo Description Logics 1

Origins of Description Logics

Knowledge Representation is a subfield of Artificial Intelligence

Early days KR formalisms (late ’70s, early ’80s):

• Semantic Networks: graph-based formalism, used to represent the

meaning of sentences

• Frame Systems: frames used to represent prototypical situations,

antecedents of object-oriented formalisms

Problems: no clear semantics, reasoning not well understood

Description Logics (a.k.a. Concept Languages, Terminological Languages)

developed starting in the mid ’80s, with the aim of providing semantics and

inference techniques to knowledge representation systems

Giuseppe De Giacomo Description Logics 2

Current applications of DLs

DLs have evolved from being used “just” in KR

Found applications in:

• Databases:

– schema design, schema evolution

– query optimization

– integration of heterogeneous data sources, data warehousing

• Conceptual modeling

• Ontologies

• · · ·

Giuseppe De Giacomo Description Logics 3

Ingredients of a DL

A Description Logic is characterized by:

1. A description language: how to form concepts and roles
Human � Male � (∃child) � ∀child.(Doctor � Lawyer)

2. A mechanism to specify knowledge about concepts and roles (i.e., a TBox)
ggK = { Father ≡ Human � Male � (∃child),

HappyFather � Father � ∀child.(Doctor � Lawyer) }
3. A mechanism to specify properties of objects (i.e., an ABox)

A = { HappyFather(JOHN), child(JOHN, MARY) }
4. A set of inference services: how to reason on a given knowledge base

K |= HappyFather � ∃child.(Doctor � Lawyer)

K ∪ A |= (Doctor � Lawyer)(MARY)

Note: we will consider ABoxes only later, when needed; hence, for now, we
consider a knowledge base to be simply a TBox

Giuseppe De Giacomo Description Logics 4

Architecture of a DL system
Expressed in a
Description Logic

Terminological
knowledge (TBox)

Knowledge about
objects (ABox)

Father ≡ Human � Male � (∃child)

HappyFather � Father �
∀child.(Doctor � Lawyer)

HappyFather(JOHN)

child(JOHN, MARY)

Knowledge Base

Inference Engine

Applications

Giuseppe De Giacomo Description Logics 5

Description language

A description language is characterized by a set of constructs for building

complex concepts and roles starting from atomic ones:

• concepts represent classes: interpreted as sets of objects

• roles represent relations: interpreted as binary relations on objects

Semantics: in terms of interpretations I = (ΔI, ·I), where

• ΔI is the interpretation domain

• ·I is the interpretation function, which maps

– each atomic concept A to a subset AI of ΔI

– each atomic role P to a subset P I of ΔI × ΔI

The interpretation function is extended to complex concepts and roles

according to their syntactic structure

Giuseppe De Giacomo Description Logics 6

Syntax and semantics of AL
AL is the basic language in the family of AL languages

Construct Syntax Example Semantics

atomic concept A Doctor AI ⊆ ΔI

atomic role P child P I ⊆ ΔI × ΔI

atomic negation ¬A ¬Doctor ΔI \ AI

conjunction C � D Hum � Male CI ∩ DI

(unqual.) exist. res. ∃R ∃child { a | ∃b. (a, b) ∈ RI }
value restriction ∀R.C ∀child.Male {a | ∀b. (a, b) ∈ RI ⊃ b ∈ CI}
(C, D denote arbitrary concepts and R an arbitrary role)

Note: AL is not propositionally closed (no full negation)

Giuseppe De Giacomo Description Logics 7

The AL family

Typically, additional constructs w.r.t. those of AL are needed:

Construct AL· Syntax Semantics

disjunction U C � D CI ∪ DI

qual. exist. res. E ∃R.C { a | ∃b. (a, b) ∈ RI ∧ b ∈ CI }
(full) negation C ¬C ΔI \ CI

number N (≥ k R) { a | #{b | (a, b) ∈ RI} ≥ k }
restrictions (≤ k R) { a | #{b | (a, b) ∈ RI} ≤ k }
qual. number Q (≥ k R.C) { a | #{b | (a, b) ∈ RI ∧ b ∈ CI} ≥ k }
restrictions (≤ k R.C) { a | #{b | (a, b) ∈ RI ∧ b ∈ CI} ≤ k }
inverse role I P − { (a, b) | (b, a) ∈ P I }

We also use: ⊥ for A � ¬A (hence ⊥I = ∅)

� for A � ¬A (hence �I = ΔI)

Giuseppe De Giacomo Description Logics 8

The AL family – Examples

• Disjunction

∀child.(Doctor � Lawyer)

• Qualified existential restriction

∃child.Doctor

• Full negation

¬(Doctor � Lawyer)

• Number restrictions

(≥ 2 child) � (≤ 1 sibling)

• Qualified number restrictions

(≥ 2 child.Doctor) � (≤ 1 sibling.Male)

• Inverse role

∀child−.Doctor

Giuseppe De Giacomo Description Logics 9

Reasoning on concept expressions

An interpretation I is a model of a concept C if CI �= ∅

Basic reasoning tasks:

1. Concept satisfiability: does C admit a model?

2. Concept subsumption: does CI ⊆ DI hold for all interpretations I?
(written C � D)

Subsumption used to build the

concept hierarchy:
WomanMan

Human

Father

HappyFather

(1) and (2) are mutually reducible if DL is propositionally closed

Giuseppe De Giacomo Description Logics 10

Reasoning on concept expressions – Technique

Techniques are based on tableau algorithms: for satisfiability of C0

1. Aims at building a tree representing a model of C0

• nodes represent objects of ΔI, labeled with subconcepts of C0

• edges represent role successorship between objects

2. Concepts are first put in negation normal form (negation is pushed inside)

3. Tree initialized with single root node, labeled with {C0}
4. Rules (one for each construct) add new nodes or concepts to the label

• deterministic rules: for �, ∀P .C, ∃P .C, (≥ k P)

• non-deterministic rules: for �, (≤ k P)

5. Stops when:

• no more rule can be applied, or

• a clash (obvious contradiction) is detected

Giuseppe De Giacomo Description Logics 11

Reasoning on concept expressions – Technique (Cont’d)

Properties of tableaux algorithms (must be proved for the various cases):

1. Termination: since quantifier depth decreases going down the tree

2. Soundness: if there is a way of terminating without a clash, then C0 is

satisfiable

• construct from the tree a model of C0

3. Completeness: if C0 is satisfiable, there is a way of applying the rules so

that the algorithm terminates without a clash

• if I is a model of T , then there is a rule s.t. I is also a model of the tree

obtained by applying the rule to T

Tableaux algorithms provide optimal decision procedures for concept

satisfiability (and subsumption)

Giuseppe De Giacomo Description Logics 12

Reasoning on concept expressions – Complexity

Complexity of concept satisfiability

PTIME AL, ALN
NP-complete ALU , ALUN

coNP-complete ALE
PSPACE-complete ALC, ALCN , ALCI , ALCQI

Observations:

• two sources of complexity

– union (U) of type NP

– existential quantification (E) of type coNP

When they are combined, the complexity jumps to PSPACE

• number restrictions (N) do not add to the complexity

Giuseppe De Giacomo Description Logics 13

Structural properties vs. asserted properties

We have seen how to build complex concept expressions, which allow to

denote classes with a complex structure

However, in order to represent complex domains one needs the ability to

assert properties of classes and relationships between them (e.g., as done in

UML class diagrams)

The assertion of properties is done in DLs by means of knowledge bases

Giuseppe De Giacomo Description Logics 14

DL knowledge bases

A DL knowledge base consists of a set of inclusion assertions on concepts:

C � D

• when C is an atomic concept, the assertion is called primitive
• C ≡ D is an abbreviation for C � D, D � C

Example:
K = { Father ≡ Human � Male � (∃child),

HappyFather � Father � ∀child.(Doctor � Lawyer) }

Semantics: An interpretation I is a model of a knowledge base K if

CI ⊆ DI for every assertion C � D in K

Giuseppe De Giacomo Description Logics 15

Reasoning on DL knowledge bases

Basic reasoning tasks:

1. Knowledge base satisfiability

Given K, does it admit a model?

2. Concept satisfiability w.r.t. a KB — denoted K �|= C ≡ ⊥
Given C and K, do they admit a common model?

3. Logical implication — denoted K |= C � D

Given C, D, and K, does CI ⊆ DI hold for all models I of K?

Again, logical implication allows for classifying the concepts in the KB w.r.t. the

knowledge expressed by the KB

Giuseppe De Giacomo Description Logics 16

Relationship among reasoning tasks

The reasoning tasks are mutually reducible to each other, provided the

description language is propositionally closed:

(1) to (3) K satisfiable iff not K |= � � ⊥ iff K �|= � ≡ ⊥
(i.e., � satisfiable w.r.t. K)

(3) to (2) K |= C � D iff not K �|= C � ¬D ≡ ⊥
(i.e., C � ¬D unsatisfiable w.r.t. K)

(2) to (1) K �|= C ≡ ⊥ iff K ∪ { � � ∃Pnew � ∀Pnew .C } satisfiable

(where Pnew is a new atomic role)

Giuseppe De Giacomo Description Logics 17

Relationship with First Order Logic

Most DLs are well-behaved fragments of First Order Logic

To translate ALC to FOL:

1. Introduce: a unary predicate A(x) for each atomic concept A

a binary predicate P (x, y) for each atomic role P

2. Translate complex concepts as follows, using translation functions tx, for
any variable x:

tx(A) = A(x)

tx(C � D) = tx(C) ∧ tx(D)

tx(C � D) = tx(C) ∨ tx(D)

tx(∃P .C) = ∃y. P (x, y) ∧ ty(C) with y a new variable

tx(∀P .C) = ∀y. P (x, y) ⊃ ty(C) with y a new variable

3. Translate a knowledge base K =
⋃

i{ Ci � Di } as a FOL theory

ΓK =
⋃

i{ ∀x. tx(Ci) ⊃ tx(Di) }
Giuseppe De Giacomo Description Logics 18

Relationship with First Order Logic (Cont’d)

Reasoning services:

C is consistent iff its translation tx(C) is satisfiable

C � D iff tx(C) ⊃ tx(D) is valid

C is consistent w.r.t. K iff ΓK ∪ { ∃x. tx(C) } is satisfiable

K |= C � D iff ΓK |= ∀x. (tx(C) ⊃ tx(D))

Giuseppe De Giacomo Description Logics 19

Relationship with First Order Logic – Exercise

Translate the following ALC concepts into FOL formulas:

1. Father � ∀child.(Doctor � Manager)

2. ∃manages.(Company � ∃employs.Doctor)

3. Father � ∀child.(Doctor � ∃manages.(Company � ∃employs.Doctor))

Solution:

1. Father(x) ∧ ∀y. (child(x, y) ⊃ (Doctor(y) ∨ Manager(y)))

2. ∃y. (manages(x, y) ∧ (Company(y) ∧ ∃w. (employs(y, w) ∧ Doctor(w))))

3. Father(x) ∧ ∀y. (child(x, y) ⊃ (Doctor(y) ∨
∃w. (manages(y, w)∧(Company(w)∧∃z. (employs(w, z)∧Doctor(z))))))

Giuseppe De Giacomo Description Logics 20

DLs as fragments of First Order Logic

The above translation shows us that DLs are a fragment of First Order Logic

In particular, we can translate complex concepts using just two translation
functions tx and ty (thus reusing the same variables):

tx(A) = A(x) ty(A) = A(y)

tx(C � D) = tx(C) ∧ tx(D) ty(C � D) = ty(C) ∧ ty(D)

tx(C � D) = tx(C) ∨ tx(D) ty(C � D) = ty(C) ∨ ty(D)

tx(∃P .C) = ∃y. P (x, y) ∧ ty(C) ty(∃P .C) = ∃x. P (y, x) ∧ tx(C)

tx(∀P .C) = ∀y. P (x, y) ⊃ ty(C) ty(∀P .C) = ∀x. P (y, x) ⊃ tx(C)

� ALC is a fragment of L2, i.e., FOL with 2 variables, known to be decidable
(NEXPTIME-complete)

Note: FOL with 2 variables is more expressive than ALC (tradeoff expressive
power vs. complexity of reasoning)

Giuseppe De Giacomo Description Logics 21

DLs as fragments of First Order Logic – Exercise

Translate the following ALC concepts into L2 formulas (i.e., into FOL formulas

that use only variables x and y):

1. Father � ∀child.(Doctor � Manager)

2. ∃manages.(Company � ∃employs.Doctor)

3. Father � ∀child.(Doctor � ∃manages.(Company � ∃employs.Doctor))

Solution:

1. Father(x) ∧ ∀y. (child(x, y) ⊃ (Doctor(y) ∨ Manager(y)))

2. ∃y. (manages(x, y) ∧ (Company(y) ∧ ∃x. (employs(y, x) ∧ Doctor(x))))

3. Father(x) ∧ ∀y. (child(x, y) ⊃ (Doctor(y) ∨
∃x. (manages(y, x) ∧ (Company(x) ∧ ∃y. (employs(x, y) ∧ Doctor(y))))))

Giuseppe De Giacomo Description Logics 22

DLs as fragments of First Order Logic (Cont’d)

Translation can be extended to other constructs:

• For inverse roles, swap the variables in the role predicate, i.e.,

tx(∃P −.C) = ∃y. P (y, x) ∧ ty(C) with y a new variable

tx(∀P −.C) = ∀y. P (y, x) ⊃ ty(C) with y a new variable

� ALCI is still a fragment of L2

• For number restrictions, two variables do not suffice;

but, ALCQI is a fragment of C2 (i.e, L2+counting quantifiers)

Giuseppe De Giacomo Description Logics 23

Relationship with Modal and Dynamic Logics

In understanding the computational properties of DLs a correspondence with

Modal logics and in particular with Propositional Dynamic Logics (PDLs) has

been proved essential

PDLs are logics specifically designed for reasoning about programs

PDLs have been widely studied in computer science, especially from the point

of view of computational properties:

• tree model property

• small model property

• automata based reasoning techniques

Giuseppe De Giacomo Description Logics 24

Relationship with Modal Logics

ALC is a syntactic variant of Km (i.e., multi-modal K):

C � D ⇔ C ∧ D ∃P .C ⇔ �P C

C � D ⇔ C ∨ D ∀P .C ⇔ �P C

¬C ⇔ ¬C

• no correspondence for inverse roles

• no correspondence for number restrictions

� Concept consistency, subsumption in ALC ⇔ satisfiability, validity in Km

To encode inclusion assertions, axioms are used

� Logical implication in DLs corresponds to “global logical implication” in

Modal Logics

Giuseppe De Giacomo Description Logics 25

Relationship with Propositional Dynamic Logics

ALC and ALCI can be encoded in Propositional Dynamic Logics (PDLs)

C � D ⇔ C ∧ D ∃R.C ⇔ 〈R〉C
C � D ⇔ C ∨ D ∀R.C ⇔ [R]C

¬C ⇔ ¬C

Universal modality (or better “master modality”) can be expressed in PDLs

using reflexive-transitive closure:

• for ALC / PDL: u = (P1 ∪ · · · ∪ Pm)∗

• for ALCI / conversePDL: u = (P1 ∪ · · · ∪ Pm ∪ P −
1 ∪ · · · ∪ P −

m)∗

Universal modality allows for internalizing assertions:

C � D ⇔ [u](C ⊃ D)

Giuseppe De Giacomo Description Logics 26

Relationship with Propositional Dynamic Logics (Cont’d)

� Concept satisfiability w.r.t. a KB (resp., logical implication) reduce to PDL

(un)satisfiability:

⋃
i{ Ci � Di } �|= C ≡ ⊥ ⇔ C ∧ ∧

i[u](Ci ⊃ Di) satisfiable
⋃

i{ Ci � Di } |= C � D ⇔ C ∧ ¬D ∧ ∧
i[u](Ci ⊃ Di) unsatisfiable

Correspondence also extended to other constructs, e.g., number restrictions:

• polynomial encoding when numbers are represented in unary

• technique more involved when numbers are represented in binary

Note: there are DLs with non first-order constructs, such as various forms of

fixpoint constructs. Such DLs still have a correspondence with variants of PDLs

Giuseppe De Giacomo Description Logics 27

Consequences of correspondence with PDLs

• PDL, conversePDL, DPDL, converseDPDL are EXPTIME-complete

� Logical implication in ALCQI is in EXPTIME

• PDLs enjoy the tree-model property: every satisfiable formula admits a

model that has the structure of a (in general infinite) tree of linearly

bounded width

� A satisfiable ALCQI knowledge base has a tree model

• PDLs admit optimal reasoning algorithms based on (two-way alternating)

automata on infinite trees

� Automata-based algorithms are optimal for ALCQI logical implication

Giuseppe De Giacomo Description Logics 28

DL reasoning systems

Systems are available for reasoning on DL knowledge bases:

• FaCT [University of Manchester]

• Racer [University of Hamburg]

• Pellet [University of Maryland]

Some remarks on these systems:

• the state-of-the-art DL reasoning systems are based on tableaux techniques and

not on automata techniques

+ easier to implement

− not computationally optimal (NEXPTIME, 2NEXPTIME)

• the systems are highly optimized

• despite the high computational complexity, the performance is surprisingly good in

real world applications:

– knowledge bases with thousands of concepts and hundreds of axioms

– outperform specialized modal logics reasoners

Giuseppe De Giacomo Description Logics 29

Summary on Description Logics

• Description Logics are logics for class-based modeling:

– can be seen as a fragment of FOL with nice computational properties

– tight relationship with Modal Logics and Propositional Dynamic Logics

• For reasoning over concept expressions, tableaux algorithms are optimal

• For most (decidable) DLs, reasoning over KBs is EXPTIME-complete:

– tight upper bounds by automata based techniques

– implemented systems exploit tableaux techniques, are suboptimal, but

perform well in practice

Giuseppe De Giacomo Description Logics 30

Lets go back to our questions on reasoning on UML class
diagrams

1. Can we develop sound, complete, and terminating reasoning procedures
for reasoning on UML Class Diagrams?

To answer this question we polynomially encode UML Class Diagrams in
DLs

� reasoning on UML Class Diagrams can be done in EXPTIME

2. How hard is it to reason on UML Class Diagrams in general?

To answer this question we polynomially reduce reasoning in
EXPTIME-complete DLs to reasoning on UML class diagrams

� reasoning on UML Class Diagrams is in fact EXPTIME-hard

We start with point (2): EXPTIME lower bound established by encoding
satisfiability of a concept w.r.t. an ALC KBs into consistency of a class in an

Giuseppe De Giacomo Description Logics 31

UML class diagram [AIJ2005].

Giuseppe De Giacomo Description Logics 32

Upper bound for reasoning on UML class diagrams

EXPTIME upper bound established by encoding UML class diagrams in DLs

What we gain by such an encoding

• DLs admit decidable inference

� decision procedure for reasoning in UML

• (most) DLs are decidable in EXPTIME

� EXPTIME method for reasoning in UML (provided the encoding in

polynomial)

• exploit DL-based reasoning systems for reasoning in UML

• interface case-tools with DL-based reasoners to provide support during

design (see demo on Monday)

Giuseppe De Giacomo Description Logics 33

Encoding of UML class diagrams in DLs

We encode an UML class diagram D into an ALCQI knowledge base KD:

• classes are represented by concepts

• attributes and association roles are represented by roles

• each part of the diagram is encoded by suitable inclusion assertions

� Consistency of a class in D is reduced to consistency of the corresponding

concept w.r.t. KD, similarly for the other reasoning tasks

Giuseppe De Giacomo Description Logics 34

Encoding of classes and attributes

• An UML class C is represented by an atomic concept C

• Each attribute a of type T for C is represented by an atomic role a

– To encode the typing of a for C:

C � ∀a.T

This takes into account that other classes may also have attribute a

– To encode the multiplicity [i..j] of a:

C � (≥ i a) � (≤ j a)

∗ when j is ∗, we omit the second conjunct
∗ when the multiplicity is [0..∗] we omit the whole assertion
∗ when the multiplicity is missing (i.e., [1..1]), the assertion becomes:

C � ∃a � (≤ 1 a)

Giuseppe De Giacomo Description Logics 35

Encoding of classes and attributes – Example

Phone

number[1..*]: String

brand: String

lastDialed(): String

callLength(String): Integer

class name

attributes

operations

• To encode the class Phone, we introduce a concept Phone

• Encoding of the attributes: number and brand

Phone � ∀number.String � ∃number

Phone � ∀brand.String � ∃brand � (≤ 1 brand)

• Encoding of the operations: lastDialed() and callLength(String)

see later

Giuseppe De Giacomo Description Logics 36

Encoding of associations

The encoding depends on:

• the presence/absence of an association class

• the arity of the association

without with
association class association class

binary via ALCQI role via reification

non-binary via reification via reification

Note: for simplicity in the following we will only consider binary association

without association classes role

Giuseppe De Giacomo Description Logics 37

Encoding of associations

C2
min1..max1

A
C1

min2..max2

• A is represented by an ALCQI role A, with:

� � ∀A.C2 � ∀A−.C1

• To encode the multiplicities of A:

– each instance of C1 is connected through A to at least min1 and at
most max 1 instances of C2:

C1 � (≥ min1 A) � (≤ max 1 A)

– each instance of C2 is connected through A− to at least min2 and at
most max 2 instances of C1:

C2 � (≥ min2 A−) � (≤ max 2 A−)

Giuseppe De Giacomo Description Logics 38

Associations – Example

PhoneBill
reference

1..1 1..∗ PhoneCall

� � ∀reference.PhoneCall � ∀reference−.PhoneBill

PhoneBill � (≥ 1 reference)

PhoneCall � (≥ 1 reference−) � (≤ 1 reference−)

Note: an aggregation is just a particular kind of binary association without

association class

Giuseppe De Giacomo Description Logics 39

Encoding of ISA and generalization

C1

C

C1 � C
C2

C

C1 . . . Ck

C1 � C
...

Ck � C

• When the generalization is disjoint

Ci � ¬Cj for 1 ≤ i < j ≤ k

• When the generalization is complete

C � C1 � · · · � Ck

Giuseppe De Giacomo Description Logics 40

ISA and generalization – Example

ETACSphone GSMphone UMTSphone

CellPhone

{disjoint, complete}

ETACSphone � CellPhone ETACSphone � ¬GSMPhone

GSMSphone � CellPhone ETACSphone � ¬UMTSPhone

UMTSSphone � CellPhone GSMphone � ¬UMTSPhone

CellPhone � ETACSphone � GSMphone � UMTSPhone

Giuseppe De Giacomo Description Logics 41

Encoding of UML in DLs – Example
1..1 1..*

place: String

call

0..*

call

0..* 0..*

from

1..1

from

reference
PhoneBill PhoneCall Phone

MobileCall CellPhone FixedPhone

MobileOrigin

Origin

{disjoint, complete}

� � ∀reference.PhoneCall � ∀reference−.PhoneBill

PhoneBill � (≥ 1 reference)
PhoneCall � (≥ 1 reference−) � (≤ 1 reference−)

Origin � ∀place.String � ∃place � (≤ 1 place)
Origin � ∃call.PhoneCall � (≤ 1 call) � ∃from.Phone � (≤ 1 from)

MobileOrigin � ∃call.MobileCall � (≤ 1 call) � ∃from.CellPhone � (≤ 1 from)
PhoneCall � (≥ 1 call−.Origin) � (≤ 1 call−.Origin)

MobileOrigin � Origin

MobileCall � PhoneCall

CellPhone � Phone

FixedPhone � Phone � ¬CellPhone

Phone � CellPhone � FixedPhone

Giuseppe De Giacomo Description Logics 42

Encoding of UML in DLs – Exercise 1

Translate the above UML class diagram into an ALCQI knowledge base

Giuseppe De Giacomo Description Logics 43

degiacom
Text Box
Si faccia riferimento al diagramma delle classi UML mostrato all'inizio della lezione precedente

Encoding of UML in DLs – Solution of Exercise 1

Encoding of classes and attributes

Scene � ∀code.String � ∃code � (≤ 1 code)
Scene � ∀description.Text � ∃description � (≤ 1 description)

Internal � ∀theater.String � ∃theater � (≤ 1 theater)
External � ∀night scene.Boolean � ∃night scene � (≤ 1 night scene)

Take � ∀nbr.Integer � ∃nbr � (≤ 1 nbr)
Take � ∀filmed meters.Real � ∃filmed meters � (≤ 1 filmed meters)
Take � ∀reel.String � ∃reel � (≤ 1 reel)

Setup � ∀code.String � ∃code � (≤ 1 code)
Setup � ∀photographic pars.Text � ∃photographic pars � (≤ 1 photographic pars)

Location � ∀name.String � ∃name � (≤ 1 name)
Location � ∀address.String � ∃address � (≤ 1 address)
Location � ∀description.Text � ∃description � (≤ 1 description)

Giuseppe De Giacomo Description Logics 44

Encoding of UML in DLs – Solution of Exercise 1 (Cont’d)

Encoding of hierarchies

Internal � Scene

External � Scene

Scene � Internal � External

Internal � ¬External

Encoding of associations

� � ∀stp for scn.Setup � ∀stp for scn−.Scene

Scene � (≥ 1 stp for scn)
Setup � (≥ 1 stp for scn−) � (≤ 1 stp for scn−)

� � ∀tk of stp.Take � ∀tk of stp−.Setup

Setup � (≥ 1 tk of stp)
Take � (≥ 1 tk of stp−) � (≤ 1 tk of stp−)

� � ∀located.Location � ∀located−.External

External � (≥ 1 located) � (≤ 1 located)

Giuseppe De Giacomo Description Logics 45

Encoding of operations

Operation f(P1, . . . , Pm) : R for class C corresponds to an (m+2)-ary

relation that is functional on the last component

• Operation f() : R without parameters directly represented by an atomic

role Pf(), with:

C � ∀Pf().R � (≤ 1 Pf())

• Operation f(P1, . . . , Pm) : R with one or more parameters cannot be

expressed directly in ALCQI � we make use of reification (see

[AIJ2005]

Giuseppe De Giacomo Description Logics 46

Encoding of operations – Example
Phone

number[1..*]: String

brand: String

lastDialed(): String

callLength(String): Integer

class name

attributes

operations

• Encoding of the attributes: number and brand

Phone � ∀number.String � ∃number

Phone � ∀brand.String � ∃brand � (≤ 1 brand)

• Encoding of the operations: lastDialed() and callLength(String)

Phone � ∀PlastDialed().String � (≤ 1 PlastDialed())

PcallLength(String) � ∃r0 � (≤ 1 r0) � ∃r1 � (≤ 1 r1) � ∃r2 � (≤ 1 r2)

PcallLength(String) � ∀r1.String

Phone � ∀r−
0 .(PcallLength(String) ⇒ ∀r2.Integer)

Giuseppe De Giacomo Description Logics 47

Correctness of the encoding

The encoding of an UML class diagram into an ALCQI knowledge base is

correct, in the sense that it preserves the reasoning services over UML class

diagrams

Proof idea: by showing a correspondence between the models of (the FOL

formalization of) D and the models of KD

Giuseppe De Giacomo Description Logics 48

Complexity of reasoning on UML class diagrams

All reasoning tasks on UML class diagrams can be reduced to reasoning tasks

on ALCQI knowledge bases

From

• EXPTIME-completeness of reasoning on ALCQI knowledge bases

• the fact that the encoding in polynomial

we obtain:

Reasoning on UML class diagrams can be done in EXPTIME

Giuseppe De Giacomo Description Logics 49

