
Minerva: A Scalable OWL Ontology Storage and

Inference System

Jian Zhou1, Li Ma2, Qiaoling Liu1, Lei Zhang2, Yong Yu1, and Yue Pan2

1 APEX Data and Knowledge Management Lab,
Department of Computer Science and Engineering,

Shanghai Jiao Tong University,
200240 Shanghai, China.

{priest, lql, yyu}@apex.sjtu.edu.cn

2 IBM China Research Lab,
100094 Beijing, China

{malli, lzhangl, panyue}@cn.ibm.com

Abstract. With the increasing use of ontologies in Semantic Web and
enterprise knowledge management, it is critical to develop scalable and
efficient ontology management systems. In this paper, we present Min-
erva, a storage and inference system for large-scale OWL ontologies on
top of relational databases. It aims to meet scalability requirements of
real applications and provide practical reasoning capability as well as
high query performance. The method combines Description Logic rea-
soners for the TBox inference with logic rules for the ABox inference.
Furthermore, it customizes the database schema based on inference re-
quirements. User queries are answered by directly retrieving material-
ized results from the back-end database. The effective integration of
ontology inference and storage is expected to improve reasoning effi-
ciency, while querying without runtime inference guarantees satisfactory
response time. Extensive experiments on University Ontology Bench-
mark show the high efficiency and scalability of Minerva system.

1 Introduction

The rapid growing information volume in World Wide Web and enterprise in-
tranet makes it difficult to access and maintain the information required by users.
Semantic Web, the next generation web, aims to provide easier information ac-
cess and usability by exploiting machine understandable metadata. In recent
years, ontology, which enables a shared, formal, explicit and common descrip-
tion of a domain knowledge, has been recognized to play an important role in
Semantic Web and enterprise knowledge management. W3C has recommended
two standards for publishing and sharing ontologies on the World Wide Web:
RDF/RDFS [1] and OWL [2]. OWL builds on top of RDF/RDFS and adds more
vocabularies for describing properties and classes, which improves expressiveness
but increases reasoning complexity.

The logical foundation of OWL is Description Logic(DL) [3] which is a decid-
able fragment of First Order Logic(FOL). Therefore, inference of OWL ontologies
can be handled by DL reasoners. A DL knowledge base consists of two compo-
nents, a TBox and an ABox. The TBox describes the terminology, while the
ABox contains assertions about individuals. Correspondingly, the DL reasoning
includes TBox reasoning(i.e., reasoning with concepts) and ABox reasoning(i.e.,
reasoning with individuals). It is demonstrated in [4, 5] that DL reasoners are
able to cope with TBox reasoning of real world ontologies. But the extremely
large number of instances of real ontologies makes it difficult for DL reasoners to
deal with ABox reasoning. It is critical to develop scalable and efficient ontology
management systems.

This paper presents Minerva, a storage, inference and querying system for
large-scale OWL ontologies on top of relational databases. It aims to meet scala-
bility requirements of real applications and provide practical reasoning capability
as well as high query performance. Minerva is a component of the IBM Integrated
Ontology Development Toolkit(IODT) which is publicly available at [6]. Figure
1 shows graphical user interface of Minerva. Using Minerva, one can store multi-
ple large-scale ontologies in different ontology stores, issue SPARQL [7] queries
and obtain results listed in tables or visualized as RDF graphs.

Fig. 1. The Graphical User Interface of Minerva

In order to achieve high system performance and provide practical inference
capability, we combine DL reasoners for the TBox inference with logic rules
for the ABox inference. Our method is based on the mapping theory between
Description Logic and Logic Programs [8]. It is proved that Description Horn
Logic(DHL) ontologies can be translated into a set of logic programs(i.e., logic
rules) without loss of semantics. The TBox precomputation by DL reasoners en-
sures complete and sound inference on classes and properties within OWL-DL.
The logic rules translated from DHL implement practical ABox inference, since
DHL covers RDFS semantics (except from the recursive meta model) and most
practical OWL semantics [8]. Particularly, we customize the relational database
schema based on the translated logic rules for efficient inference. Both the TBox
and ABox inference results are materialized in the database so that SPARQL
queries can be evaluated efficiently. Extensive experiments on University Ontol-
ogy Benchmark [9] show the high efficiency and scalability of Minerva system.

The rest of this paper is organized as follows. Section 2 gives an overview
of Minerva. Detailed storage design, inference and query processing is described
in Section 3. Evaluation and results are reported in Section 4. Related work is
discussed in Section 5 and Section 6 concludes the paper.

2 Overview

Fig. 2. The Component Diagram of Minerva

Figure 2 shows the component diagram of Minerva. Minerva is comprised of
Import Module, Inference Module, Storage Module (it is an RDBMS schema)
and Query Module.

– Import Module. The import module consists of an OWL parser and two
translators. The parser parses OWL documents into an in-memory EODM
model(EMF ontology definition metamodel) [6]3, and then the DB translator
populates all ABox assertions into the back-end database. The function of
the TBox translator is twofold, one is to populate all TBox axioms into a DL
reasoner and the other is to obtain inference results from the DL reasoner
and insert them into the database.

– Inference Module. A DL reasoner and a rule inference engine compose the
inference module. Firstly, the DL reasoner infers complete subsumption re-
lationships between classes and properties. Then, the rule engine conducts
ABox inference based on the DLP rules. Currently, the inference rules are
implemented using DB SQL statements. Besides our developed structural
subsumption algorithm [6], Minerva can use well-known RACER [10] and
Pellet [11] for TBox inference via DIG interface.

– Storage Module. It is intended to store both original and inferred assertions
by the DL reasoner and the rule inference engine. Since inference and storage
are considered as an inseparable component in a complete storage and query
system for ontologies, we design a specific RDBMS schema to effectively
support ontology inference. Currently, Minerva can take IBM DB2, Derby
(http://incubator.apache.org/derby/) and HSQLDB (http://www.hsqldb.org/)
as the back-end database.

– Query Module. The query language supported by Minerva is SPARQL [7].
User SPARQL queries are answered by directly retrieving inferred results
from the database using SQL statements. There is no inference during the
query answering stage because the inference has already been done at the
time of loading data. Such processing is expected to improve the query re-
sponse time.

In summary, Minerva combines a DL reasoner and a rule engine for ontology
inference, materializes all inferred results into a database. The database schema
is well designed to effectively support inference and SPARQL queries are an-
swered by direct retrieval from the database. More details about inference and
storage are described in next section.

3 Inference, Storage and Querying

3.1 Inference

Grosof et al. [8] defined a new intermediate knowledge representation contained
within the intersection between Description Logic(DL) and Logic Programs(LP):

3 EODM is an implementation of OMG’s Ontology Definition Metamodel
(http://www.omg.org/cgi-bin/doc?ad/2003-3-40) on Eclipse Modeling Frame-
work(EMF) (http://www.eclipse.org/emf).

Description Logic Programs(DLP), and the closely related Description Horn
Logic(DHL). DLP is the LP-correspondent of DHL ruleset. The definition of
DHL and DLP makes it practicable to do efficient reasoning of large-scale ontol-
ogy using the rule inference engine. Considering most real OWL-DL ontologies
are more complex than DHL, we extend the original DHL axioms to support
OWL-DL-complete4 TBox inference. More precisely, we use a DL reasoner to
obtain all class and property subsumption relationships, instead of supporting
only DHL axioms. Note that we decompose the complex class descriptions into
instantiations of class constructors, assign a new URI to each instantiation and
ask the DL reasoner for inference as well. For ABox reasoning, Minerva im-
plements all DLP rules based on the Meta Mapping approach [12]. The Meta
Mapping converts all concept and property instances into facts of two predi-
cates TypeOf and Relationship, and ontology axioms into facts of some pre-
defined predicates(e.g., SubClassOf and SubPropertyOf). Consequently, there
are a fixed number of predefined predicates, reflecting the vocabulary of OWL-
DL. Based on these predicates, only a constant rule set is required to cover the
semantics of the ontology.

Table 1. The set of rules that cover all DHL axioms. (Rel stands for Relationship,
Type stands for TypeOf)

DHL Axioms Corresponding rule

Rel-Rel Layer(Group 1):
P ⊑ Q Rel(x,Q, y) :- Rel(x, P, y), SubPropertyOf(P,Q).
P ≡ Q− Rel(y,Q, x) :- Rel(x, P, y), InversePropertyOf(P,Q).
P+ ≡ P Rel(x,P, z) :- Rel(x,P, y), Rel(y,P, z), Transitive(P).
P ≡ P− Rel(y,P, x) :- Rel(x, P, y), Symmetric(P).

Rel-Type Layer(Group 2):
⊤ ⊑ ∀P−.D Type(x,D) :- Rel(x,P, y), Domain(P, D).
⊤ ⊑ ∀P.D Type(y,D) :- Rel(x,P, y), Range(P, D).

Type-Type Layer(Group 3):
C ⊑ D Type(x,D) :- Type(x,C), SubClassOf(C, D).
∃R.D ⊑ C Type(x,C) :- Rel(x, R, y), Type(y,D), SomeValuesFrom(C, R,D).
C ⊑ ∀R.D Type(y,D) :- Rel(x,R, y), Type(x,C), AllValuesFrom(C, R,D).
D1 ⊓ D2... ⊓ Dn ⊑ C Type(x,C) :- Type(x, D1), IntersectionMemberOf(D1, C),...,

Type(x,Dn), IntersectionMemberOf(Dn, C).

The DLP rules obtained by the mapping of DHL axioms are listed in Table 1.
These rules can be directly handled by deductive databases. Here, we make use
of mature relational database to store large-scale ontologies. In order to lever-
age optimization technologies and scalability of RDBMS as much as possible,

4 DL reasoners implement sound and complete reasoning algorithms that can effec-
tively handle the DL fragment of OWL.

we enforce DLP rules using SQL statements on the underlying RDBMS as the
implementation of a rule inference engine. [13] shows the semantics of logic pro-
grams can be interpreted by the fixed point semantics with respect to Herbrand
Models. So we can iteratively execute these rules until no new assertions can
be made to obtain the fixed point. The inferred results are materialized in the
database so that queries can be evaluated efficiently. Our approach is to trade
space for time.

Firstly we use the DL reasoner to calculate the SubClassOf relationships be-
tween classes and SubPropertyOf relationships between properties. The results
of this precomputation are stored in the database tables and used by the subse-
quent rule inference. Rules for ABox inference are categorized into three groups
based on their dependency so that rules in group i cannot be fired by rules in
group j(j ≥ i). This effectively reduces inference costs using SQL statements.
Rules in each group will be recursively executed until no new results can be
generated. Then the rule engine will proceed to the next group of rules.

The TBox precomputation by DL reasoners ensures complete and sound
OWL-DL inference on classes and properties, which can not be covered by DLP
rules. For example, if we have axioms {Mother ≡ Woman⊓∃hasChild.Person,

Parent ≡ Person ⊓ ∃hasChild.Person, Woman ⊑ Person}, the implicit rela-
tionship that Mother is a subclass of Parent cannot be derived by the DLP
rules but will be found by a DL reasoner. After the full TBox reasoning, our
rule engine provides complete and sound ABox inference with respect to the se-
mantics of DHL, which covers RDFS semantics (except from the recursive meta
model) and most practical OWL semantics [8]. Therefore, our method provides
practical inference capability for real applications.

3.2 Storage on Relational Databases

Two best-known ontology toolkits, Jena [14] and Sesame [15], have provided
supports for ontology persistent storage on relational database. They persist
OWL ontologies as a set of RDF triples and do not consider specific processing for
complex class descriptions generated by class constructors(boolean combinators,
various kinds of restrictions, etc). [16] proposed to store OWL restrictions in a
separate table for ease of representation. However, they did not explain and
discuss the effect of their schema on inference in-depth.

The highlight of our database schema is that all predicates in the DLP rules
have corresponding tables in the database. Therefore, these rules can be eas-
ily translated into sequences of relational algebra operations. For example, rule
Type(x, C) :- Rel(x, R, y), Type(y, D), SomeValuesFrom(C, R, D) in Table 1 has
four predicates in the head and body, resulting in three tables: Relationship,
Typeof and SomeValuesFrom. It is highly straightforward to use SQL statements
to execute this rule. We just need to use simple SQL select and join operations
among these three tables. The effective integration of ontology inference and
storage is expected to significantly reduce inference costs.

We categorize tables of the database schema into 4 types: atomic tables, TBox
axiom tables, ABox fact tables and class constructor tables, which are shown in

Fig. 3. The relational schema of Atomic, TBox axiom and ABox fact tables

Fig. 4. The relational schema of class constructor tables

Figures 3 and 4. The atomic tables include: PrimitiveClass (in Figure 4),
Property, Datatype, Individual and Literal. These tables encode the URI
with an integer value(the ID column), which reduces the overhead caused by
the long URI to a minimum. The hashcode column for URI in Individual

and Literal tables is used to speed up search on individuals and literals. The
Property table stores URI as well as its characteristics(symmetric, transitive,
etc).

There are two important kinds of ABox facts: TypeOf and Relationship.
[17] discussed the advantages of ’Vertical Table’(storing all data in one table
with index on the type) in terms of manageability and flexibility to ’Binary
Table’(a table for each class and property). Therefore, we adopt ’Vertical Ta-
ble’ to store ABox facts. Tables SubClassOf, SubPropertyOf, Domain, Range,
DisjointClass, InversePropertyOf are used to store TBox axioms.

The most distinguishing part of our design is class constructor tables in
Figure 4. We decompose the complex class descriptions into instantiations of
class constructors, assign a new ID to each instantiation and store it in the
corresponding class constructor table. Take the axiom Mother ≡ Woman ⊓
∃hasChild.Person as an example, we first define S1 for ∃hasChild.Person in
SomeValuesFrom table. Then I1 standing for the intersection of Woman and S1

will be defined in the IntersectionClass table. At last, {Mother ⊑ I1, I1 ⊑
Mother} will be added to the SubClassOf table. Such a design is motivated by
making the semantics of complex class description explicit. In this way, all class
nodes in the OWL subsumption tree are materialized in database tables, and
rule inference can thus be easier to implement and faster to execute using SQL
statements. Also, a view Classes is defined to provide an overall view of both
named and anonymous classes in OWL ontology.

As introduced in previous section, Minerva materializes all inferred results
in the database. Therefore, we have to propose effective methods for ontology
update.

1. Addition of TBox Axioms. When new TBox axioms are added, Minerva
will send them and the original TBox together to a DL reasoner. Then, we
can obtain newly-inferred TBox Axioms and store them into the database.
Finally, the rule engine will do ABox inference with only the newly-added
and newly-inferred TBox axioms.

2. Addition of ABox assertions. Currently, two kinds of methods for ABox
update are supported. The first approach is to add only one assertion at
one time. Minerva will determine rules to be fired based on the premise of
all ABox rules and obtain inferred assertions using these rules. Then, the
inferred assertions are processed one by one in the same manner until no
new assertion can be inferred. Another way is relatively straightforward.
It just re-runs all ABox inference rules and newly-inferred assertions are
materialized into the database.

3. Deletion of TBox Axioms. When some TBox axioms need to be deleted, Min-
erva will delete all inferred results and redo both TBox and ABox inference,
just like populating a new ontology. Obviously, such an update is expensive.

But fortunately, ontologies do not change frequently in real applications and
thus deletion of TBox Axioms occurs rarely.

4. Deletion of ABox assertions. When deleting an assertion, Minerva first ob-
tains all assertions inferred from this assertion. Then, it runs ABox rules to
check whether each of those assertions could be inferred from other existing
assertions. By this way, we make sure the safe deletion of an assertion.

3.3 Querying

Recently, W3C has worked out a query language SPARQL [7] for RDF retrieval.
The SPARQL query language is based on matching graph patterns. The simplest
graph pattern is the triple pattern, which is like an RDF triple but with the
possibility of variables in any positions. Minerva has implemented the basic query
features of SPARQL, but class expressions are not supported in user queries.

Our query answering algorithm is to simply retrieve results from the database
including both original assertions and inferred facts. The query answering mod-
ule consists of a SPARQL query parser and a SQL translator. In fact, every xi : C

pattern can be translated into a select operation on TypeOf table, while every
< xi, xj >: R pattern can be translated into a select operation on Relationship

table. The translator uses join and union operations on the basic triple selections
to build a complete SQL statement and obtain final results. That is, we make ef-
fective use of the well-optimized SQL query engine for SPARQL evaluation. This
makes Minerva practicable for concurrent queries in various real applications.

4 Evaluation

4.1 Experiment settings

Experiments are designed to evaluate scalability, efficiency and inference capabil-
ity of Minerva. We compare our system with OWLIM [18] and DLDB-OWL [19].
These two systems are chosen because it is reported in [20] that DLDB and
Sesame(OWLIM is an extension of Sesame) have better performance than other
systems in general. DLDB [19] uses the DL reasoner to precompute class and
property hierarchies, and employs relational views to answer extensional queries.
Its ABox inference mainly supports instance membership reasoning.

Evaluation is conducted on University Ontology Benchmark(UOB) [9], which
is extended from the well-known Lehigh University Benchmark(LUBM) [20]. The
UOB extends the LUBM in terms of two aspects: 1) include both OWL-Lite
and OWL-DL ontologies covering a complete set of OWL-Lite and OWL-DL
constructors respectively. 2) add necessary properties to build effective instance
links (hence reasoning requirements) and improve instance generation methods
accordingly. The UOB consists of university domain ontologies, customizable
and repeatable synthetic data, a set of test queries and corresponding answers.
In our experiments, we create 3 test sets: OWL Lite-1, OWL Lite-5, OWL Lite-
10(The parameter denotes the number of universities). The number of triples is
about 220000 for Lite-1, 1100000 for Lite-5 and 2200000 for Lite-10.

There are 13 queries in the benchmark which cover most features of OWL-
Lite. The details of all queries can be found in [9]. Here, the evaluation metrics
used in [20] are adopted for comparison:

1. Load time. The time for storing the benchmark data to the repository, in-
cluding time for parsing OWL files and reasoning.

2. Query Response time. The time for issuing the query, obtaining the result
set and traversing the set sequentially.

3. Completeness and Soundness. Completeness means the system generates all
answers that are entailed by the knowledge base and soundness means all
generated answers are correct.

Here, the load time is an average of three times of experiments and the
query response time is an average of ten times of experiments. Experiments
are conducted on a PC with Pentium IV CPU of 2.66 GHz and 1G memory,
running Windows 2000 professional with Sun Java JRE 1.4.2 (JRE 1.5.0 for
OWLIM) and Java VM memory of 512M. The version of OWLIM and DLDB
we evaluated are v2.8.2 (http://www.ontotext.com/owlim/) and DLDB-OWL
(http://swat.cse.lehigh.edu/downloads/dldb-owl.html) respectively.

4.2 Results

Load Time Table 2 compares the load time of three systems. We can see that
OWLIM can load the smallest data set OWL Lite-1 using only 29 seconds. It is
fastest among these systems. When loading OWL Lite-5 and OWL Lite-10, it re-
ported “Out of Memory” error. In fact, we have also tested other memory-based
systems, e.g. RACER [10]. They cannot load the smallest data set OWL Lite-1
which includes about 220,000 triples, because of the memory limitation. The re-
sults strongly support our understanding that database technologies should be
used to deal with large-scale ontology storage. The average load time of DLDB
is less than Minerva’s. The difference mainly lies in the inference capabilities
and methods of the two systems. DLDB makes use of FaCT for TBox inference
and supports a small subset of OWL-Lite in ABox, mainly membership infer-
ence based on SubClassOf axiom. Minerva implements inference of DLP rules
and covers most of OWL-Lite. DLDB constructs views based on inferred class
hierarchy information to implement ABox inference, whereas Minerva needs to
materialize inferred results by DLP rules in database. Besides additional time
for more reasoning, Minerva takes some time to insert inferred results into data-
base. This makes Minerva slower than DLDB to load data. Note that the time
in Table 2 includes the reasoning time as these three systems do inference at
load time. The time needed for inference in Minerva is about 30%-40% of the
load time.

Completeness and Soundness The three systems can answer all queries
soundly. That is, they do not return wrong answers for any query. So we only
need to check their completeness. Table 3 shows the results. Compared with pre-
vious version, OWLIM v2.8.2 can answer all queries correctly. In this new release,

Table 2. Load Time (the unit is second)

OWL Lite-1 OWL Lite-5 OWL Lite-10

Minerva 868 5469 9337

DLDB 428 1945 3904

OWLIM 29 N/A N/A

more rules are added and inference is made configurable. As is known, OWL-Lite
and OWL-DL reasoning cannot be implemented only by rules. That is, OWLIM
can conduct only partial OWL-DL TBox inference. This is different from DLDB
and Minerva which depend on a DL reasoner for complete TBox inference. Coin-
cidentally, the UOB does not contain a query that needs subsumption inference
not covered by existing OWLIM rules. The inference capability of DLDB is rel-
atively weak that it gives 100% complete answers to only 3 queries. Minerva is
able to completely process 12 out of 13 queries. Inference on minCardinality

needed by query 13 is not currently supported in Minerva. As described in Sec-
tion 3, Minerva makes effective use of DLP rules for ABox inference. Similar to
OWLIM, Minerva can add more rules to enhance its ABox inference. In fact, we
are currently working on this improvement.

Table 3. Query Completeness (Qi stands for the ith query and the real number denotes
|Answersystem

T
Answercorrect |

|Answercorrect |
)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13

Minerva 1 1 1 1 1 1 1 1 1 1 1 1 0.67

DLDB 1 0.82 1 1 0 0 0 0 0 0.83 0 0.2 0.56

OWLIM 1 1 1 1 1 1 1 1 1 1 1 1 1

Query Response Time Figure 5 shows quantitative comparison on query
response time on data sets of different sizes among these systems. The first graph
compares performance of three systems on data set OWL Lite-1. OWLIM per-
forms the best in general because its queries are evaluated in memory. Both
DLDB and Minerva leverage relational database for query evaluation, which
needs expensive IO access to hard disk. On the other hand, DLDB and Min-
erva have better scalability. This is more or less benefited from the scalability of
RDBMS. As OWLIM fails to load other two larger data sets, we do not show
its performance curve with the increasing data size. An interesting phenom-
enon we observed in experiments is about query evaluation of OWLIM. Query 4
includes a four-triple constraint, {?y rdf:type benchmark:Faculty . ?y bench-
mark:isMemberOf <http://www.Department0.University0.edu> . ?x rdf:type
benchmark:Publication . ?x benchmark:publicationAuthor ?y}. If we exchange

the order of the 2nd and 3rd triples in the constraint, the response time will
increase to 13726ms from only 626ms. That is because OWLIM uses triple pat-
terns in the constraints to filter out irrelevant results. When the most selective
triple patterns are at the end of the query, the filtering process would be time-
consuming. However, DLDB and Minerva avoid this problem by leveraging query
optimization technologies of RDBMS. The second and third graph show the per-
formance of DLDB and Minerva on different data sets. We observed that the
query time of Minerva never exceeds 2 seconds, which makes Minerva qualified
for practical applications. Also, we found that query response time of Minerva
scales well with the data size. The test results of DLDB show that its query time
dramatically grows with the increase of the data size and its performance is not
as good as Minerva’s. DLDB uses class views which is built based on inferred
class hierarchy at load time to retrieve instances at query time. DLDB’s view
query7 needs to execute union operations in runtime for retrieval. In contrast,
Minerva materializes all inferred results, and uses select operations on pre-built
index in most cases instead of union operations. This results in less computa-
tional costs.

Fig. 5. The average query response time.

7 Note that a view is equivalent to a query in relational database.

4.3 Discussions

Based on the above results and analysis, we can draw a number of conclusions
as well as find that some issues need to be further investigated.

1. The proposed method for inference is a combination of the DL reasoner and
a set of DLP rules corresponding to DHL semantics. It promises that our
inference on DHL (a subset of OWL-DL) ontologies is sound and complete
as well as that the complete subsumption relationship among classes and
properties can be made explicit. Now, we intend to add more rules for ABox
inference so that Minerva can handle more expressive ontologies. Also, we
are focusing on how to support inference and querying on datatypes (e.g.,
integers, doubles).

2. Experiments show the high scalability and desirable query optimization of
DLDB and Minerva. In fact, this benefits mainly from the underlying re-
lational database. DLDB uses MS Access database and Minerva is built on
IBM DB2. In our experiments, we did not change DLDB’s back-end database
to DB2 as it is reported in [19] that DLDB achieves high performance with
default Access database. Further work is to investigate the impact of the
underlying RDBMS on the performance of ontology repositories. OWLIM
made a significant and meaningful attempt to build native ontology repos-
itory and the results are promising. Like the development of native XML
storage systems, more efforts are needed for native ontology persistent stor-
age including storage model, query caching and optimization.

3. In Section 3.2, we discussed the ontology update problem. Our method for
TBox deletion is expensive though TBox axioms are not deleted frequently.
Currently, we are working on an incremental update method for the deletion
of TBox axioms.

5 Related Work

Some ontology storage and inference systems have been developed in the past
several years. For the sake of efficient storing and querying data with high scal-
ability, there is a trend toward extending RDBMS with OWL inference capabil-
ities, e.g. DLDB [19], Sesame [15], and InstanceStore [21]. Detailed comparisons
with DLDB and OWLIM has been reported in previous section.

Sesame is a well-known system which provides efficient storage and expres-
sive querying of large quantities of metadata in RDF/RDFS. In order to support
OWL ontology management, Sesame extends its rules. But its simple extension
cannot guarantee the inference completeness. OWLIM [18] is another extension
for Sesame, which provides a reliable persistence based on N-Triples files. How-
ever, its reasoning and query evaluation are performed in memory, which makes
it less suitable to handle large numbers of instances in real world ontologies.

InstanceStore [21] implements a restricted form of ABox reasoning on RDBMS.
More precisely, it provides sound and complete reasoning on role-free ABox.

However, role-free ABox does not include role assertions which describe the re-
lationships between individuals. This guarantees its high efficiency but limits its
use in real applications needing role inference.

KAON2 [22] is a successor to the KAON [23] project, an open-source on-
tology management infrastructure which pays special attention to scalable and
efficient reasoning with ontologies. Whereas KAON used a proprietary extension
of RDFS, KAON2 is based on OWL-DL and F-Logic. Reasoning in KAON2 is
implemented by novel algorithms which reduce a SHIQ(D) knowledge base to a
disjunctive datalog program, thus allowing to apply well-known deductive data-
base techniques, such as magic sets or join-order optimizations. ABox assertions
can be stored in a relational database (RDBMS), but not all the TBox and ABox
inference results are materialized in the database as Minerva.

6 Conclusion and Future Work

This paper presented an RDBMS-based storage and inference system for large-
scale OWL ontologies. DL reasoner for the TBox reasoning and rule-based algo-
rithms for the ABox reasoning are combined appropriately. Based on the theo-
retically proved mapping from Description Logic to Logic Programs [8], we can
claim that our system is sound and complete on DHL ontologies. By calculating
the subsumption relationship between classes and properties with the DL rea-
soner, we achieved complete class and property hierarchies and further improved
inference capability of Minerva. Extensive experimental results showed the high
efficiency and scalability of Minerva.

7 Acknowledgements

The authors would like to thank GuoTong Xie, Yang Yang, Jing Lu, Sheng-
Ping Liu, Lei Li for their helpful discussions and constructive comments, Atanas
Kiryakov and Damyan Ognyanov of OntoText Lab for their great help on eval-
uation.

References

1. Brickley, D., Guha, R., eds.: RDF Vocabulary Description Language 1.0: RDF
Schema. W3C Recommendation. (2004)

2. Bechhofer, S., van Harmelen, Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P.F., Stein, L.A., eds.: OWL Web Ontology Language Reference. W3C
Recommendation. (2004)

3. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.,
eds.: The Description Logic Handbook: Theory, Implementation, and Applica-
tions., Cambridge University Press (2003)

4. Haarslev, V., Möller, R.: High Performance Reasoning with Very Large Knowledge
Bases. In: DL. (2000)

5. Horrocks, I.: FaCT and iFaCT. In: DL. (1999)

6. : IBM’s Integrate Ontology Development Toolkit.
(http://www.alphaworks.ibm.com/tech/semanticstk)

7. Prud’hommeaux, E., Seaborne, A., eds.: SPARQL Query Language for RDF. W3C
Working Draft. (2005)

8. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: com-
bining logic programs with description logic. In: WWW. (2003) 48–57

9. Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., Liu, S.: Towards A Complete OWL
Ontology Benchmark. In: To appear in European Semantic Web Conference. (2006)

10. Haarslev, V., Möller, R.: RACER System Description. In: Automated Reasoning,
First International Joint Conference, IJCAR 2001. (2001)

11. Sirin, E., Parsia, B.: Pellet: An OWL DL Reasoner. In: DL. (2004)
12. Weithöner, T., Liebig, T., Specht, G.: Storing and Querying Ontologies in Logic

Databases. In: Proceedings of SWDB’03, The first International Workshop on
Semantic Web and Databases, Co-located with VLDB 2003. (2003)

13. Beeri, C.: Logic Programming and Databases. In: ICLP. (1990)
14. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.:

Jena: implementing the semantic web recommendations. In: (Alternate Track Pa-
pers & Posters) WWW. (2004)

15. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture
for Storing and Querying RDF and RDF Schema. In: ISWC. (2002) 54–68

16. Das, S., Chong, E.I., Eadon, G., Srinivasan, J.: Supporting Ontology-Based Se-
mantic matching in RDBMS. In: (e)Proceedings of the Thirtieth International
Conference on Very Large Data Bases. (2004)

17. Agrawal, R., Somani, A., Xu, Y.: Storage and Querying of E-Commerce Data.
In: VLDB 2001, Proceedings of 27th International Conference on Very Large Data
Bases. (2001)

18. Kiryakov, A., Ognyanov, D., Manov, D.: OWLIM - a pragmatic semantic repository
for OWL. In: Proceedings of the 2005 International Workshop on Scalable Semantic
Web Knowledge Base Systems (SSWS2005). (2005)

19. Pan, Z., Heflin, J.: DLDB: Extending Relational Databases to Support Semantic
Web Queries. In: PSSS1 - Proceedings of the First International Workshop on
Practical and Scalable Semantic Systems. (2003)

20. Guo, Y., Pan, Z., Heflin, J.: An Evaluation of Knowledge Base Systems for Large
OWL Datasets. In: ISWC. (2004)

21. Horrocks, I., Li, L., Turi, D., Bechhofer, S.: The Instance Store: DL Reasoning
with Large Numbers of Individuals. In: DL. (2004)

22. Motik, B., Sattler, U.: Practical DL reasoning over large ABoxes with KAON2,
available at http://kaon2.semanticweb.org/. (2006)

23. KAON: (http://kaon.semanticweb.org/)

