
Integrated Ontology Development Toolkit

Version 1.1.2

May 2006

IBM

Copyright © 2004-2006 IBM Corporation

All Rights Reserved.

Table of Contents

Introduction...3

What is EODM..4

Components of EODM ...4

What is EODM Workbench ..4

Key Features of EODM Workbench ...5

What is Minerva..5

Key Features of Minerva...6

Performance of Minerva ...7

System Requirements and Installations ..9

Installation for use within Eclipse...9

Installation for use outside Eclipse..14

EODM User Guide, Tutorial and Examples..16

Description of Important Packages ...16

Creating a simple OWL model..16

Navigate an OWL ontology ..18

Save OWL ontology to file ...18

Load OWL ontology from file ..19

Reuse existing models in other modelling lanuages ...19

Inference with EODM Reasoner ...20

Example Code...21

EODM Workbench Tutorial ..22

RDFS/OWL Basic Editing ..22

OWL Visual Editing..25

Limitations of OWL Visual Editing ..30

Minerva Configuration, User Guide and Examples ..31

Minerva Configuration..31

Sample Code ...32

Minerva Eclipse Plugin User Guide..35

Introduction

IODT is a toolkit for ontology-driven development, including EMF Ontology Definition

Metamodel (EODM), EODM workbench, an OWL Ontology Repository (named Minerva) and

some extenders to the core components. EODM is derived from the OMG's Ontology Definition

Metamodel (ODM) and implemented in Eclipse Modeling Framework (EMF). To facilitate

software development and execution, EODM includes RDFS/OWL parsing and serialization,

reasoning, and transformation between RDFS/OWL and other data-modeling languages. These

functions can be invoked from the EODM Workbench, Minerva, or called by the applications that

use ontologies.

EODM is also an open source project of Eclipse.org (http://www.eclipse.org/emft/projects/eodm/).

EODM Workbench is an Eclipse-based, integrated, ontology-engineering environment that

supports ontology building, management, and visualization. Minerva is a high-performance OWL

ontology storage, inference and query system based on RDBMSes. Following is the system

architecture of IODT (EODM RSA Workbench, Minerva Database Connectors and EODM

Extender are under developing and would be available in the future release).

IODT includes the following components, which can be downloaded and used independently or

cooperatively:

� EODM is the run-time library that allows the application to put in and put out an RDFS/OWL

ontology in RDF/XML format; manipulate an ontology using Java objects; call an inference

engine and access inference results; and transform between ontology and other models.

� EODM Workbench is an Eclipse-based, integrated, ontology-engineering environment that

supports ontology building, management, and visualization.

� OWL Ontology Repository (named Minerva) is a high-performance OWL storage and query

system based on relational DBMSes. It supports DLP (Description Logic Program), a subset

of OWL DL, and conjunctive query, a subset of the SPARQL language.

What is EODM

EODM (EMF Ontology Definition Metamodel) is built on top of EMF and conforms the

ODM(Ontology Definition Metamodel) standard of OMG(www.OMG.org). It provides a set of

programming APIs for programmers and IT specialists. User can create, modify, and navigate

RDF/OWL models using EODM, just like other programming implementations of semantic

models (such as Jena).

Compared with others tools, the most important differentiation of EODM is its ability of

bi-direction transiformation between RDF/OWL model and ECore Model, which gives EODM the

interoperationability between RDF/OWL model with other EMF supported models, including

models defined using XML Schema, Rational Rose, and annotated Java classes. All these will

enable Semantic Web Application developers to develop ontologies using their favorite building

tools, import them into EMF, and utilize the comprehensive development facility of Eclipse and

EMF.

Components of EODM

EODM includes 4 main components: EODM Model, EODM RDF/OWL Parser, EODM

RDF/OWL Reasoner and EODM Transformer

� EODM Model provides a programmatic memory-based environment to support creating &

manipulating Ontology through a set of RDF/OWL API. Currently it supports 2 models:

RDF/RDFS Model and OWL Model.

� RDF/OWL Parser provides an efficient parser to parse RDF/OWL files into EODM model.

The EODM Parser have passed all RDF test cases in W3C.

� RDF/OWL Reasoner: EODM also provides reasoner modules to support inference about

Ontology. EODM provides two types of Reasoner: RDF/RDFS Reasoner and and OWL

Reasoner.

� Transformer: Based on EMF Ecore, EODM Transformer provides the ability of transforming

EMF supported models to Ontology models. Currently the EODM Transformer can only

support Ecore to RDF. The transform between Ecore to OWL is still under development.

What is EODM Workbench

EODM Workbench is an Eclipse-based editor for users to create, view and generate OWL

ontologies. It has UML-like graphic notions to represent OWL class, restriction and property etc.

in a visual way. EODM workbench is built by using EODM, Eclipse Modeling Framework (EMF),

Graphic Editing Framework (GEF), which provides the foundation for the graphic view of OWL.

It supports drag and drop operations and drawing functions. It also provides two hierarchical

views for both OWL class/restriction and OWL object/datatype property. In EODM workbench,

oneontology can have multiple views to highlight its different perspectives. Operations in different

views can be synchronized automatically.

Key Features of EODM Workbench

� Eclipse-based Tool

EODM workbench is an Eclipse plugin that can integrate with any other plugins. It depends on

EMF and GEF. It has its own OWL perspective, graphic OWL editor and two hierachical view. It

uses the OWL model and parser in EODM.

� OWL Support

Orient, the previous version of ontology editor, can only support RDF Schema and RDF document.

EODM Workbench now can support OWL-DL constructs, and generate .owl files.

� UML-like Graphic Notion

In addition to traditional tree-based ontology visualization, EODM workbench provides UML-like

graphic notion. Class, DatatypeProperty and ObjectProperty in OWL share the similar notion as

Class, Attribute and Association in UML. Detailed properties of OWL constructs are shown in the

Property view.

� Multiple View

In EODM Workbench, one ontology can have multiple views to support visualization of huge

ontology. These views are independent, and users can decide to delete something from ontology

permanently, or from view only. Multiple views will be synchronized automatically.

� Class/Property Hierarchy

EODM Workbench keeps the tree-based editor for class and property, and provides some shortcut

to create subClassOf and subPropertyOf in the hierarchy. Users can drag class and property in the

tree to the canvas in the view.

What is Minerva

Minerva is a high performance ontology repository built on relational databases. It completely

follows W3C’s Web Ontology Language (OWL) and SPARQL Query Language for Resource

Description Framework. Minerva uses Description Logic reasoner for TBox inference and a set of

logic rules translated from Description Logic Programming (DLP) for ABox inference. That is, its

inference capability is over DLP. This means that inference completeness and soundness on DLP

can be guaranteed. Different from other systems, Minerva designs the schema of the back-end

database based on both the translated logic rules and OWL constructs to support efficient ontology

inference. Our experiments on the extended Lehigh University Benchmark show Minerva has high

scalability and is better than other two well-known systems.

Following figure shows the architecture of Minerva, including Import Module, Inference Module,

Storage Module and Query Module.

Storage Module. It is intended to store both original and inferred assertions. Since inference and

storage are considered as an inseparatable component in a complete storage and query system for

ontologies, we design the schema of the back-end database to optimally support ontology

inference in Minerva.

Import Module. The import module consists of an OWL parser and a translator. The parser

analyzes and transforms OWL documents into an Object Oriented Model (EODM) in memory,

then the translator populates all assertions into the database.

Inference Module. A DL reasoner and a rule-based engine compose the inference module. The

rule-based inference covers the semantics of DLP, while the DL reasoner obtains the subsumption

relationship between classes and properties which cannot be completely captured by the rules.

Query Module. The query language supported by Minerva is SPARQL, W3C’s query language for

RDF. There is no inference during the query answering stage because the inference has already

been done at the time of data loading. Such processing improves the query response time by

trading off space.

Key Features of Minerva

� Efficient management for large-scale OWL ontologies (millions of statements)

� DBMSes Supported

� IBM DB2 (Powerful Persistent Storage)

� Derby (http://incubator.apache.org/derby/, Embedded Storage)

� HSQLDB (http://www.hsqldb.org/, Main Memory Storage)

� Query Language

� W3C SPARQL Query Language

� TBox Inference Engines

� Racer

� Pellet

� Structural TBox Engine (IBM CRL)

� Memory Model

� EODM

Performance of Minerva

Experiments have been done to evaluate performance of Minerva on the extended Lehigh

University Benchmark. The extended LUBM includes both OWL Lite and DL ontologies covering

a complete set of OWL Lite and DL constructs (except TBox with cyclic definition) respectively.

We also add necessary properties to construct effective instance links and improve instance

generation methods to make the scalability testing more convincing.

Besides Minerva, two more systems are evaluated on the extended LUBM for comparison.

OWLIM is a newly developed ontology repository supporting OWL Lite inference. In fact, it is

packaged as a Storage and Inference Layer (SAIL) for Sesame RDF database. DLDB-OWL

(Lehigh University) is a repository for processing, storing, and querying large amounts of OWL

data.

IBM China Research Laboratory

© 2005 IBM CorporationBusiness Semantics Team

Experimental Results (Persistent Systems)

� Query Completeness

00.950.88111111111111DL-10

00.970.88111111111111DL-5

00.960.90111111111111DL-1

NANA0.64111111111111Lite-10

NANA0.61111111111111Lite-5

NANA0.67111111111111Lite-1

Mineva

NANA0.530.2600.8700000110.811Lite-10

NANA0.570.1200.5900000110.811Lite-5

NANA0.510.200.8300000110.821Lite-1

DLDB

011111111111111DL-1

NANA1111111111111
Lite-1

Pellet

NANA011110.86111110.621Lite-1OWLIM

Q15Q14Q13Q12Q11Q10Q9Q8Q7Q6Q5Q4Q3Q2Q1Query

Minerva achieves better query completeness than OWLIM and DLDB.

Since OWLIM cannot do complete TBox inference, it cannot correctly

answer queries 2, 8 and 13. Currently, Minerva does not support

Cardinality inference and thus cannot answer query 13. DLDB

implements only part of OWL Lite ABox inference.

Experimental results showed high performance of Minerva in terms of query completeness, query

response time, scalability and load time.

System Requirements and Installations

Installation for use within Eclipse

If you have installed a previous version of EODM in Eclipse before, please uninstall it before

installing the new version in the following four steps:

1. Exit Eclipse if it is running.

2. Delete all sub-directories starting as “com.ibm.research.minerva” in the $ECLIPSE_HOME/

features/ directory

3. Delete all sub-directories starting as “org.eclipse.eodm” in the $ECLIPSE_HOME/features/

directory

4. Delete all sub-directories and JAR files starting as “org.eclipse.eodm” in the

$ECLIPSE_HOME/plugins/ directory.

5. Start Eclipse with a “-clean” argument and proceed with the following instructions.

Installation Requirements

� JRE 1.4.2

� Eclipse 3.1.0

http://fullmoon.torolab.ibm.com/downloads/drops/R-3.1-200506271435/index.php

� EMF 2.1.0 (XSD and SDO is not needed)

http://fullmoon.torolab.ibm.com/tools/emf/scripts/downloads-viewer.php?s=2.1.0/R200507070200

� To use EODM Workbench, GEF 3.0.0 is needed. It does NOT work with GEF 3.1.0 or above.

http://download.eclipse.org/tools/gef/downloads/drops/R-3.0-200406251257/index.php

� To use Minerva, you need a RDBMS system for storage. DB2 8.2, or Apache Derby 10.0.2.1

(http://db.apache.org/derby/derby_downloads.html), or HSQLDB 1.8.0 (http://hsqldb.org/) is

supported.

Note that JRE 1.5 does NOT work in some cases. We did not test IODT on other versions of the

required components and IODT may not work on these untested versions.

Installation Instructions:

1. Download IODT-version.zip file from alphaWorks web site and unzip it to a directory. We

refer to this unzipped directory as $IODT

2. Select Help -> Software Updates -> Find and Install …

3. Select “Search for new features to install” and click “Next>”

4. Select “New Local Site…”, choose the $IODT \ bin \ updatesite directory, confirm, input a

name for the local update site, e.g.IODTUpdateSite and choose this site, click “Finish”.

5. In the new popped up dialog, you can see three features of IODT available for installation:

EODM, EODM Workbench and Minerva. You can install any, some or all of them. Click

“Next>”.

6. Read and accept the license of the release, and click “Next>”.

7. In the popped up dialog, features to install are listed, click “Finish”.

8. A warning dialog appears saying that the features are not signed. Please ignore the warning

and click “Install All”.

9. You are recommended to restart the Eclipse workbench. Please do so. After the Eclipse is

restarted, the installation of EODM and EODM Workbench features (if you selected to

install them) is successfully completed. To complete Minerva installation, you need

perform two additional steps to complete the installation.

10. An additional step for Minerva installation: Minerva need a RDBMS for storage and can use

third-party TBox reasoning engines. You need download related JDBC drivers and JAR files

for them. Please refer to the following tables for currently supported versions and download

addresses of these third-party JARs and runtimes:

Software Files and Download Links

For RDBMS

IBM DB2 UDB Enterprise Server

Edition Version 8.2, Type2 JDBC

Driver

IBM DB2 UDB Tries and Betas Web Site:

http://www14.software.ibm.com/webapp/download/pr

econfig.jsp?id=2005-02-02+09:15:43.846099R&cat=d

atabase&fam=&s=c&S_TACT=104AH

W42&S_CMP=

Apache Derby 10.1.2.1 and its

JDBC Driver

http://db.apache.org/derby/releases/release-10.1.2.1.cgi

derby.jar is included in db-derby-10.1.2.1-bin.zip

HSQLDB 1.8.0.2 Please download hsqldb_1_8_0_2.zip from HSQLDB

web site and extract hsqldb.jar file from here:

http://sourceforge.net/project/showfiles.php?group_id

=23316&package_id=16653&release_id=339171

For TBox reasoners and SPARQL parser

Log4j Version http://logging.apache.org/log4j/docs/download.html

ANTLR 2.7.5 http://www.antlr.org/download.html

Pellet 1.2 and aterm 1.6 http://www.mindswap.org/2003/pellet/download.shtml

“aterm-java-1.6.jar” is needed by Pellet inference

engine and can be found in Pellet-1.2.zip.

Racer and DIG 1.1 Download Racer from: http://www.racer-systems.com/

Extract the following JARs from

dig1.1-reasoners-bin.zip downloadable from

sourceforge web site here:

http://sourceforge.net/project/showfiles.php?group_id

=107632&package_id=116214: dig1.1-reasoners.jar,

dig1.1-xmlbeans.jar, jaxen.jar, xbean.jar, xmlpublic.jar

For RDBMS, you only need one of the above three. For third-party TBox reasoners, you can

use Pellet, Racer or our built-in structural TBox reasoning engine.

11. After you downloaded related files from the above, please rename the JAR files according to

the following table and copy them to the Minerva plugin’s library directory located at

$ECLIPSE_HOME \ plugins \ com.ibm.iodt.sor_1.1.2 \ lib.

Note that you should rename these libraries to the following names to make them be

recognized by Minerva Plugins. Otherwise, the plugin may not be installed correctly.

DB2 Type2 Driver db2java.jar

Derby Driver derby.jar

HSQL DB Driver hsqldb.jar

Log4j Driver log4j.jar

ANTLR antlr-2.7.5.jar

Pellet Driver pellet.jar

aterm-java-1.6.jar

DIG Interface dig1.1-reasoners.jar, dig1.1-xmlbeans.jar; jaxen.jar; xbean.jar;

xmlpublic.jar

Now, Minerva installation is completed. But before you can use it, please refer to the

Minerva configuration section to configure Minerva properly on its use of RDBMS and

TBox reasoning engines. .

Installation for use outside Eclipse

To use EODM, you need include the following JARs in CLASSPATH:

� eodm-1.1.2.jar (in the $IODT \ bin directory)

� emf.ecore_2.1.0.jar

� emf.common_2.1.0.jar

� emf.ecore.xmi_2.1.0.jar

The above three EMF-related JARs can be found in the following EMF package:

emf-sdo-xsd-Standalone-2.1.0.zip

which can be downloaded from

http://fullmoon.torolab.ibm.com/tools/emf/scripts/download.php?dropFile=../downloads/drops/2.1

.0/R200507070200/emf-sdo-xsd-Standalone-2.1.0.zip

To use Minerva, in addition to all the above four JAR files, you need include the following

additional JARs in CLASSPATH:

� minerva-1.1.2.jar (in the $IODT \ bin directory)

� Minerva need a RDBMS for storage and can use third-party TBox reasoning engines. You

need download related JDBC drivers and JAR files for them. Please refer to the following

tables for currently supported versions and download addresses of these third-party JARs and

runtimes:

Software Files and Download Links

For RDBMS

IBM DB2 UDB Enterprise Server

Edition Version 8.2, Type2 JDBC

Driver

IBM DB2 UDB Tries and Betas Web Site:

http://www14.software.ibm.com/webapp/download/pr

econfig.jsp?id=2005-02-02+09:15:43.846099R&cat=d

atabase&fam=&s=c&S_TACT=104AH

W42&S_CMP=

Apache Derby 10.1.2.1 and its

JDBC Driver

http://db.apache.org/derby/releases/release-10.1.2.1.cgi

derby.jar is included in db-derby-10.1.2.1-bin.zip

HSQLDB 1.8.0.2 Please download hsqldb_1_8_0_2.zip from HSQLDB

web site and extract hsqldb.jar file from here:

http://sourceforge.net/project/showfiles.php?group_id

=23316&package_id=16653&release_id=339171

For TBox reasoners and SPARQL parser

Log4j Version http://logging.apache.org/log4j/docs/download.html

ANTLR 2.7.5 http://www.antlr.org/download.html

Pellet 1.2 and aterm 1.6 http://www.mindswap.org/2003/pellet/download.shtml

“aterm-java-1.6.jar” is needed by Pellet inference

engine and can be found in Pellet-1.2.zip.

Racer and DIG 1.1 Download Racer from: http://www.racer-systems.com/

Extract the following JARs from

dig1.1-reasoners-bin.zip downloadable from

sourceforge web site here:

http://sourceforge.net/project/showfiles.php?group_id

=107632&package_id=116214: dig1.1-reasoners.jar,

dig1.1-xmlbeans.jar, jaxen.jar, xbean.jar, xmlpublic.jar

For RDBMS, you only need one of the above three. For third-party TBox reasoners, you can

use Pellet, Racer or our built-in structural TBox reasoning engine.

After you downloaded related files from the above, please rename the JAR files according to

the following table and include them in your CLASSPATH. Note that you should rename

these libraries to the following names to make them be recognized by Minerva.

Otherwise, Minerva may not work.

DB2 Type2 Driver db2java.jar

Derby Driver derby.jar

HSQL DB Driver hsqldb.jar

Log4j Driver log4j.jar

ANTLR antlr-2.7.5.jar

Pellet Driver pellet.jar

aterm-java-1.6.jar

DIG Interface dig1.1-reasoners.jar, dig1.1-xmlbeans.jar; jaxen.jar; xbean.jar;

xmlpublic.jar

Now, Minerva installation is completed. But before you can use it, please refer to the

Minerva Configuration section to configure Minerva properly on its use of RDBMS and

TBox reasoning engines. .

EODM User Guide, Tutorial and Examples

Description of Important Packages

* org.eclipse.eodm.rdfs / org.eclipse.eodm.rdfs.impl

 interface of RDFS Model / implementaion of RDFS Model

* org.eclipse.eodm.owl / org.eclipse.eodm.owl.impl

 interface of OWL Model / implementation of OWL Model

* org.eclipse.eodm.rdf.resource.parser / org.eclipse.eodm.owl.resource.parser

 EODM RDF Parser / EODM OWL Parser

* org.eclipse.eodm.rdfs.reasoner / org.eclipse.eodm.rdfs.reasoner.impl

 EODM RDF Reasoner Interface & Implementation

* org.eclipse.eodm.owl.reasoner / org.eclipse.eodm.owl.reasoner.structural /

 org.eclipse.eodm.owl.reasoner.simple

 EODM OWL Reasoner Interface and serveral Implementations

* org.eclipse.eodm.rdfs.transformer.ecore / org.eclipse.eodm.owl.transformer.ecore

 EODM Transformation with Ecore.

Creating a simple OWL model

We will start from the the basics: creating an OWL model and adding OWL classes and properties

into it. The example will show how to create a simple OWL ontology by using EODM API.

Fig 1

In this simple example, we will create a simple ontology about person. As illustrated in Figure 1,

we will create an OWL class “Person” with two attributes: “name” and “age”; “Employee” is

subclass of “Person”, which is defined as someone who works for some organization…

In EODM, all the OWL resources are created through OWLFactory. In the example, we will firstly

create an empty ontology by calling OWLFactory.createOWLOntology(). When the ontology is created,

OWL reasoures can be created by calling relevant methods of OWLFactory, as shown in Table 1.

// obtain the OWL factory and create the ontology

OWLFactory factory = OWLFactory.eINSTANCE;

ontology = factory.createOWLOntology();

//create a namespace and set it as namespace of the ontology

Namespace testNS = RDFSFactory.eINSTANCE.createNamespace(ontology,"test","http://test.org/test#");

ontology.setNamespace(testNS);

// create owl classes

OWLClass Person = factory.createOWLClass(ontology,"Person");

OWLClass Employee = factory.createOWLClass(ontology,"Employee");

OWLClass PersonWithHobby = factory.createOWLClass(ontology," PersonWithHobby");

OWLClass BaseballFan = factory.createOWLClass(ontology," BaseballFan");

OWLClass Org = factory.createOWLClass(ontology,"Organization");

OWLClass Hobby = factory.createOWLClass(ontology,"Hobby");

// define elements for Hobby

Individual basketball = factory.createIndividual(ontology,"BasketBall", Hobby);

Individual baseball = factory.createIndividual(ontology,"BaseBall", Hobby);

Individual swimming = factory.createIndividual(ontology,"Swimming", Hobby);

// create object properties & define their domain/range

OWLObjectProperty worksFor = factory.createOWLObjectProperty(ontology,"worksFor", Person, Org);

OWLObjectProperty like = factory.createOWLObjectProperty(ontology,"like", Person, Hobby);

// create datatype properties & define their domain/range

Namespace XSDNS = RDFSFactory.eINSTANCE.createNamespace(ontology,

XSD.SHORTNAME, XSD.NAMESPACE);

RDFSDatatype XSDINT = RDFSFactory.eINSTANCE.createRDFSDatatype(ontology,XSD.sxint, XSDNS);

RDFSDatatype XSDSTR = RDFSFactory.eINSTANCE.createRDFSDatatype(ontology,XSD.sxstring, XSDNS);

OWLDatatypeProperty name = factory.createOWLDatatypeProperty(ontology,"name", Person, XSDSTR);

OWLDatatypeProperty age = factory.createOWLDatatypeProperty(ontology,"age", Person, XSDINT);

// build up relationship between owl classes

HasValueRestriction Restriction1 = factory.createHasValueRestriction(ontology, like, basketball);

BaseballFan.getRDFSSubClassOf().add(Person);

BaseballFan.getRDFSSubClassOf().add(Restriction1);

SomeValueFromRestriction Restriction2 = factory.createSomeValueFromRestriction(ontology, worksFor, Org);

Employee.getRDFSSubClassOf().add(Person);

Employee.getRDFSSubClassOf().add(Restriction2);

SomeValueFromRestriction Restriction3 = factory.createSomeValueFromRestriction(ontology, like, Hobby);

PeopleWithHobby.getRDFSSubClassOf().add(Person);

PeopleWithHobby.getRDFSSubClassOf().add(Restriction3);

// create individuals for OWL class

Individual john = factory.createIndividual(ontology,"John", Person);

Individual andy = factory.createIndividual(ontology,"Andy ", BaseballFan);

Table 1 Creating an ontology to describe person

Navigate an OWL ontology

To navigate an OWL ontology, it is primarily through the Ontology interface and OWL resource

interface. For example, to get all instances of OWLClass “Person”, we can firstly call the

Ontology.getContainedResource (Namespace namespace, String localName) to retrieve a reference of the

OWLClass “Person” in Ontology. And then the instances of “Person” can be retrieved by calling

the getInstance() method of “Person”. Table 2 shows a list of codes of how to navigate an ontology.

(Note: the return results only include those declared facts, which means it will not return any

results by inference)

// get sub class of an OWL class

OWLClass person = ontology. getContainedResource(testNS ,“Person”);

List l = person.getSubClass();

// get instances of an OWL class

…

List employeeList = employee.getInstance();

// get domain of OWL property

…

List domainList = like.getRDFSDomain();

…

Table 2 Navigate an OWL ontology

Save OWL ontology to file

In many cases, we need to serialize ontology to file. This can be done by calling

OWLXMLSaver.saveToFile(OWLOntology ontology, String fileName, String charset) method.

// Save an OWLOntology

try {

OWLXMLSaver.saveToFile(ontology, "./person.owl", "UTF-8");

} catch (IOException e1) {

 e1.printStackTrace();

}

Table 3 Save ontology to file

Load OWL ontology from file

There are 2 major steps to load ontology into memory model. The first step is to create an

OWLDocument instance which describes information of ontology files and then add to parser. The

OWLDocument constructor takes the localURI and the publicURI to locate the document. User

can specify whether or not to load the file from local by using the localFile parameter. The second

step is to parse ontology by calling the OWLParser.parseOWLDocument (OWLDocument)

methods. Table 3 gives a detail example of how to load OWL ontologies.

// New an OWL Parser

OWLParser parser = new OWLParserImpl();

// New an OWL Document and add to parser

OWLDocument food = new OWLDocumentImpl("./food.owl", null, true);

parser.addOWLDocument(food);

OWLDocument wine = new OWLDocumentImpl(null,

 "http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine", false);

parser.addOWLDocument(wine);

// Start to parse OWL documents and get OWL ontologies

OWLOntology ontofood = parser.parseOWLDocument(food);

OWLOntology ontowine = parser.parseOWLDocument(wine);

Table 4 Loading OWL Ontology

Reuse existing models in other modeling languages

Compared with others tools, the most important differentiation of EODM is its ability of

bi-direction transformation between RDF/OWL model and Ecore Model, which gives EODM the

interoperability between RDF/OWL model with other EMF supported models, including models

defined using XML Schema, Rational Rose, and annotated Java classes. Leveraging EMF and EODM

transformer, Semantic Web Application developers can reuse existing models that are represented in

other model languages.

Table 5 shows a simple example of how to transform an Ecore model into an OWL ontology.

// new a Ecore to OWL transformer

ECore2OWLTransformer ecore2owl = new ECore2OWLTransformer();

try {

// convert Ecore model to OWL

 ecore2owl. convertEcore2OWL ("./person.ecore","./person.owl");

}

catch (Exception e) {

 e.printStackTrace();

}

Table 5 Transform Ecore Model to OWL Ontology

Inference with EODM Reasoner

The inference ability of OWL is one important distinct feature from other modeling language,

such as UML. EODM also provides a reasoner to support inference. Currently EODM reasoner

only supports taxonomy subsumption reasoning for OWL reasoning. In other words, EODM

reasoner only supports reasoning about relationships between OWL classes and OWL properties.

// creating a reasoner

OWLTaxonomyReasoner reasoner = StructuralReasonerFactory.instance()

 .createOWLTaxonmyReasoner();

// initialize reasoner

reasoner.initialize(ontology);

...

// get Descendant Classes

List childClass = reasoner.getDescendantClasses(c1);

// get Ancestor Property

List plist = reasoner.getAncestorProperties(p1);

// test whether two OWL class are subsumed

boolean isSubClass = reasoner.isSubClassOf(c1, c2);

Table 6 Inference with EODM Reasoner

Example Code

The $IODT \ examples directory contains some Java code examples for using the EODM API.

You can know what the example is about from the name of the Java files.

EODM Workbench Tutorial

From Eclipse menu, select File -> New -> Other, in the popped up dialog, there is a “IODT New

Ontology Wizards” category under which there are four editing tools. Two of them are for OWL

visual editing and two for RDF/OWL basic editing.

The following two sub-sections will introduce you to the basic editing and visual editing

respectively.

RDFS/OWL Basic Editing

To create a new RDFS/OWL model and do some basic editing, select File->New->Other, select

“OWL Basic Editing” or “RDFS Basic Editing” under the “IODT New Ontology Wizard”

category. We select “OWL Basic Editing” as an example to show how basic editing can be used.

In the following-up dialog, input the file name of the new OWL model and the folder it should be

put. Click “Next>”, in the next dialog, select “Ontology” as the model object, as shown below:

Please select “Ontology” as the model object; it will be used as the container for other model

objects. Otherwise, you may not be able to create some model objects.

Click “Finish”. A basic editor appears in the workspace. Please also open the standard “Properties”

view in Eclipse if the view is not shown yet. Click the “Ontology OWLInputStream” node in the

tree, the Properties view then list all properties of the ontology resource. Click the value of the

“Local Name” and type in any local name you want for the ontology resource. In this example, we

give it an “example” local name, as shown below:

Right-click the “Ontology example” node, select “New Child” -> “Contains OWL Class” to create

a new OWL Class. Edit the “Local Name” and other properties of the newly created class. In this

example, we give it a local name “Man”.

In the Properties view of this “Man” class, click the value of the “RDFS Sub Class Of” property,

click the “…” button on the right hand, a dialog appears that let you choose the super-classes of

the “Man” class. Select “Thing” and click “Add” to add it to “Man”’s super-class. As the

following image shows:

Hence, the basic editing of RDFS/OWL is based on a tree of model objects and the editing of

properties in the standard “Properties” view. Based on the above example of creating a class and

adding a sub-class relationship, you can try use the editor to create more model objects and editing

other properties. You will soon get familiar with this simple UI.

After editing, you can close the editor and save the changes made in the file you created. The

ontology will be saved in RDF/XML format. By right-clicking a RDF(S) or OWL model in

RDF/XML format file in Eclipse, and selecting “Open With”-> “OWL Model Editor” (or “RDFS

Model Editor”), you will be able to open the same simple editor for editing the RDF(S) or OWL

ontology, as shown in the following:

If you select to open with “Text Editor”, you will be able to view the file directly in the textual

RDF/XML format and edit it just like any textual document.

OWL Visual Editing

From Eclipse menu, select File -> New -> Other, in the popped up dialog, there is a “IODT New

Ontology Wizards” category, select “OWL Document and Visual Editing”, click “Next>”,

choose a file name and directory to save the new OWL document, click “Next”. You can configure

a set of namespaces for the OWL document. Click “Finish”. A visual editor is opened in the

workspace, with a widget palette at the left-hand of the editor. Please open the standard

“Properties” view of Eclipse if it is not opened. The workspace should look like:

Initially, the Properties view shows the properties of the current ontology. During the editing, you

can always click on the white canvas to select the ontology and its properties.

Clicking on the icons at the left-hand palette to create OWL model elements. For relations and

properties, after click the icon on the palette, you need click on a class on the canvas, move the

pointer to another class and click again. This will create a relation or property between the two

classes. The following figure shows a diagram after some time of editing:

In this documentation, we highlight some of the functions of this visual editor. Users are

encouraged to try use this UI to get familiar with its usage.

Class and Property Hierarchies View

From Eclipse menus, select “Window->Show View->Other”, in the “IODT Views” catalog, there

are “OWL Class Hierarchy” and “OWL Property Hierarchy” views respectively.

Import an Existing OWL document for visual editing

From Eclipse menus, select “File -> Import”. In the import dialog, select “Existing OWL

Document” and click “Next” to import an existing OWL document in the file system.

After the document is imported, a blank canvas is shown. You can open “OWL Class Hierarchy”

view and drag classes from the view to the canvas to visualize the ontology.

Create Datatype Property

Select “Datatype Property” icon on the left palette and click on a existing class on the canvas, this

will put the new datatype property in the clicked class. The semantics is that the property will have

this clicked class as its domain. You can then select the data type by clicking on it and edit its

range property in the Properties view.

Create an Enumerated Class

Select “Enumerated Class” icon on the left palette and click on the canvas will create an initial

enumerated class in the ontology. You can editing its various properties in the properties view or

click its name to change its local name, etc. To enumerate its individuals, you need click the

“Individual” icon, move the pointer to the enumerated class and click again. This will bring up a

dialog to give a local name to the individual. The individual is then one of the instance of the

enumerated class.

Note that, currently, the tool can not create individuals for other types of classes.

Create Union, Intersection and Complement Class

You need click the respective icon on the left palette and click on the canvas to create the class.

After that, you need edit the “union of”, “intersection of”, and “complement of” property in the

Properties view. This will bring a dialog to allow you to choose existing classes in the ontology.

Create Restriction Class

Click on the “Restriction” icon on the left palette and click on the canvas, this will bring up the

following dialog to allow you to specify in detail the restriction:

Delete a Model Element from View

Select a model element in the canvas and press the “Delete” key will delete it from the view but it

is still in the model.

Delete a Model Element from Model

Select a model element in the canvas, right click it and select “Delete From Model”.

Relation Filter

You can choose what types of relations should be shown on the canvas. Right-click on the white

space of the canvas and choose “Relation Filter…”. This will bring up a dialog to let you choose

types of relations to hide.

If we choose “Object Property”, for example, the example diagram’s object properties

(madeFromGrape and hasColor) among classes will not be shown. The result diagram then

becomes the following (where only sub-classes relations are shown):

Zoom In/Out

Please select menu “OWL View” -> “Zoom In” or “Zoom Out” or use short-cut keys for zooming.

Limitations of OWL Visual Editing

What EODM workbench CANNOT Do

- NO SET operators support, such as intersectionOf, unionOf and complementOf

- NO instance editing capabilities, except for oneOf

- NO imports support for multiple ontologies

- NO drag support for arcs in the canvas

Minerva Configuration, User Guide and Examples

Minerva Configuration

You can configure Minerva to meet your application requirements. Following parameters are

currently configurable.

The configuration parameters are defined as follows (case sensitive).

Items Descriptions

Database = jdbc:db2:Minerva The database used as the backend store

User = db2admin The user name for accessing database

Password = xxxxxx The password for the user

Driver =

COM.ibm.db2.jdbc.app.DB2Driver

DB2 JDBC driver

TboxEngine = Pellet

(Values can be Default or Racer)

Currently, Minerva supports three Description Logic

inference engines, The structural TBox engine, Racer and

Pellet. The user can specify preferred engine. The default

engine is the structural TBox engine.

RacerIP = 172.16.87.56 If Racer is used, please provide IP address of Racer HTTP

server.

Port = 8080 The port of Racer HTTP server

DuplicateRemover = false When inserting duplicate triples into the repository, there

are two methods to remove them. The first way is that

Minerva removes duplicates. The second is that DBMS

removes duplicates using primary key / unique index

constraints. If DuplicateRemover is set to “true”, Minerva

will be responsible for duplicate removing. Otherwise,

DBMS will do. If the latter, the speed of loading data is

faster but database exceptions will be thrown out. The user

can ignore these exceptions which do not cause any errors.

In the $IODT \ examples \ configuration directory, there are three sample configuration files

corresponding to Derby, DB2 and HSQL DB, respectively.

If you are using Minerva in Eclipse, please go to the Minerva plugin directory located at

$ECLIPSE_HOME \ plugins \ com.ibm.iodt.sor_1.1.2 \ configuration and specify the

configuration parameters in file “minerva.cfg”. In this directory, there are also three sample

configuration files corresponding to Derby, DB2 and HSQL DB, respectively. Restart your

Eclipse after configuration.

DB2 is powerful but needs to be well configured for optimal performance. Following

configuration parameters have been tested in experiments for storing large volume of OWL

ontologies..

1. LOGFILSIZ = 10000

2. LOGPRIMARY = 20

3. Maintenance

a) AUTO_REORG: CHECK

b) AUTO_TBL_MAINT: CHECK

c) AUTO_MAINT: CHECK

4. Performance Parameters

� BUFFPAGE: 2500

� SORTHEAP: 25600

� SHEAPTHRES_SHR: 256000

Sample Code

Following describes how to build and manipulate an OWL ontology Repository step by step.

Please refer to the “MinervaQueryDemo.java” and “MinervaStorageDemo.jave” files in the

$IODT \ examples directory.

1. Specify the directory which includes the configure file.

 Config.setConfigFile(new FileInputStream ("D:/eclipse/workspace/Minerva/minerva.cfg"));

2. Install an ontology repository which can store multiple ontologies. Just need to install a

repository once for a database

 Config.install();

3. Construct an ontology store managers which manage all ontologies in the built knowledge

base.

 OntologyStoreManager minerva = new OntologyStoreManager();

4. New, select, delete an ontology store

 //deleting an ontology store menas deleting all statements in the store

 minerva.deleteOntologyStore("os2");

 //need to new an ontology store before adding ontology into Minerva

 minerva.newOntologyStore("os2");

 //need to select an ontology store to manipulate

 minerva.selectOntologyStore("os2");

5. Add OWL ontologies to the selected ontology store.

 minerva.addOWLDocument("test/univ-bench-dl.owl", false);

 //need to specify file name and whether the file includes only ABox statements

 //public boolean addOWLDocument(String fileName, boolean bPureABox)

6. Put an EODM model into the selected ontology store.

 minerva.addEODMModel(ontofood,false);

 //need to specify model name and whether the model includes only ABox statements

 //public boolean addEODMModel(OWLOntology onto, boolean bPureAbox)

7. Explicitly notify Minerva to do inference. Adding owl files into Minerva is only to insert

statements into the ontology store and does not conduct inference. Users need to explicitly

notify Minerva to do inference.

 minerva.commit();

8. Minerva can do update with transaction support in two working modes. The first is to add or

delete an assertion every time. If minerva failed to update, no "dirty" assertions inferred from

the input will be inserted into repository. If minerva succeeded to update, all inferred triples

will inserted. In this working mode, commit is completed automatically. Users do not need to

commit manually. For example,

minerva.addTypeOfAssertion("http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#StMic

helleMuscadet", "http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#Muscadet");

minerva.deleteObjectRoleAssertion("http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#

StMichelleMuscadet","http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#hasMaker4","

http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#Marietta");

The second working mode is group mode. Users can add or delete a group of assertions every time.

If failed to update, no an assertion from the input group can be inserted into repository. If

succeeded, all assertions will be inserted. This means that atomic operation in group mode is on a

group of assertions, instead of an assertion. For example,

 /*add a group of assertions into ontology store*/

 //1. set working mode to group mode. the step is a must

 minerva.setGroupCommitment();

 //2. add or delete assertions

minerva.addTypeOfAssertion("http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#StMic

helleMuscadet", "http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#Muscadet");

minerva.addObjectRoleAssertion("http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#St

MichelleMuscadet","http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#hasMaker4","htt

p://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#Marietta");

minerva.addDatatypeRoleAssertion("http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#

StMichelleMuscadet","http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#hasMaker6","

Marietta","en",null);

 //3. commit a group of assertions, true means "commit", flase means "rollback"

 minerva.commitAssertions(true);

9. Retrieve statements using SPARQL query and traverse them

 //public ResultHolder getQueryResult(String query)

 ResultHolder result = minerva.getQueryResult("select * where (?x rdf:type ?y) ")

 String[] name=result.getVariablename();

 for (i =0; i<name.length;i++)

 System.out.print(name[i]+" ");

 System.out.println();

 while (result.next()){

 for (i =0; i<name.length;i++)

 System.out.print(result.getInt(i+1)+" ");

 System.out.println();}

10. Issue a query and get triple list rather than variable-value pairs

 List tripleList=minerva.getTripleList(q3);

 for(Iterator i=tripleList.iterator();i.hasNext();){

 String[] res = (String[])i.next();

 for(int j=0;j<3;j++)

 System.out.print(res[j] + " ");

 System.out.println(); }

11. Close minerva and all connections

 minerva.closeConnection() ;

Minerva Eclipse Plugin User Guide

Users can use Minerva in their applications by calling provided APIs. For convenience, an Eclipse

Plugin is provided. The following shows how to load and query ontologies using the Eclipse

plugin.

1. From Eclipse menu, select “Window -> Show View ->Other” to open a dialog and select the

“Ontology Store Manager” and “SPARQL Query views” in the “IODT Views” category and

click “OK”:

If you get errors when opening the two views, you may not have put the required JAR

files into the Minerva plugin’s lib directory or have edited the configuration file , please

see the installation section on how to do that.

Drag and put the two views in your preferred position in Eclipse.

2. .In the Ontology Store Manager view, you can right click an ontology store to create a new

ontology store, delete an ontology store, and add OWL documents into the selected store. It

may take a long time to add large OWL documents into the repository, depending on the size,

complexity of the ontology and the backend RDBMS’s performance.

3. After add OWL documents into the ontology store, you can input SPARQL query in the

SPARQL Query View to search the selected ontology store. Please click next button to browse

all results.

