
An Extension to Structural Subsumption Algorithm 

Background 

The present description logic classification algorithm is based on tableau algorithm, which can 
provide sound and complete reasoning on very expressive language. This approach solves the 
subsumption problem by reducing to satisfiablilty test and the worst case computational 
complexity is nexp-time. Furthermore, it only focuses on the tractablility of a single subsumption 
test instead of construction taxonomy. However, in most real applications, ontologies do not take 
full advantage of expression power of OWL and the most important action is to build up 
taxonomic classification.  
 
Therefore what we need is an algorithm with high efficiency but less expressive to support large 
scale of taxonomic classification. The requirements are: 

� Efficiency enough to support large tbox 
� Support language which is expressive enough for practically useful ontology 

 
With above requirements, a potential solution is Structural Subsumption algorithm, which is 
proved to be an efficient technique for taxonomic classification (p-time). The basic idea of the 
algorithm is to reuse redundant information of concepts definition to conduct subsumption 
inference. It has traditionally been limited due to its inability to provide complete reasoning for 
expressive languages. It is because in expressive language, the combinations of DL constructors or 
some axioms will make it difficult to setup appropriate comparison rules to support complete 
inference. However, we could possibly extend the Structural Subsumption Algorithm to achieve a 
balance between effiiency and expressiveness by adding more comparison rules, making some 
restrictions on concept definition and axioms.  
 

Preliminary – Structural Subsumption Algorithm for FL 

C,D  �  A | (atomic concept) 
� | (universal concept) 
� | (bottom concept) 
C�D | (intersection) 
�R.C | (value restriction) 
 

The algorithm proceeds in two phases: 
1. Normalize 

An FL0-concept description is in normal form iff it is of the form 
A1�…�Am��R1.C1�…��Rn.Cn 

2. Proposition: Let 



A1�…�Am��R1.C1�…��Rn.Cn 

  be the normal form of the FL0-concept description C, and  
B1�…�Bk��S1.D1�…��Sl.Dl 

  the normal form of the FL0-concept description D, then C�D iff the following conditions 
holds: 

i) for all i, 1�i�k, there exists j, 1�j�m, such that Bi = Aj  
ii) for all i, 1�i�l, there exists j, 1�j�m, such that Si = Rj and C i�Dj 

 

The structural algorithm has been extended to ALN with soundness & completeness. Please refer 
the attachment for detail algorithm.  
 
Reference 
1. The simplest Structural Description Logic 
2. Structural Subsumption Considered from an Automata Theoretic Point of View - Baader 
 

Extended Structural Subsumption Algorithm 

Language definition currently supported 
Concepts: (Cyclic concept definitions are not supported) 

C, D �    A (atomic concept),  
� (universal concept),  
� (bottom concept),  
C�D (intersection),  
C�D (union),  
�R.C (some value from restriction) 
�R.C (all value from restriction),  
�R.{x}| (hasValue) 

Axioms: 
Axioms � C�D (concept inclusion),  

R�S (role inclusion) 
 
Basic Idea 
From the Structural Subsumption Algorithm for FL we can see that there two major steps to 
compare two concepts. The first step is to transform concepts into standard forms to ensure 
structural comparisons can be preceded in a standard way. The second one is recursively compared 
sub-constitutes of each concept.  
 
Following the basic idea, we can extend the structural subsumption algorithm for more expressive 
language by defining more comparison criteria. For an ontology without acyclic definition, every 
defined concept can be deemed as restrictions on some properties (atom concepts can be seem as a 
kind of “special” restriction). For example, C � A � B � �R.(�S.D) � �R.C can be seem as a 
concept with restriction on RA, RB , R (RA, RB is special restriction brought by A, B).  
 



Restrictions provide comparison criteria for subsumption test. Restrictions on same property or its 
sub-property are basic components that can be compared. Table 1 lists the basic comparison rules 
for restrictions.  
 

Concept A Concept B  Condition of A � B 
�R.C �S.D Iff  R � S and C�D 
�R.C �S.D Iff  S � R and C�D 

�nR.C �mS.D Iff  R � S and C�D and n�m 

�nR.C �mS.D Iff  S � R and D�C and n�m 

Table 1 Basic Comparison Rules for Restrictions 

 

To decide whether two concepts are subsumed by each other, we can first normalize them into 
comparable restrictions and then compare their sub constitutes recursively. Table 2 lists a set of 
recursive rules for comparing two concepts. Figure 1 shows an example of how such rules works. 
 

Concept A Concept B Condition of A � B 

Primitive Primitive Iff B is in the � transitive closure of A  

Primitive Conjunctive Iff for every constitute Bi of B,  A � Bi  

Primitive Disjunctive Iff for some constitute Bi of B,  A � Bi 

Conjunctive Primitive Iff for some constitute Ai of A,  Ai � B 

Conjunctive Conjunctive Iff for every constitute Bi of B , there is some Aj of A,  Aj � Bi 

Conjunctive Disjunctive Iff for some constitute of Ai of A, there is some constitute Bi of B, Aj � Bi 

Disjunctive Primitive Iff for every constitute Ai of A, Ai � B 

Disjunctive Conjunctive Iff for every constitute Ai of A, and every constitute Bi of B, Aj � Bi 

Disjunctive Disjunctive Iff for every constitute Ai of A, there is some constitute Bi of B, Aj � Bi 

Table 2 Recursive Comparison Rules  

 

 
 

Interrelations among restrictions 

E�G 

� 

� 

� 

Given A��R1.C��R2.(�R4.D)��R3.E,  B��R2.(�R4.F) ��R3.G,  D�F,  E�G 
It can be concluded that A�B 

�R2.(�R4.D) 

�R3.E 

�R2.(�R4.F) 

�R3.G 

�R4.F 

�R4.D 

�R1.C 

A B 

D�F 

� 

Figure 1 An Example  



The basic comparison rules and the recursive comparison rules work well when restrictions in a 
concept are independent. But in many cases restrictions on the same property are interrelated with 
each other. In such situation the comparison rules will be invalid. Figure 2 shows such an example. 

 
In the example, “�R.B” in “�R.A��R.B” interacts with “�R.A”, so that “�R.A��R.B” can be 
concluded as sub class of “�R.A”. But only by the basic comparison rules and the recursive 
comparison rules we can not get such conclusion. To solve the problem, we define four 
transformation rules for normalization. 

− R1: �R.A ��S.B ��R.A ��S.(A�B)   S�R 
− R2: �R.A ��S.B ��R.A ��S.(A�B)    S�R 
− R3: �R.A � �S.B � �R.A � �S.(A�B)  S�R 
− R4: �R.A ��S.B � �R.A � �S. (A�B)  S�R 

Therefore, in the example, “�R.A��R.B” will be transformed to “�R.A��R.(A�B)” after 
normalization. And then we can apply comparison rules to draw correct conclusion. 
 
When performing a subsumption test, we use a classification tree to cache the inter-result for 
convenience. If we step further, we can leverage the information of the classifcation tree to design 
an algorithm for taxonomic classification. Therefore, the steps to decide whether class A is 
subsumed by class B will become: 

1. classify A, insert A and all its sub constitutes into classification tree 
2. classify B, insert B and all its sub constitutes into classification tree 
3. decide whether A is subsumed by B according to the classification tree 

 
Algorithm Description 
 

buildClassificationTree 
1. Building Properties Hierarchy 
2. Insert �, � into classification Tree(CT) 
3. for each axiom C�D { 

   classify(C) 
   classify(D) 

�R.A � �R.B �R.A 

�R.A 

�R.B 

�R.A X 
X 

If x	 �R.A � �R.B 

Figure 2 

Basic Comparison Rules Tableau Subsumption Test 

�R.A � �R.B � �R.A 

X y	A 

�y	B, (x,y)	R 

x	�R.A 
�R.A � �R.B � �R.A 



   addSubsumptionLink(C, D) // it will remove outdated links 
} 

 

classify(C) 
1. Normalize(C) // normalize C to a standard form to perform classify 
2. if C is already in CT, return 
3. classify(Ci) //Add sub constitute Ci of C to CT 
4. // Determine the position of C in Classification Tree 

mss <- Most specific subsumer of C according to current Classification Tree 
mgs <- Most general subsumee of C according to current Classification Tree 

5. //link each p in mss as directly father; each p in mgs as directly son 
foreach (v in mss){ 
  addSubsumptionLink (v, C); // it will remove outdated links 
} 
foreach(v in mgs){ 
  addSubsumptionLink (C, v); // it will remove outdated links 
} 

 

getMSS(C) // getMGS is similar 
1. C in form of C1 �…� Cn  // C1�…� Cn is similar 

a) superClassList � all nodes D which is a common super class of C1… Cn 
b) If A, B are in superClassList, and A
B, remove A from superClassList 

2. C in form of �R.D  // �R.D is similar 
a) superClassList �all nodes that satisfied with the form �R.E, E
D 
b) If A, B are in superClassList, and A
B, remove A from superClassList 

 
As we can see from the pseudo codes, the algorithm will start with building the classification tree. 
Given an axiom C�D, the algorithm will first recursively classify C, D and all the sub constitutes 
until all of them have been correctly linked into the classification tree. And then it will add the 
subsumption link between C and D which will automatically remove outdated links. Figure 3 
shows an example of classifying an ontology which contains the following definitions: 
    C � �R3.(A�B) � �R4.D 

F � �R1.A � �R2.B 
 D � E,  
�R3.A � �R2.B 
�R4.E � �R1.A 



 
 
 

Completeness & Soundness 
It can be proved that the structural subsumption algorithm is sound but not complete. The 
incompleteness of the algorithm mainly comes from the TBox axioms. For example, we can use 
TBox axioms to define:  
      C � �R.B,   C��R.A 
 
We can see that there is no rules in algorithm to identify the relationship between C and �R.(A�B), 
which in fact can be proved that �R.(A�B) 
 (�R.B � �R.A) 
 C 

1. Initial classification tree, D � E,  
�R3.A � �R2.B, �R4.E � �R1.A 

� 

�R2.B A E B �R1.A 

D �R3.A �R4.E 

� 

� 

�R2.B A E B �R1.A 

D �R3.A �R4.E 

2. Recursively classify C: Adding A�B 

� 

A�B 

� 

�R2.B A E B �R1.A 

D �R3.A �R4.E 

3. Recursively classify C: Adding �R3.(A�B), 
�R4.D and C 

� 

A�B 

�R3.(A�B) �R4.D 

C 

� 

�R2.B A E B �R1.A 

D �R3.A �R4.E 

� 

A�B 

�R3.(A�B) �R4.D 

C 

F 

4. Classify F 

Figure 3 An example of building classification tree 



 
Though the extended structural subsumption algorithm is not complete, but it can still achieve 
satisfactory results for subsumption reasoning in many real cases because: 
� Many OWL constructs have not been used in real ontologies. 80% of ontologies only use 

20% of OWL constructs. There are many of them only use atom class and subClassOf 
� In many cases, even there are constructs that EODM reasoner can not support in ontologies, 

the extended structural subsumption algorithm can still get the correct answers because those 
constructs are usually not interact with others in concept definitions. In other words, such 
constructs act as primitive class during the component comparsion. 

� The counter situations that the extended structural subsumption algorithm can not support are 
rare in real ontologies 

 

Test of the Structural Subsumption Reasoner 

Test Description 
The goal of this test is to evaluate the efficiency and correctness of EODM Structural 
Subsumption Reasoner. The test can be divided into 2 kinds 

− Download Ontologies Test 
− Random Ontologies Test 

 
Two measures will be considerate in evaluating the efficiency of the reasoner:  
� Load time (time for classifying an ontology ) 
� Query time - Query time will be evaluated by calling getDescendantClass method for all 

named classes in an ontology (Import classes are also included in model, but will not be used 
for queries) and calculate the average responding time. This time will be deemed as a 
standard to evaluate efficiency of reasoner.  

 

Testing with Download Ontologies  

T 

A B 

A�B 

�R.B �R.A 

C �R.(A�B) 

� 

? 

Figure.4 A Counter Example   



In this kind of test, we download a number of ontologies from protégé ontology library. Based on 
these ontologies, a series of testing are performed.  
 

 
Num  

Of Classes 

Eodm Load   

(ms) 

Eodm Query 

Avg. (ms) 
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����������	
���� �

������������	
�����	
�������	������������	��

��
�����	������	������	�������

���������������������� �

18 31 0 100% 100% 


�
����!���������������������
�	�	��
���

����	���� 
���������	��
��
���������
�������������

96 31 0 100% 100% 

���������
���� !� �� ���������� 	�	��	�����


	������"##$����	���	��������������%���&�


����'� �������� ��� ���� ���	���� ��� ���

���������	��������	����������������������	��

����%���&�����	���

�����������������() �

3097 61768 98 89.6% 100% 


����
���� !� �� ��
���� ��������� 	
����

��
	���	���
	�����	���

���������������������&*�+�

20 251 0 100% 100% 

 
Note:  
1) 0 means the responding time is less than 1ms 
 

Testing with Random Ontologies 

Random Ontology Generated Rules: 
During this test, random ontologies will be generated according to the capability of EODM 
Reasoner. This test mainly evaluates the efficiency of EODM Reasoner. Random ontologies will 
be generated according to 7 parameters:  

� Number of atoms (Atoms): Number of atom classes which will appear in generated 
ontology.  

� Depth of Nesting Expression (Depth): The max depth of an owl class expression. The 
depth of an atom class is 0. 

� Number of properties (Props): Number of properties which will appear in generated 
ontology. No domain and range will be claimed.  

� Number of individuals (Inds): Number of individual which will appear in generated 
ontology. And they will randomly be claimed to belong to some atom class. 

� Rate of subclasses (R_SUBC): the possibility that an owl class expression can have sub 
class with same depth. (No cyclic definitions) 

� Rate of subProperties (R_SUBP): the possibility that an owl property can have sub 



property. (No cyclic definitions) 
� Rate of equivalent classes (R_EQ): the possibility that an owl class expression can have 

equivalent classes with same depth.  
 

In an OWL Expression, 5 types of OWL constructor may possibly appear: intersection, union, 
someValueFrom, AllValueFrom and hasValue. The total number of owl classes in random 
ontology will be Atoms * Depth.  
 
 
Test Results: 
During the test, every group of tests will be performed 10 times. Below parameters will be fixed: 
� R_SUBC = 1/3 
� R_SUBP = 1/4 
� R_EQ = 1/6 
� Inds = 20 
 
Scale: (ms) 
Atoms/Props/Depth = 20/3/2   40 classes 

 Loading 
(avg) 

Loading 
(max) 

Query 
(avg) 

Query  
(max) 

Query 
Soundness 

Query 
Completeness  

EODM Reasoner 79 281 0 16 100% 100% 

 
Atoms/Props/Depth = 40/3/2 

 Loading  
(avg) 

Loading 
(max) 

Query 
(avg.) 

Query 
(max) 

Query 
Soundness 

Query 
Completeness 

EODM Reasoner 64 94 0 16 100% 100% 

 
 
Atoms/Props/Depth = 10/3/3  30 classes 

 Loading  
(avg) 

Loading 
(max) 

Query 
(avg.) 

Query 
(max) 

Query 
Soundness 

Query 
Completeness 

EODM Reasoner 102 375 0 16 100% 100% 

 
 
Atoms/Props/Depth = 20/3/3  60 classes 

 Loading  
(avg) 

Loading 
(max) 

Query 
(avg.) 

Query  
(max) 

Query 
Soundness 

Query 
Completeness 

EODM Reasoner 221 797 0 16 100% 100% 

 
 
Atoms/Props/Depth = 100/3/2  200 classes 

 Loading 
(avg) 

Loading 
(max) 

Query 
(avg.) 

Query 
(max) 

Query 
Soundness 

Query 
Completeness 



EODM Reasoner 576 766 0 16 100% 100% 

 
 
Atoms/Props/Depth = 200/20/5   1000 classes 

 Loading 
(avg) 

Loading 
(max) 

Query 
(avg.) 

Query 
(max) 

Query 
Soundness 

Query 
Completeness 

EODM Reasoner 8826 31673 3 93 100% 100% 

 
 
Atoms/Props/Depth = 1000/20/3  3000 classes 

 Loading 
(avg) 

Loading 
(max) 

Query 
(avg.) 

Query 
(max) 

Query 
Soundness 

Query 
Completeness 

EODM Reasoner 22327 98431 3 125 100% 100% 

 
 


