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Ontologies in Computer Science

• Ontologies are formal specifications of a conceptualization of a particular

domain

• Envisioned to play a major role in supporting information sharing across

networks by making explicit the semantics of information at various sites

• Pioneered in Computer Science by researchers in Artificial Intelligence,

where they have become a popular research topic at the beginning of the

1990s (see, e.g., WordNet and CYC). More recently, the notion of ontology

has spread across several other research fields such as intelligent

information integration, cooperative information systems, information

retrieval, knowledge management.

• Married with Description Logics, they are advocated as the key technology

for realizing the Semantic Web. Standardization efforts have started within

W3C: RDFS, OWL
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Ontologies in Computer Science

• Ontologies are used to represent information at the conceptual level. . .

• . . . in terms of classes/concepts/entities and relationships between them

• Observe that such a form of representation is almost universally

recognized as the most prominent in Computer Science

– UML class diagrams in software engineering

– ER diagrams in databases and information systems

– Frame systems in AI

• Ontologies are typically expressed in logic:

– First Order Logic

– Description Logics: a specialized formalism (typically a fragment of

FOL) for expressing knowledge in terms of classes and relationships

Giuseppe De Giacomo Ontology Mediated Data Access 3



An example of ontology – in UML
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An example of ontology – in FOL
Alphabet:
Scene(x), Setup(x), T ake(x), Internal(x), External(x), Location(x), stp for scn(x, y), ck of stp(x, y), located(x, y), . . ..

Axioms:

∀x, y . (Scene(x) ∧ code(x, y)) ⊃ String(y)

∀x, y . (Scene(x) ∧ description(x, y)) ⊃ T ext(y)

∀x, y . (Setup(x) ∧ code(x, y)) ⊃ String(y)

∀x, y . (Setup(x) ∧ photographic pars(x, y)) ⊃ T ext(y)

∀x, y . (T ake(x) ∧ nbr(x, y)) ⊃ Integer(y)

∀x, y . (T ake(x) ∧ filmed meters(x, y)) ⊃ Real(y)

∀x, y . (T ake(x) ∧ reel(x, y)) ⊃ String(y)

∀x, y . (Internal(x) ∧ theater(x, y)) ⊃ String(y)

∀x, y . (External(x) ∧ night scene(x, y)) ⊃ Boolean(y)

∀x, y . (Location(x) ∧ name(x, y)) ⊃ String(y)

∀x, y . (Location(x) ∧ address(x, y)) ⊃ String(y)

∀x, y . (Location(x) ∧ description(x, y)) ⊃ T ext(y)

∀x. Scene(x) ⊃ (1 ≤ �{y | code(x, y)} ≤ 1)

· · ·

∀x, y . stp for scn(x, y) ⊃ Setup(x) ∧ Scene(y)

∀x, y . tk of stp(x, y) ⊃ T ake(x) ∧ Setup(y)

∀x, y . located(x, y) ⊃ External(x) ∧ Location(y)

∀x. Setup(x) ⊃ 1 ≤ �{y | stp for scn(x, y)} ≤ 1

∀y . Scene(y) ⊃ 1 ≤ �{x | stp for scn(x, y)}
∀x. T ake(x) ⊃ 1 ≤ �{y | tk of stp(x, y)} ≤ 1

∀x. Setup(y) ⊃ 1 ≤ �{x | tk of stp(x, y)}
∀x. External(x) ⊃ 1 ≤ �{y | located(x, y)} ≤ 1

∀x. Internal(x) ⊃ Scene(x)

∀x. External(x) ⊃ Scene(x)

∀x. Internal(x) ⊃ ¬External(x)

∀x. Scene(x) ⊃ Internal(x) ∨ External(x)
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An example of ontology – in DL
Encoding of classes and attributes

Scene � ∀code .String � ∃code � (≤ 1 code)

Scene � ∀description .Text � ∃description � (≤ 1 description)

Internal � ∀theater .String � ∃theater � (≤ 1 theater)

External � ∀night scene .Boolean � ∃night scene � (≤ 1 night scene)

Take � ∀nbr .Integer � ∃nbr � (≤ 1 nbr)

Take � ∀filmed meters.Real � ∃filmed meters � (≤ 1 filmed meters)

Take � ∀reel .String � ∃reel � (≤ 1 reel)

Setup � ∀code .String � ∃code � (≤ 1 code)

Setup � ∀photographic pars.Text � ∃photographic pars � (≤ 1 photographic pars)

Location � ∀name .String � ∃name � (≤ 1 name)

Location � ∀address.String � ∃address � (≤ 1 address)

Location � ∀description .Text � ∃description � (≤ 1 description)

Encoding of hierarchies
Internal � Scene

External � Scene

Scene � Internal 
 External

Internal � ¬External

Encoding of associations
� � ∀stp for scn .Setup � ∀stp for scn− .Scene

Scene � (≥ 1 stp for scn)

Setup � (≥ 1 stp for scn−) � (≤ 1 stp for scn−)

� � ∀tk of stp.Take � ∀tk of stp− .Setup

Setup � (≥ 1 tk of stp)

Take � (≥ 1 tk of stp−) � (≤ 1 tk of stp−)

� � ∀located .Location � ∀located− .External

External � (≥ 1 located) � (≤ 1 located)
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Ontology based data access

Desiderata: achieving logical transparency

• hide to the user where and how data are stored;

• present to the user a conceptual view of the data;

• use a semantically rich formalism for the conceptual view.

Similar to data integration, but with a rich conceptual description as the global

view.

Giuseppe De Giacomo Ontology Mediated Data Access 7



Ontology mediated data access

Query over 

Layer
Conceptual

conceptual layer

Data Sources

Data Layer

Ontology
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Formal framework for ontology mediated data access

An ontology mediated data access system is a triple K = 〈O, S, M〉, where

• O is the conceptual view (an ontology) exported to the users

a logical theory

• S is a data source schema

constituted simply by a relational schema (whose alphabet is disjoint from

O)

• M is the mapping between S and O
different approaches to the specification of mappings
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Semantics of an ontology mediated data access system

Which are the “databases” that satisfy K, i.e., which are the logical
models of K?

Let D be a source database over S.

The set of models of K relative to D is:

semD(K) = { B | B is a model of ontology O
and is a model of mapping M wrt D }

Note: the notion of a model of M wrt D depends on the nature of the mapping

M.
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Semantics of queries to K

If q is a query posed to an ontology mediated data access system K, then the

set of certain answers to q wrt K and D is

cert(q, K, D) = {�c ∈ qB | ∀B ∈ semD(K)}.

Note: query answering is logical implication.

Note: complexity will be mainly measured wrt the size of the source database

D, and will refer to the problem of deciding whether �c ∈ cert(q, K, D), for a

given �c.
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The mapping

How is the mapping M between S and O specified? We can draw from data

integration!!

• Are the sources defined in terms of the ontology?

Approach called source-centric, or local-as-view, or LAV

• Is the extension of (some of the) concepts in the ontology defined in terms

of the sources?

Approach called global-schema-centric, or global-as-view, or GAV

• A mixed approach?

Approach called GLAV

Note: Also, we also must take into account mismatch between objects in the

ontology and values in the sources!!!
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For the rest of the lecture . . .

We will assume that through the mapping we have (virtually) retrieved the data

from the sources and have stored them as an incomplete database, i.e. as a

set of facts in the same alphabet as the ontology O.
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What are description logics

Description Logics are logics . . .

• . . . specifically designed to represent knowledge in terms of:
– classes – called concepts in DLs
– relations – typically binary relations aka roles in DLs

• . . . by means of a set of universal axioms, called TBox, and a set of facts,
called ABox . . .

• . . . and to reason automatically on such a representation – Thoroughly
studied from the computational point of view

Excellent formal tool for class-based knowledge representation and reasoning
(but not for expressing queries!)

Advocated by the Semantic Web community as “the” formalism for expressing
ontologies – W3C OWL
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Query answering over ontologies

• Data layer

– Seen as a DL ABox A (over atomic concepts and roles only)

� Open World Assumption: not all facts are represented explicitly

– Very large

� Stored in a database

• Conceptual layer

– Represented as a DL TBox T
– Constrains the possible models

• Conjunctive queries q over the ontology

Query answering amounts to computing certain answers:

cert(q, T , A) = {�c | T ∪ A |= q(�c)}
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Conjunctive query answering in (expressive) DL

If we use an expressive description logics such as OWL to express the

ontology, is answering conjunctive queries decidable?

YES it can be done in 2EXPTIME in combined complexity [CDL-PODS98,

CDL-AAAI00]!
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Conjunctive query answering in full UML class diagrams

If we use UML class diagrams to express the ontology, do we get better

bounds?

NO, the only techniques known are 2EXPTIME in combined complexity!

Is there any hope of improvement?

Not substantial: logical inference (of assertions) and satisfiability of UML class

diagrams are EXPTIME-hard (and since they can be coded in expressive DLs

EXPTIME-complete) [BCD-AIJ05]! Query answering is a service built on top of

logical inference so it’s going to be harder.
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But what about data complexity?

In the above cases is coNP-complete: for hardness see later, for membership

[Calvanese-Eiter-Ortiz-2006].
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DL-Lite program

Aim:

• Design a DL that is able to express basic ontology constructs (e.g., most of
UML class diagrams) . . .

• . . . and where conjunctive query answering is LOGSPACE (as SQL) in the
size of the ABox, so as to use the current relational technology for the data
layer . . .

• . . . realize an ontology mediated data access system based on such a DL
(see the QuOnto demo)

Idea: use query reformulation techniques developed in databases for query
containment under inclusion and functional dependencies

⇒ DL-Lite
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DL-Lite– basic constructs

• Concepts constructs:

Cl ::= A | ∃P | ∃P − basic concepts

Cr ::= Cl | ¬Cl general concepts

• TBox assertions:

Cl 	 Cr inclusion assertions

(funct P ) (funct P −) functionality assertions

• ABox assertions:

Cl(a) P (a, b) with a, b constants
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Semantics of DL-Lite

Construct Syntax Example Semantics

atom. conc. A Doctor AI ⊆ ΔI

atom. role P child P I ⊆ ΔI × ΔI

exist. res. ∃P ∃child { d | ∃e. (d, e) ∈ P I }
exist. res. ∃P − ∃child− { e | ∃d. (d, e) ∈ P I }
negation ¬Cl ¬Doctor ΔI \ ClI

incl. asser. Cl 	 Cr Father 	 ∃child ClI ⊆ CrI

funct. asser. (funct P ) (funct succ) ∀d, e, e′.(d, e) ∈ P I ∧ (d, e′) ∈ P I ⊃ e = e′

funct. asser. (funct P −) (funct child−) ∀e, e′, d.(e, d) ∈ P I ∧ (e′, d) ∈ P I ⊃ e = e′

mem. asser. Cl(a) Father(bob) aI ∈ AI

mem. asser. P (a, b) child(bob, ann) (aI , bI) ∈ P I

Note:
• inclusion assertions −→ inclusion dependencies or disjointness constraints
• functionality assertions −→ functional dependencies
• membership assertions −→ tuples on an incomplete database
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DL-Lite: observations

• Very basic concept constructs

• Inclusion assertions + functionality assertions

• ABox assertions

Cyclic assertions are allowed.

For example A 	 ∃P , ∃R− 	 A

It does not enjoy the finite model property (in the variant shown here).

For example the TBox T = {A 	 ∃P, ∃P − 	 A, B 	 ¬A, (funct P −)}
and the ABox A = {B(a)} admit only infinite models.
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Capturing basic ontology constructs in DL-Lite

• ISA between classes

A1 	 A2

• class disjointness

A1 	 ¬A2

• role typing

∃P 	 A1 ∃P − 	 A2

• mandatory participation

A1 	 ∃P A2 	 ∃P −

• functionality of roles

(funct P ) (funct P −)
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Example: expressing UML Class Diagram in DL-Lite

Internal � Scene

External � Scene

Internal � ¬External

External � ∃located

(funct located)

∃located � External

∃located− � Location

Setup � ∃stpForScn

Scene � ∃stpForScn−

(funct stpForScn)

∃stpForScn � Setup

∃stpForScn− � Scene

Take � ∃tkOfStp

Setup � ∃tkOfStp−

(funct tkOfStp)

∃tkOfStp � Take

∃tkOfStp− � Setup

· · ·
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What’s missing in DL-Lite

Several modeling features are missing in DL-Lite, e.g.,:

• covering constraints, stating that each instance of a class must be an

instance of (at least) one of its subclasses

• subset constraints between associations, stating that the extension of an

association (a role) is a subset of the extension of another one

These features are missing exactly to get the nice computational

characteristics that we are after – see later.
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QuOnto

• Quonto is a system that performs reasoning, and in particular query

answering over ontologies.

• It is based on DL-Lite (QA is in LOGSPACE – reducible to SQL).

• It uses reformulation techniques originally introduced for dealing with

constraints in the relational case – see later – [Johnson&Klug85],

[Cali-Lembo-Rosati-PODS03].

• Allows for performing sound and complete reasoning (including QA,

validation of constraints, etc) over ontologies, and it does this essentially at

the same computational cost of a relational DBMS
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QuOnto Demo

online at http://www.dis.uniroma1.it/∼quonto
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Ontology mediated data access

• Data layer

– Seen as a Description Logic ABox A (over atomic concepts and roles)

� Open World Assumption: not all facts are represented explicitly

– Very large

� Stored in a database

• Conceptual layer

– Represented as a Description Logic TBox T
– Constrains the possible models

• Conjunctive query q is a conjunction of atoms over basic concepts and

roles of T
q = {�x | ∃�y.conj (�x, �y)}

Example: {x | ∃y.Manager(x) ∧ Member(x , y) ∧ ∃Director(x)}
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Reasoning services

• Knowledge base satisfiability: check whether a KB K = T ∪ A has a

model.

• Query answering amounts to computing certain answers to q wrt K:

cert(q, K) = {�c | K |= q(�c)}

i.e., the tuples that are answers to the query in every model of K.

We concentrate on query answering, and specifically on efficiency in the size

of the data.
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Managing very large data

• Best currently available technology: Relational DBMS

• RDBMSs are good at evaluating FOL (i.e., SQL) queries over relational

databases

• RDBMSs are specifically optimized for conjunctive queries (considered the

most common kinds of queries)

Basic Question: For which ontology languages (i.e., DLs) can we rephrase

query answering over an ontology into query answering over a relational

database?
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Q-reducibility

cert(q, T ∪ A)

Logical inference

q

A

T
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Q-reducibility

cert(q, T ∪ A)

Perfect

(under OWA)
Query

(under CWA)
evaluation

reformulation
q rq,T

T

A

Query answering can always be thought as done in two phases:

1. Perfect reformulation: producing the query rq,T , namely the function
cert [q, T ](·)

2. Query evaluation: evaluating rq,T over the ABox A seen as a database,
and forgetting about the TBox T – produces cert(q, T ∪ A)

For a query language Q, query answering in a DL is Q-reducible if rq,T is in Q.
Special case of interest: FOL-reducibility
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Q-reducibility and data complexity

Q-reducibility is tightly related to data complexity, i.e., complexity of evaluating

rq,T measured in the size of the ABox A

Special cases of interest:

• Q is FOL – the DL enjoys FOL-reducibility

� Query evaluation via RDBMS

� Q is in LOGSPACE

• Q is NLOGSPACE-hard � Query evaluation requires linear recursion

• Q is PTIME-hard � Query evaluation requires recursion (e.g., Datalog)

• Q is coNP-hard � Query evaluation requires power of Disjunctive Datalog
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Previous work on data complexity for DL query answering

Much of the previous work deals with atomic queries only (instance checking in
DLs):

[Donini & al. JLC’94] Data and combined complexity for DLs up to ALC

[Hustadt & al. IJCAI’05] Data complexity for very expressive DLs via reduction
to Disjunctive Datalog. Identify also polynomial cases (Horn-SHIQ)

Complexity of answering conjunctive queries has been addressed in:

[Levy & Rousset AIJ’98] coNP upper bound for ALCNR knowledge bases
(CARIN setting)

[— & al. AAAI’00] EXPTIME upper bound for DLR knowledge bases (via
reduction to PDL)

[— & al. AAAI’05] Polynomial upper bound for DL-Lite knowledge base (using
techniques drawn from databases with constraints)
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Previous work on query answering under dependencies

Query answering (and query containment) under dependencies has been

studied extensively in databases:

[Johnson & Klug JCSS’84] query containment under inclusion dependencies

[Calı̀ & Lembo& Rosati ’03] query answering under keys and

non-key-conflicting inclusion dependencies

[Fagin & al.’03] recent work on data exchange
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DL-Lite family

• Is a family of DLs optimized according to the tradeoff between expressive

power and data complexity

• Two maximal languages that enjoy FOL-reducibility: DL-LiteF, DL-LiteR

(we use simply DL-Lite to refer to both languages)

• With minimal additions to DL-LiteF or DL-LiteR, data complexity jumps to

NLOGSPACE or above

� We lose FOL-reducibility

Provides an answer to our basic question: For which DLs can we rephrase

query answering over an ontology into query answering over a relational

database?
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DL-LiteF

TBox Language:

• Concept inclusion assertions: Cl 	 Cr , with:

Cl −→ A | ∃R | Cl1 � Cl2 | Cl1 � Cl2 | ⊥
Cr −→ A | ∃R | Cr1 � Cr2 | ⊥ | �
R −→ P | P −

• Functionality assertions: (funct R)

Observations:

• Captures all the basic constructs of Entity Relationship Diagrams and UML

Class Diagrams

• Notable exception: covering constraints in generalizations – if we add

them, query answering becomes coNP-hard in data complexity
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DL-LiteR

TBox Language:

• Concept inclusion assertions: Cl 	 Cr , with:

Cl −→ A | ∃R | Cl1 � Cl2 | Cl1 � Cl2 | ⊥
Cr −→ A | ∃R.Cr | Cr1 � Cr2 | ⊥ | �
R −→ P | P −

• Role inclusion assertions: R1 	 R2

Properties:

• Drops functional restrictions in favor of ISA between roles

• Extends (the DL fragment of) RDFS

Giuseppe De Giacomo Ontology Mediated Data Access 37

Query answering in DL-Lite

Given a CQ q and a KB K = T ∪ A, we compute cert(q, T ∪ A) as follows:

1. Store ABox A in a relational database

2. Close TBox T and check for satisfiability wrt A

3. Using T , reformulate CQ q as a union rq,T of CQs

4. Evaluate rq,T directly over A using RDBMS technology

Correctness of this algorithm shows FOL-reducibility of query answering in

DL-Lite.

� Query answering over DL-Lite ontologies can be done using RDBMS

technology.

� Prototype system implemented: QUONTO
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Query answering: 1. ABox storage

ABox A stored as a relational database in a standard DBMS as follows:

• Expand ABox by closing it under the following rule:

– for each R(a, b) in ABox, add also ∃R(a) and ∃R−(b)

• For each basic concept B used in ABox:

– define a unary relational table tabB

– populate tabB with each 〈a〉 such that B(a) is in ABox

• For each role R used in ABox,

– define a binary relational table tabR

– populate tabR with each 〈a, b〉 such that R(a, b) is in ABox
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Query answering: 2. KB satisfiability

To check that K = T ∪ A is satisfiable (this works for DL-LiteF, slightly more
complicated for DL-LiteR):

1. Close the TBox T by computing all disjointness assertions that are implied
according to the rule:

• if Cl1 	 B and B � Cl2 	 ⊥, then add Cl1 � Cl2 	 ⊥.

2. Verify that the ABox A does not explicitly violate any disjointness or
functionality assertion of the closed TBox.

This can be done by issuing suitable conjunctive queries over the database
tables storing A, e.g.:

• A violates A1 � A2 	 ⊥ iff q(A) �= ∅, where
q = {〈〉 | A1(x), A2(x)}

• A violates (funct P ) iff q(A) �= ∅, where
q = {〈〉 | P (x, y), P (x, z), y �= z}
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Query answering: 3. Query reformulation

Reformulate the CQ q into a set of queries: apply to q in all possible ways the
inclusion assertions in the TBox:

A1 	 A2 . . . , A2(x), . . . � . . . , A1(x), . . .

∃P 	 A . . . , A(x), . . . � . . . , P (x, ), . . .

∃P − 	 A . . . , A(x), . . . � . . . , P ( , x), . . .

A 	 ∃P . . . , P (x, ), . . . � . . . , A(x), . . .

A 	 ∃P − . . . , P ( , x), . . . � . . . , A(x), . . .

∃P1 	 ∃P2 . . . , P2(x, ), . . . � . . . , P1(x, ), . . .
...

( denotes an unbound variable, i.e., a variable that appears only once)

This corresponds to exploiting ISAs, role typing, and mandatory participation to
obtain new queries that could contribute to the answer.
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Query answering: 3. Query reformulation (cont’d)

After each reformulation step, try to perform unification:

1. check for atoms g1, g2 that unify, and

2. apply to the query the most general unifier between g1 and g2

Unification may make variables unbound.

Note: disjointness assertions and functionality assertions can be ignored

during reformulation!
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Query answering: 4. Evaluation of reformulated query

The resulting union of CQs is evaluated over the ABox stored as relational

database.
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Query answering in DL-Lite – Observations

Our technique is based on rewriting (i.e., inverse chase), rather than chasing

the database.

What if we wanted to chase the database?

• We are in a case where the chase would be infinite in general (no weakly

acyclic tgds).

• Note that DL-LiteF does not even have the finite model property.

• Could we find a bound on the size of the chase that guarantees

correctness of query answering?

– No! For any bound we fix for the chase, can give a query that, when

evaluated on the chase does not provide the certain answers.

– We could find a bound that depends on the size of the query.
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DL-Lite: complexity results

• KB satisfiability is

– polynomial in the size of TBox and of ABox

• Query answering is

– exponential in the size of the query (NP-complete)

– polynomial in the size of TBox and of ABox (in fact LOGSPACE in the

ABox)

Can we further extend these results to more expressive ontology languages /

DLs?
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Summary of results on data complexity

Cl Cr F R Data complexity
of query answering

1 DL-LiteF
√ − in LOGSPACE

2 DL-LiteR − √
in LOGSPACE

3 DLR-LiteF
√ − in LOGSPACE

4 DLR-LiteR − √
in LOGSPACE

5 A | ∃P .A A − − NLOGSPACE-hard
6 A A | ∀P .A − − NLOGSPACE-hard
7 A A | ∃P .A

√ − NLOGSPACE-hard
8 A | ∃P .A | A1 � A2 A − − PTIME-hard
9 A | A1 � A2 A | ∀P .A − − PTIME-hard
10 A | A1 � A2 A | ∃P .A

√ − PTIME-hard
11 A | ∃P .A | ∃P −.A A | ∃P − − PTIME-hard
12 A A | ∃P .A | ∃P −.A

√ − PTIME-hard
13 A | ∃P .A A | ∃P .A

√ − PTIME-hard
14 A | ¬A A − − coNP-hard
15 A A | A1 � A2 − − coNP-hard
16 A | ∀P .A A − − coNP-hard

All NLOGSPACE and PTIME hardness results hold already for atomic queries
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Observations

• Results on FOL-reducibility can be extended to n-ary relations

� DLR-LiteF and DLR-LiteR

• RDFS is a subset of DL-LiteR � enjoys FOL-reducibility

• Horn-SHIQ [Hustadt & al. IJCAI’05] is PTIME-hard even for instance

checking (line 13) � does not enjoy FOL-reducibility

• DLP [Grosof & al. WWW’03] is PTIME-hard (line 8)

� does not enjoy FOL-reducibility

• Although used in ER and UML, no hope of including covering constraints,

since we get coNP-hardness for trivial DLs (line 15)
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NLOGSPACE-hard cases

Adding qualified existential on the lhs of inclusions makes instance checking

(and hence query answering) NLOGSPACE-hard:

5

⎧⎪⎪⎨
⎪⎪⎩

Cl → A | ∃P .A
Cr → A

R → P

(funct R) is not allowed P

s

d

A

A

A

A

A

P

P
P

P
P

Hardness proof is by a reduction from reachability in directed graphs:

• TBox T contains a single inclusion assertion ∃P .A 	 A

• ABox A encodes the graph using P and asserts A(d)

Result:

(T , A) |= A(s) iff d is reachable from s in G
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NLOGSPACE-hard cases

Instance checking (and hence query answering) is NLOGSPACE-hard in data
complexity for:

5

⎧⎪⎪⎨
⎪⎪⎩

Cl → A | ∃P .A
Cr → A

R → P

(funct R) is not allowed

6

⎧⎪⎪⎨
⎪⎪⎩

Cl → A

Cr → A | ∀P .A
R → P

(funct R) is not allowed

7

⎧⎪⎪⎨
⎪⎪⎩

Cl → A

Cr → A | ∃P .A
R → P

(funct R) is allowed

5: reduction from reachability in directed graphs
6: follows from 5 by replacing ∃P .A1 	 A2 with A1 	 ∀P −.A2

7: proved by simulating ∃P .A1 	 A2 via A1 	 ∃P −.A2 and (funct P −)
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PTIME-hard cases

Are obtained from previous cases by adding A1 � A2 to lhs of inclusions

Instance checking (and hence query answering) is PTIME-hard in data

complexity for:

8

⎧⎪⎪⎨
⎪⎪⎩

Cl → A | ∃P .A | A1 � A2

Cr → A

R → P

(funct R) is not allowed

9

⎧⎪⎪⎨
⎪⎪⎩

Cl → A | A1 � A2

Cr → A | ∀P .A
R → P

(funct R) is not allowed

10

⎧⎪⎪⎨
⎪⎪⎩

Cl → A | A1 � A2

Cr → A | ∃P .A
R → P

(funct R) is allowed

8: proved via reduction from Path System Accessibility

9 and 10 follow from 8 as in the NLOGSPACE case
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Path System Accessibility

Instance of Path System Accessibility: PS = (N, E, S, t) with

• N a set of nodes

• E ⊆ N × N × N an accessibility relation

• S ⊆ N a set of source nodes

• t ∈ N a terminal node

Accessibility of nodes is defined inductively:

• each n ∈ S is accessible

• if (n, n1, n2) ∈ E and n1, n2 are accessible, then also n is accessible

Given PS , checking whether t is accessible, is PTIME-complete
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Reduction from Path System Accessibility

Given an instance PS = (N, E, S, t), we construct

• TBox T consisting of the inclusion assertions

∃P1.A 	 B1

∃P2.A 	 B2

B1 � B2 	 A

∃P3.A 	 A

• ABox A encoding the accessibility relation using P1, P2, and P3, and
asserting A(s) for each source node s ∈ S

e1 = (n, . , . )

e2 = (n, s1, s2)

e3 = (n, . , . )

A
n

P1 P2

P3 P3 P3

A A
s1 s2

e3e2e1

A
B2B1A

Result:
(T , A) |= A(t) iff t is accessible in PS
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coNP-hard cases

Are obtained when we can use in the query two concepts that cover the whole

domain. This forces reasoning by cases on the data

Query answering is coNP-hard in data complexity for:

14

⎧⎪⎪⎨
⎪⎪⎩

B → A | ¬A

C → A

R → P

(funct R) not allowed

15

⎧⎪⎪⎨
⎪⎪⎩

B → A

C → A | A1 � A2

R → P

(funct R) not allowed

16

⎧⎪⎪⎨
⎪⎪⎩

B → A | ∀P .A
C → A

R → P

(funct R) not allowed

All three cases are proved by adapting the proof of coNP-hardeness of

instance checking for ALE by [Donini & al. JLC 1994]
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2+2-SAT

2+2-SAT: satisfiability of a 2+2-CNF formula, i.e., a CNF formula where each

clause has exactly 2 positive and 2 negative literals

Example: ϕ = c1 ∧ c2 ∧ c3, with

c1 = �1 ∨ �2 ∨ ¬�3 ∨ ¬�4

c2 = false ∨ false ∨ ¬�1 ∨ ¬�4

c3 = false ∨ �4 ∨ ¬true ∨ ¬�2

2+2-SAT is NP-complete [Donini & al. JLC 1994]
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Reduction from 2+2-SAT

2+2-CNF formula ϕ = c1 ∧ · · · ∧ ck over letters �1, . . . , �n, true, false

• ABox Aϕ constructed from ϕ (concepts L, T , F , roles P1, P2, N1, N2):
– for each letter �i: L(�i)

– for each clause c = �1 ∨ �2 ∨ ¬�3 ∨ ¬�4:
P1(c, �1), P2(c, �2), N1(c, �3), N2(c, �4)

– T (true), F (false)

• TBox T = { L 	 T � F }

• Q = { 〈〉 | ∃c, �1, �2, �3, �4. P1(c, �1), P2(c, �2), N1(c, �3), N2(c, �4),

F (�1), F (�2), T (�3), T (�4) }

We have: T ∪ Aϕ |= Q iff ϕ is not satisfiable.

Intuition: each model of T partitions L into T and F , and corresponds to a
truth assignment to �1, . . . , �n. Q asks for a false clause.
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What to bring home?

• Ontologies based data access is an important problem we have to consider

• Expressive power of ontology language heavily influences complexity of

query answering

• Good news: reasonable expressiveness in the ontology and efficiency of

query answering can be reconciled � DL-Lite
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Other issues

• Extensions of DL-LiteF and DL-LiteR with additional constructs

• Tight complexity bounds for the various cases (missing upper bounds)

• Rewriting technique for the cases where recursion is needed

• Data complexity of conjunctive query answering for very expressive DLs

• We need to address the issue of updates through an ontology

• What if we want to restrict the attention to finite models only?

• Address the values vs. objects mismatch, in the mapping between the

conceptual and the data layer
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