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Abstract

Conjunctive-query containment is recognized as a fundamental problem in database
query evaluation and optimization. At the same time, constraint satisfaction is recog-
nized as a fundamental problem in artificial intelligence. What do conjunctive-query
containment and constraint satisfaction have in common? Qur main conceptual con-
tribution in this paper is to point out that, despite their very different formulation,
conjunctive-query containment and constraint satisfaction are essentially the same
problem. The reason is that they can be recast as the following fundamental algebraic
problem: given two finite relational structures A and B, is there a homomorphism
h:A— B?7 As formulated above, the homomorphism problem is uniform in the sense
that both relational structures A and B are part of the input. By fixing the structure
B, one obtains the following non-uniform problem: given a finite relational structure
A, is there a homomorphism h : A — B?7 In general, non-uniform tractability results
do not uniformize. Thus, it is natural to ask: which tractable cases of non-uniform
tractability results for constraint satisfaction and conjunctive-query containment do
uniformize?

Our main technical contribution in this paper is to show that several cases of
tractable non-uniform constraint satisfaction problems do indeed uniformize. We ex-
hibit three non-uniform tractability results that uniformize and, thus, give rise to
polynomial-time solvable cases of constraint satisfaction and conjunctive-query con-
tainment. We begin by examining the tractable cases of Boolean constraint-satisfaction
problems and show that they do uniformize. This can be applied to conjunctive-query
containment via Booleanization; in particular, it yields one of the known tractable
cases of conjunctive query containment. After this, we show that tractability results
for constraint-satisfaction problems that can be expressed using Datalog programs
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with bounded number of distinct variables also uniformize. Finally, we establish that
tractability results for queries with bounded treewidth uniformize as well, via a con-
nection with first-order logic a with bounded number of distinct variables.

1 Introduction

Conjunctive queries have had a conspicuous presence in both the theory and practice of
database systems since the 1970s. Conjunctive queries constitute a broad class of frequently
used queries, because their expressive power is equivalent to that of the Select-Join-Project
queries in relational algebra [AHV95, UlI89]. For this reason, several algorithmic problems
concerning conjunctive queries have been investigated in depth. In particular, conjunctive-
query containment was recognized fairly early as a fundamental problem in database query
evaluation and optimization. Indeed, conjunctive-query containment is essentially the same
problem as conjunctive query evaluation; moreover, conjunctive-query containment can be
used as a tool in query optimization, since query equivalence is reducible to query contain-
ment.

Chandra and Merlin [CM77] studied the computational complexity of conjunctive query
containment and showed that it is an NP-complete problem. In recent years, there has
been renewed interest in the study of conjunctive query containment, because of its close
relationship to the problem of answering queries using materialized views [LMSS95, RSU95].
The latter has emerged as a central problem in integrating information from heterogeneous
sources, an area that lately has been the focus of concentrated research efforts (see [Ul197] for
survey). Since conjunctive-query containment is intractable in its full generality, researchers
have embarked on a search for tractable cases. These are obtained by imposing syntactic
or structural restrictions on the conjunctive queries (); and (), that serve as input to the
problem: “is Q1 C (27”. In particular, Saraiya [Sar91] showed that conjunctive-query
containment can be solved in linear time, if every database predicate occurs at most twice
in the body of ();. More recently, Chekuri and Rajaraman [CR97, CR98] showed that, for
every k > 1, conjunctive-query containment can be solved in polynomial time, if ), has
querywidth at most k and a query decomposition of (), of width k is available. The concept
of querywidth is closely related to the well-studied concept of treewidth of a graph (see
[vL90, Bod93]). It should be noted that queries of width 1 are precisely the acyclic queries;
thus, Chekuri and Rajaraman’s results extend the earlier work of Yannakakis [Yan81] and
Qian [Qia96] on query evaluation and containment for acyclic queries.

Starting with the pioneering work of Montanari [Mos74], researchers in artificial intelli-
gence have investigated a class of combinatorial problems that became known as constraint-
satisfaction problems (CSP). The input to such a problem consists of a set of variables,
a set of possible values for the variables, and a set of constraints between the variables;
the question is to determine whether there is an assignment of values to the variables that
satisfies the given constraints. The study of constraint satisfaction occupies a prominent
place in artificial intelligence, because many problems that arise in different areas can be
modeled as constraint-satisfaction problems in a natural way; these areas include Boolean
satisfiability, temporal reasoning, belief maintenance, machine vision, and scheduling (see
[Dec92, Kum92, Mes89, Tsa93]). In its full generality, constraint satisfaction is a NP-



complete problem. For this reason, researchers in artificial intelligence have pursued both
heuristics for constraint-satisfaction problems and tractable cases obtained by imposing re-
strictions on the constraints (see [MF93, Dec92, PJ97]).

What do conjunctive-query contaiment and constraint satisfaction have in common? De-
spite their very different formulation, it turns out that conjunctive-query containment and
constraint satisfaction are essentially the same problem. The reason is that they can be recast
as the following fundamental algebraic problem: given two finite relational structures A and
B, is there a homomorphism i : A — B7 Indeed, on the side of conjunctive-query contain-
ment, it is well known that Q; C Q, if and only if there is a homomorphism h : QY — QP
where QP is the canonical database associated with the query Q;, 1 = 1,2 [CM77]. On
the side of constraint satisfaction, a perusal of the literature reveals that all constraint-
satisfaction problems studied can be viewed as special cases of the above homomorphism
problem [FV93, FV99] (see also [Jead7]). It should be noted that several researchers, includ-
ing [Bib88, Dec90, GJCI4, PJI7], have observed that there are tight connections between
constraint-satisfaction problems and certain problems in relational databases. In particular,
Gyssens, Jeavons and Cohen [GJC94] pointed out that the set of all solutions to a constraint
satisfaction problem coincides with the join of certain relations extracted from the given
constraint-satisfaction problem. Thus, solving constraint-satisfaction problems and evaluat-
ing joins are interreducible. In turn, conjunctive-query evaluation and join valuation are also
reducible to each other [Ull89]. Since Chandra and Merlin [CM77] showed that conjunctive
query evaluation and conjunctive query containment are equivalent problems, this provides
a different (although less direct) way to establish the tight connection between conjunctive
query containment and constraint satisfaction. Nonetheless, it is fair to say that overall there
is little interaction between the community that pursues tractable cases of conjunctive query
containment and the community that pursues tractable cases of constraint satisfaction. One
of our main goals in this paper is to make the connection between conjunctive query contain-
ment and constraint satisfaction explicit, bring it to front stage and, thus, further enhance
the interaction between database theory and artificial intelligence.

As formulated above, the homomorphism problem is uniform in the sense that both re-
lational structures A and B are part of the input. By fixing the structure B, one obtains
the following non-uniform problem CSP(B): given a finite relational structure A, is there
a homomorphism h : A — B? Over the past twenty years, researchers in computational
complexity have studied such non-uniform problems in an attempt to determine for which
structures B the associated CSP(B) problem is tractable and for which it is intractable.
The first remarkable success on this front was obtained by Schaefer [Sch78], who pinpointed
the computational complexity of Boolean CSP(B) problems, in which the structure B is
Boolean (i.e., has the set {0,1} as its universe). Schaefer established a dichotomy theorem
for Boolean CSP(B) problems. Specifically, he identified six classes of Boolean structures
and showed that CSP(B) is solvable in polynomial time, if B is in one of these classes, but
CSP(B) is NP-complete in all other cases. Note that each Boolean CSP(B) problem can
be viewed as a generalized satisfiability problem. In particular, Schaefer’s [Sch78] dichotomy
theorem provides a coherent explanation for the computational complexity of Horn Sat-
isfiability, 2-Satisfiability, One-in-Three Satisfiability, and other such Boolean satisfiability
problems. After this, Hell and Nesetfil [HN90] established a dichotomy theorem for CSP(B)



problems in which B is an undirected graph: if B is 2-colorable, then CSP(B) is solvable
in polynomial time; otherwise, CSP(B) is NP-complete. Observe that if K} is a clique with
k nodes, then CSP(K}) is the k-COLORABILITY problem, & > 2. Thus, Hell and Nesettil’s
dichotomy theorem generalizes the results concerning the computational complexity of the k-
Colorability problem for each k > 2. Motivated by these dichotomy results, Feder and Vardi
[FV99] raised the question: is every CSP(B) problem either solvable in polynomial time
or NP-complete? Although they did not settle this question, Feder and Vardi [FV99] were
able to isolate two conditions that imply polynomial-time solvability of CSP(B) problems;
moreover, they argued that all known polynomially solvable CSP(B) problems satisfy one
of these conditions. The first condition asserts that the complement of the CSP(B) problem
at hand is expressible in Datalog (CSP(B) itself cannot be expressible in Datalog, because
it is not a monotone problem); this condition covers such known tractable cases as Horn
Satisfiability, 2-Satisfiability, and 2-Colorability. The second condition is group-theoretic
and covers Schaefer’s [Sch78] tractable class of affine satisfiability problems.

In general, non-uniform tractability results do not uniformize. Thus, tractability results
for each problem in a collection of non-uniform CSP(B) problems do not necessarily yield
a tractable case of the uniform constraint satisfaction problem (or of the conjunctive query
containment problem). The reason is that both structures A and B are part of the input to
the constraint satisfaction problem, and the running times of the polynomial-time algorithms
for CSP(B) may very well be exponential in the size of B. Thus, it is natural to ask:
which tractable cases of non-uniform CSP(B) problems uniformize and give rise to uniform
tractable cases of constraint satisfaction and, equivalently, to conjunctive-query containment.

Our main technical contribution in this paper is to show that several cases of tractable
non-uniform CSP(B) problems do indeed uniformize. We begin by examining the main
tractable cases of Boolean CSP(B) problems considered by Schaefer [Sch78]. These are the
cases where CSP(B) corresponds to a 2-satisfiability problem, a Horn satisfiability problem,
a dual Horn satisfiability problem, or an affine satisfiability problem. For all these cases,
uniform polynomial-time algorithms can be obtained by combining polynomial-time algo-
rithms that detect membership in these cases, build a corresponding Boolean formula, and
apply the polynomial-time algorithm for satisfiability of such formulas. It should be pointed
out, however, that the formula-building algorithms for 2-Satisfiability, Horn satisfiability,
and dual Horn satisfiability are in the worst case quadratic in the size of B. In turn, this
yields cubic-time algorithms for the corresponding uniform constraint-satisfaction problems.
We show here that a better bound can be achieved by designing algorithms that skip the
formula-building phase. Although these results are about Boolean constraint-satisfaction
problems, they turn out to have applications to conjunctive-query containment. For this, we
show that conjunctive-query containment problems can be binarized and reduced to Boolean
constraint-satisfaction problems. As a concrete application, we show that Sarayia’s [Sar91]
tractable case of conjunctive-query containment can be derived using this technique.

After this, we focus on the connections between Datalog and constraint satisfaction. As
mentioned earlier, Feder and Vardi [FV93, FV99] realized that the tractability of many non-
uniform CSP(B) problems can be globally explained by the fact that the complement of
each of these problems is expressible in Datalog. Using pebble-game techniques introduced
in [KV95], we show here that such non-uniform tractability results uniformize, as long as



Datalog programs with a bounded number of distinct variables are considered. Specifically,
we establish that, for every & > 1, there is a polynomial-time algorithm for testing whether
there is a homomorphism h : A — B, where A and B are two given relational structures
such that the complement of CSP(B) is expressible by a Datalog program with at most &k
distinct variables in each rule.

Up to this point, we have obtained tractable cases of the constraint satisfaction problem
“is there a homomorphism h : A — B?7” by imposing restrictions on the structure B. At
the level of conjunctive-query containment )y C ()2, this amounts to imposing restrictions
on the query ;. Our last result yields a tractable case of conjunctive-query containment
by imposing restrictions on the query (); it uniformizes another non-uniform tractability
result for CSP(B) problems in [F'V99]. Specifically, we consider queries of bounded treewidth
and establish that, for every & > 1, there is a polynomial-time algorithm for testing whether
Q)1 C @)y, where ()5 is a conjunctive query of treewidth at most k. For this, we show that
every conjunctive query of treewidth k — 1 is expressible in FO*, the fragment of first-order
logic with at most & distinct variables, and then apply a polynomial-time algorithm for
evaluating FO* queries. (See Section 5 for a discussion of related work.)

2 Preliminaries

Formally, a n-ary conjunctive query () is a query definable by a positive existential first-
order formula ¢(X1,..., X, ) having conjunction as its only Boolean connective, that is, by
a formula of the form

(32) ... BZ)O(X o X Zas oo o),

where ¢(Xy,..., X, Z1,...,Z,) is a conjunction of extensional database predicates. The
free variables Xi,..., X, of the definining formula are called the distinguished variables of
(). Such a conjunctive query is usually written as rule, whose head is Q(X1,...,X,) and

whose body is ¢(X1,..., X, Z1,..., Zy). For example, the formula
(32,37:)(P( X1, Z1, Z2) N R(Zs, Zs) N R(Zs, X3)
defines a conjunctive query (), which as a rule becomes
Q(X1, Xs) - P(X1, 71, 73), R(Z2, Z3), R(Z5, X3).

If D is a database, then Q(D) is the n-ary relation on D obtained by evaluating the query @
on D, that is, the collection of all n-tuples from D that satisfy the query. Note that we need
to choose an order for the free variables. In the example above we chose the order X, X,
but the order X5, X is also acceptable. For example, we can write the query as the rule:

Q(X27X1) - P(leZ17Z2)7R(Z27Z3)7R(Z37X2)‘

Let ()1 and ()2 be two n-ary queries having the same tuple of distinguished variables.
If Q1(D) C Q2(D) for every database D, we say that @ is contained in @2, and write



Q1 C (2. The conjunctive-query containment problem asks: given two conjunctive queries
Q1 and Qq, is Q1 € ()97

It is well known that conjunctive-query containment can be reformulated as a conjunctive-
query evaluation problem and also as a homomorphism problem. The link to these two other
problems is via the canonical database D® associated with Q. This database is defined as
follows. Each variable occurring in @ is considered a distinct element in D?. Every predicate
in the body of @ is a predicate of D? as well; moreover, for every distinguished variable X;
of @, there is a distinct unary predicate P; (not occurring in (). As regards the facts of
D?, every subgoal in the body of ) gives rise to a tuple in the corresponding predicate
of D9, and if X; is a distinguished variable of Q then P;(X;) is a fact of D®. Thus, in
the example above, the canonical database consists of the facts P(Xy, 71, %2), R(Z2, Zs),
R(Z3,X32), Pi(X1), Po(X2). Recall that a homomorphism between two relational structures
A and B over the same vocabulary is a mapping h : A — B such that if (¢ci,...,cx) € P4,
then (h(c1),...,h(cr)) € PB, where P is any predicate symbol in the vocabulary, and P4
and PP are the interpretations of P on A and B. The relationship between conjunctive
query containment, conjunctive query evaluation, and homomorphisms is provided by the
following theorem.

Theorem 2.1: [CMT77] Let Q1 and Q3 be two n-ary conjunctive queries having the same
tuple of distinguished variables. Then the following statements are equivalent.

o ()1 C Q.

o (Xi,...,X,) € QD) where (X1,...,X,) is the tuple of the distinguished variables
of Q1.

o There is a homomorphism h : D9 — D%,

Note that every database D gives rise to a Boolean conjunctive query Q” whose body con-
sists of the conjunction of all facts in D, where we view the elements of the databases as
existentially quantified variables. In turn, this makes it possible to show that both con-
junctive query evaluation and the existence of homomorphism between two finite relational
structures are reducible to conjunctive query containment. In particular, there is a homo-
morphism h : A — B if and only if Q¥ C Q*.

Let us now focus on the constraint-satisfaction problem. As mentioned earlier, this
problem is usually formulated as the question: does there exists an assignment of possible
values to given variables, so that certain constraints are satisfied? Instead, we will consider
an alternate elegant formulation in terms of homomorphisms. Let A and B be two classes
of finite relational structures. The (uniform) constraint-satisfaction problem CSP(A,B)
is the following decision problem: given a structure A € A and a structure B € B, is
there a homomorphism h : A — B? Note that, by its very definition, each CSP(A,B)
problem is in NP. We write CSP(B) for the special uniform case CSP(A, B) in which A is
the class of all finite relational structures over the vocabulary of B. If B consists of a single
structure B, then we write CSP(A, B) instead of CSP(A,{B}). We refer to such problems
as non-uniform constraint satisfaction problems, because the inputs are just structures A

in A. We also write CSP(B) for the special non-uniform case CSP(A, B) in which A is



the class of all finite relational structures over the vocabulary of B. Note that if B is a
Boolean structure, i.e., it has {0, 1} as its universe, then CSP(B) is a generalized satisfiability
problem in the sense of Schaefer [Sch78] (see also [GJ79, LO6, page 260]). For example, if
B =({0,1},{(1,0,0),(0,1,0),(0,0,1)}, then CSP(B) is equivalent to Positive One-in-Three
3-SAT. Thus, CSP(B) may very well be an NP-complete problem.

We are interested in identifying classes A and B such that CSP(A,B) is solvable in
polynomial time. Such classes give rise to tractable cases of the constraint satisfaction
problem and, hence, of the conjunctive query containment problem as well. For the past
twenty years, researchers in computational complexity have investigated CSP(B) problems,
and have discovered several polynomial-time cases. As a general rule, however, non-uniform
tractable results do not uniformize. Indeed, it is not hard to construct classes A and B of
finite relational structures such that CSP(A,B) is NP-complete, but for each B € B the
non-uniform CSP(A, B) problem is solvable in polynomial time. For example, let K be the
class of all finite cliques, and let G be the class of all finite undirected graphs. It is clear that
CSP(K,G) is NP-complete, since it is equivalent to the CLIQUE problem. For every fixed
finite undirected graph GG, however, one can determine in a constant number of steps whether
GG has a clique of size k. This example is not isolated, since other NP-complete problems
can be viewed this way. In particular, if P is the class of all finite paths, then CSP(P,G)
is equivalent to the Hamiltonian Path Problem, whereas for every finite graph G there is a
linear-time algorithm for CSP(P, (7). These negative results notwithstanding, in the sequel
we will establish that several interesting non-uniform tractable cases do uniformize and give
rise to tractable cases of constraint satisfaction and conjunctive query containment.

3 Boolean Constraint Satisfaction

Schaefer studied the computational complexity of Boolean CSP(B) problems, for which
he established a dichotomy [Sch78]. More specifically, he identified six classes of Boolean
structures and showed that CSP(B) is solvable in polynomial time, if B is in one of these
classes, but CSP(B) is NP-complete in all other cases. This classification is in terms of
defining formulas. A k-ary Boolean relation R can be viewed as a set of truth assignments
on the propositional variables py,...,pr. Thus, for each k-ary Boolean relation R there is
a propositional formula dr over the variables p, ..., py such that R = models(dr). We call
dr a defining formula of R, and we say that R is definable by dr. Schaefer showed that for
a Boolean structure B, we have that CSP(B) is in PTIME if one of the following six cases
holds:

1. each relation in B contains the tuple (0,...,0),
2. each relation in B contains the tuple (1,...,1),

3. each relation in B is Horn (i.e., definable by a CNF formula with at most one positive
literal per clause),

4. each relation in B is dual Horn (i.e., definable by a CNF formula with at most one
negative literal per clause),



5. each relation in B is bijunctive (i.e., definable by a 2-CNF formula),

6. each relation in B is affine (i.e., definable by a conjunction of linear equations)."

Furthermore, Schaefer established that if B is not in any of these six classes, then CSP(B)
is NP-complete.

We say that a Boolean structure B is a Schaefer structure if B is in at least one of
the above six classes, in which case CSP(B) is solvable in polynomial time. We call the
class of all Schaefer structures Schaefer’s class, denoted SC. Our main result in this section
is that CSP(SC) is solvable in polynomial time, which means that Schaefer’s tractability
results completely uniformize. As a first step, we need to show that structures in SC can be
recognized in polynomial time. This follows from results in [DP92, Sch78§].

Theorem 3.1: The class SC is recognizable in polynomial time.

Proof: The first two cases are trivially recognizable. Schaefer showed that a Boolean
relation R is bijunctive if and only if the following condition holds: if ¢;,?5,t3 € R, then
(t1VE2)A(t2VEs)A(t1VEs) € R (here Boolean operations are applied to tuples componentwise).
In addition, Schaefer showed that a Boolean relation R is affine if and only if the following
condition holds: if 1,153,135 € R, then (t; & t2 & t3) € R. Finally, Dechter and Pearl [DP92]
showed that a Boolean relation R is Horn (resp., dual Horn) if and only if the following
condition holds: if ¢;,¢3 € R, then {; Aty € R (resp., t; V 13 € R).? Clearly, each of these
conditions can be checked in polynomial time. 1

We say that a relation R is a trivial Schaefer relation if it is covered by the first two cases
of Schaefer’s classification, and we say that R is a nontrivial Schaefer relation if it is covered
by the four interesting cases of Schaefer’s classification (i.e., Horn, dual Horn, bijunctive,
and affine). In the latter cases, the relation R is definable by a formula dr with a certain
syntactical structure. The next step is to show that, given a nontrivial Schaefer relation R,
we can construct a defining formula i in polynomial time.

Theorem 3.2: There is a polynomial algorithm that constructs for each nontrivial Schaefer
relation R a defining formula dg.

Proof: There are four cases to consider. Dechter and Pearl [DP92] showed how to construct
dgr in polynomial time, when R is Horn or dual Horn. It remains to deal with the cases that
R is bijunctive or affine.

Let R be a k-ary bijunctive relation. Then there is a 2CNF formula « over the proposi-
tional variables {p1,...,pr} such that R = models(a). If ¢ is a 2-clause over py,..., pg,
we say that R satisfies ¢, denoted R |= ¢, if R C models(¢). Consider the formula
0r = Anrpe¢, where the conjunction ranges over all 2-clauses ¢ over {pi,...,pr}. We
claim that R = models(dr) and, consequently, dr is a defining formula of R. Clearly,
R C models(dr). Moreover, if ¢ is a conjunct in «, then R satisfies ¢. Thus ¢ is also a
conjunct of ég and so models(dr) C models(a) = R, which implies that R = models(dr).
Clearly, dr can be constructed in time O(||R|| - k?).

LA linear equation is a formula of the form (p;, ®pi, & ... D p;,) ¢ falseor (p;, Dpi, B ... B p;,) & true.
2For precursors of this result see [McK43, Riv74].



Let R be a k-ary affine relation. Note that every linear formula (p;, & p;, &. . .Bp;,) <> false
(resp., <> true) can be viewed as the equation p;, + pi;, + ...+ p;, = 0 (resp., = 1) over the
Boolean field. Let R = {(t,1)|t € R}. Each linear equation satisfied by R corresponds
to a Boolean (k + 1)-vector a = (ay,...,axgs1) such that a1ty + ... 4 apy1tp4r = 0, for each
t = (t1,...,tk41) € R'. Thus, the set of such vectors a is the nullspace N/ of R'; that is,
the vector space of solutions to the homogeneous linear equation system R'a = 0 over the
Boolean field, where R’ is viewed as a Boolean |R| x (k + 1) matrix (note that |R| = |R'|).
By the Fundamental Theorem of Linear Algebra, the dimension of the space Np/ is at
most min(k+ 1, |R|). By Gaussian elimination, we can convert R’ to a row-echelon matrix in
polynomial time and obtain a basis of Np/, whose size is at most min(k+1, | R|) [KW98]. Each
vector a = (ay,...,ax+1) in the basis corresponds to a linear formula (p;, G pi, B ... B p;,) <
false (or, «» true) that is satisfied by R. We claim that the conjunction dg of these formulas
constitutes a defining formula of R. Clearly R C models(ér). Moreover, we already observed
that each linear equation e satisfied by R corresponds to a vector a. in Np/. Thus, a. can
be obtained as a linear combination of basic vectors; in other words, ¢ is a consequence of

dr and so models(dr) C R. 1

We can now prove the main result of this section.
Theorem 3.3: CSP(SC) is solvable in polynomial time.

Proof: Suppose we are given a pair A, B of relational structures, where B € SC. We have
to determine whether there is a homomorphism from A to B. By Theorem 3.1, we can
determine in polynomial time which of the six tractable cases in Schaefer’s classification
describes B. If B is a trivial Schaefer structure, then there is a homomorphism from A to
B, so we can assume that B is a nontrivial Schaefer structure. For each k-ary relation () in
A, let " be the corresponding relation in B (i.e., @) and Q' are the interpretations of the
same relation symbol). Apply Theorem 3.2 to construct dg (recall that d¢g: is a formula over
{p1s- o}

We can view each element of A as a propositional variable. For a tuple t = (¢1,...,t;) €
@, let dgi(t) be the formula obtained from dgs by substituting ¢; for p;, 1 < ¢ < k. Let
v = Niegdq(t). Note that the length of g is O(|Q]|dg/]). Let w4 = Ageapq. We
claim that there is a homomorphism from A to B precisely when ¢4 is satisfiable. Indeed,
suppose that there is a homorphism h : A — B. Consider the truth assignment 7 defined
by 7(t;) = h(t;), for each element t; of a tuple t € ). Choose a specific tuple t € Q. As
h(t) € @', the truth assignment 7" defined by 7/(p;) = h(t;) satisfies the formula g/, so 7
satisfies dg/(t). It follows that 7 satisfies ¢g. Conversely, suppose that the truth assignment
T satisfies pg. Define the homomorphism h(t;) = 7(p;) for each element ¢; of a tuple t € Q.
Choose a specific tuple t € (). As 7 satisfies d¢/(t), the truth assignment 7’ defined by
7'(pi) = 7(1;) satisfies dg,. It follows that h(t) € Q'. Note, however, that d4 is a conjunction
of Horn clauses, dual Horn clauses, 2-clauses, or linear formulas, depending on the type of
B. Thus, satisfiability of 4 can be checked in time that is linear in the length of ¢4 in
the first three cases [BB79, DG84, Pap94], and cubic in the length of ¢4 in the fourth case
[Sch78]. 11



When R is an affine relation, the length of the defining formula dr constructed above is
bounded by the size of R. In contrast, if R is bijunctive, Horn, or dual Horn, then the length
of g is proportional to O(k?) (where k is the arity of R), which can be quite larger than
the size of R. Thus, the complexity of our algorithm is cubic in these cases. It is possible,
however, to skip the formula-building stage of our algorithm and design a direct algorithm
that essentially tests for satisfiability of ¢4 without explicitly constructing it.

Theorem 3.4: Let B be the class of Horn, dual Horn, or bijunctive structures. Then CSP(B)
is solvable in quadratic time.

Proof: We first describe the algorithm for the Horn case (an analogous algorithm works for
the dual Horn case). Let R be a k-ary Horn relation. Take [k] = {1,...,k}. For X C [k] and
J € [k], we say that R satisfies X — j if R C models(\;cx pi — p;). To determine if there is
a homomorphism from a structure A to a Horn structure B, the algorithm maintains a set
One of elements of A that have to be mapped to 1. Initially, One is empty. Let t be a tuple
in a relation @) of A. We define One(t) = {i|t; € One}. The algorithm repeatedly selects a
tuple t in a relation @ of A and then adds ¢; to One, if )’ satisfies One(t) — j, where Q' is
the relation in B that corresponds to (). When One cannot be enlarged anymore, there is
a homomorphism from A to B if and only if for each tuple t in a relation @) of A, there is
a tuple t’ in the corresponding relation @’ of B such that One(t) C One(t’). To prove this
claim note that every element in One clearly has to be mapped to 1. Thus, this condition
is necessary. To see that it is also sufficient, consider the homomorphism h such h(t;) = 1,
if t; € One, and h(t;) = 0, if t; € One. We claim that h(t) € Q' for each t € (). Indeed,
consider the collection T' of all tuples t’' € @)’ such that One(t) C One(t’). We know that 7' is
not empty. Let u = AT (i.e., the conjunction of all tuples in T'). Since @) is a Horn relation, it
is closed under conjunction, sou € T' C @)’ (see proof of Theorem 3.1). If One(t) = One(u),
we are done. Otherwise, there is some j € [k] such that j € One(u) — One(t). But then @’
satisfies One(t) — 7, which means that the algorithm would have added ¢; to One, in which
case we would have j € One(t) — contradiction.

We now claim that this algorithm can be implemented to run in time O(||A]| - || B]|]). A
naive implementation would take time O(||A||* - || B]|), since One can be extended at most
||A]| times, and each extension of One takes time O(||A|| - || B||), as we have to find a tuple
t € (), requiring an external loop over all tuples of A, and add ¢; to One, if )" satisfies
One(t) — 7, requiring an internal loop over all tuples of B. A more efficient implementation
would focus on the elements of A that are to be added to One. In the preprocessing stage,
we build linked lists that link all occurrences in A of an element a. When « is added to One,
we traverse the list for a and process all tuples t in which a occur. After this, we update
One(t) and then, by scanning B, we check whether this triggers the addition of another
element to One. Thus, every occurrence of an element of A is visited at most once, resulting
in a running time of O(||A]| - ||B||).- (This implementation is inspired by the linear-time
algorithms for Horn satisfiability [BB79, DG84].)

Consider now the bijunctive case. A linear-time algorithm for 2-CNF formulas proceeds
in phases [LP97]. In each phase, we choose an unassigned variable v and assign an arbitrary
truth value to it. We then use the binary clauses in the formula to propagate the assignment.
If = 1s assigned 1 and we have a clause =z V y, then y is assigned 1, and if we have a clause
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—x V —y, then y is assigned 0. Similarly, if z is assigned 0 and we have a clause z V y, then y
is assigned 1, and if we have a clause = V =y, then y is assigned 0. If this results in a variable
z assigned both 0 and 1, then we undo all assignments of this phase, and we try to assign
to u the other truth value. If both attempts fail, then the formula is unsatisfiable. If either
the first or the second attempt is successful, then we proceed to the next phase. As each
variable is assigned a truth value at most twice, the algorithm is linear.

Given the pair A, B of structures, where B is bijunctive, we can emulate the above
algorithm. The variables are the elements of A. The clauses are implied by the structure B
(see proofs of Theorems 3.2 and 3.3). The algorithm proceeds in phases. In each phase, we
choose an unassigned element a of A and assign to it a value ¢ € {0,1}. We then use the
structure B to propagate the assignment. Suppose that a = t; for a tuple t in a relation @)
of A. Let T be the set of all tuples t’ in the corresponding relation @)’ of B such that
% = 1. Suppose now that for some j € {0,1} we have that ¢} = j for all t’ € Ty x,; in this
case, we know that the element ¢; must be assigned the value j. If this propagation results in
an element b of A assigned both 0 and 1, then we undo all assignments of this phase, and we
try to assign the value 1 —1 to a. If both attempts fail, then there is no homomorphism from
A to B. If the first or second attempt are successful, then we proceed to the next phase.
Note that each element is assigned value at most twice, but propagating a value requires
scanning the pairs ¢}, 1, of all tuples t' € ). Listing components of a tuple without listing
the whole tuple, requires preprocessing the structures to construct the appropriate linked
lists. Thus, the complexity of our algorithm is O(||A|| - |B| + || B||). (Note that ||B|| is the
size of the encoding of B, while |B| is the number of tuples in B.) 1

What are the implications of Theorem 3.3 for conjunctive-query containment? At first
sight, 1t seems that its applicability is limited, since Boolean constraint-satisfaction problems
correspond to testing whether )1 C @3, where 1 uses only two variables (corresponding to
the Boolean values 0 and 1), and thus seems very restricted. Nonetheless, the critical obser-
vation is that every instance (A, B) of a constraint-satisfaction problem can be converted,
with a small blow-up, to a Boolean constraint-satisfaction problem (A;, B;) by encoding all
elements of B in binary notation. Specifically, if n is the number of elements in B, then we
can encode every element of B by a bit vector of length m = [logn]. Thus, a k-ary relation
Q' of B becomes a km-ary Boolean relation @, of B,. Note that since one needs n[logn]|
bits to encode n elements, there is essentially no blow-up in this conversion. We then replace
every element a in A by an m-vector (ay,...,a,) consisting of m distinct copies of a. For
each relation () of A, this yields a km-ary relation (). This conversion blows up the size of
the instance by a factor of [logn], where n = |B].

Lemma 3.5: There is a homomorphism from A to B if and only if there is a homomorphism
from Ay to By.

Proof: We can assume that the elements of B are 1,...,n. Suppose first that there is a
homomorphism h : A — B. For each element a of A, if h(a) = j, then define h;(a;) to be
the 2-th bit of 7, for 2 = 1,...,m. It is easy to see that A, is a homomorphism from A, to
By. Suppose now that there is a homomorphism hy : Ay — B,. For each element a of A,
define h(a) to be the number whose binary notation is (hy(ay), ..., hs(an)). It is easy to see
that h is a homomorphism from A to B. 1
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We refer to the process of converting a constraint-satisfaction problem to a Boolean constraint-
satisfaction problem as Booleanization.

We now present an application of this technique. A two-atom conjunctive query is one
in which every database predicate occurs at most twice in the body.

Proposition 3.6: [Sar91] Testing whether a two-atom conjunctive query @y is contained in
a conjunctive query Qs can be done in polynomial time.

Proof: By Lemma 3.5, we can Booleanize the problem and reduce it to testing the existence
of a homomorphism from a structure A to a Boolean structure B, where every relation in
B has at most two tuples. Recall that if B has n elements, then the conversion increases
the arity of the relations in A by a factor of [logn]. By the criterion for bijunctivity (see
the proof of Theorem 3.1, every relation in B is indeed bijunctive. By Theorem 3.3 and
Theorem 3.4, the test can be done in time O((]|Qz|| - log ||Q1]]) + ||Q1]])- 1

[t is worth noting that the proof in [Sar91] yields a slightly better upper bound, as it is shown
there that testing whether a two-atom conjunctive query (), is contained in a conjunctive
query ()2 can be done in time O(||Q1|| + [|Qz[])-

We conclude this section by presenting two examples that provide additional evidence
for the power of Booleanization.

Example 3.7: 2-Colorability

Let B be a graph consisting of two nodes and a single undirected edge between them.
It is easy to see that CSP(B) is the class of all 2-colorable graphs, and thus a tractable
constraint-satisfaction problem. We now show that this well known tractability result can
be derived via Booleanization. Indeed, B gives rise to the Boolean structure B’ = ({0, 1}, R),
where R = {(0,1),(1,0)}. This structure is both bijunctive (since R has cardinality 2) and
affine (since R is the set of solutions of (x & y) <> true). Thus, Booleanization provides two
different explanations as to why 2-Colorability is solvable in polynomial time. I

Example 3.8: CSP(CYy)
Let C4 be a directed cycle with four nodes, that is Cy = ({a,b,¢,d}, ), where £ =
{(a,b),(b,¢),(c,d),(d,a)}. If we Booleanize Cy using the labeling

a 00, b— 01, ¢ — 10, d — 11,
then we obtain the Boolean structure € = ({0,1}, E’), where
E' = {(0,0,0,1),(0,1,1,0),(1,0,1,1),(1,1,0,0)}.

Clearly, £’ is neither 0-valid nor 1-valid. Using the criteria in the proof of Theorem 3.1, it
can be easily verified that £’ is not Horn, dual Horn or bijunctive, but it is an affine Boolean
relation. For instance, £’ is not Horn (resp. dual Horn), because the componentwise A (resp.
V) of the first two tuples of E’is (0,0,0,0) (resp. (0,1,1,1)), which is not in E’. Similarly,
I’ is not bijunctive, because the componentwise majority of the first three tuples of £’
is (0,0,1,1), which is not in E’. Finally, E’ is affine, because it is closed by taking the
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componentwise @ of arbitrary triples in E’. Alternatively, £’ can be seen to be affine by
observing that £’ is the set of solutions of the system

(x By P z) « false, (y & w) <> true.

It follows that CSP(C}4) is solvable in polynomial time. Naturally, this could also have been
seen directly by observing that CSP(CYy) is 2-Colorability in disguise. Indeed, since homomor-
phisms compose and since (y is 2-colorable, it is easy to see that there is a homomorphism

from a given a directed graph G to Cy if and only if G is 2-colorable [HN90]. I

It should be pointed out that the way Booleanization is carried out may give rise to a
Schaefer structure of different type. Specifically, we claim that there is a labeling of C'y that
results into a Boolean structure that is both affine and bijunctive. To see this, consider the
labeling

a 00, b— 10, c— 11, d — 01.

The resulting Boolean structure is B” = ({0,1}, "), where
E" ={(0,0,1,0),(1,0,1,1),(1,1,0,1),(0,1,0,0).

We leave it as an exercise for the reader to verify, using the criteria in the proof of Theorem
3.1, that £” is neither Horn nor dual Horn, but it is both bijunctive and affine.

4 Datalog and Constraint Satisfaction
A Datalog program is a finite set of rules of the form
to - tl,. .. ,tm,

where each t; is an atomic formula R(x1,...,2,). The relational predicates that occur in the
heads of the rules are the intensional database predicates (IDBs), while all others are the
extensional database predicates (EDBs). One of the IDBs is designated as the goal of the
program. Note that IDBs may occur in the bodies of rules and, thus, a Datalog program is a
recursive specification of the IDBs with semantics obtained via least fixed-points of monotone
operators (see [UlI89]). Each Datalog program defines a query which, given a set of EDB
predicates, returns the value of the goal predicate. Moreover, this query is computable in
polynomial time, since the bottom-up evaluation of the least fixed-point of the program
terminates within a polynomial number of steps (in the size of the given EDBs) (see [U1189]).
Thus, expressibility in Datalog is a sufficient condition for tractability of a query.

If B is a finite relational structure and A is a class of structures, then we write ~CSP(A, B)
for the complement of CSP(A, B), that is, the class of structures A such that there is no
homomorphism h : A — B. Feder and Vardi [FV99] provided a unifying explanation for
the tractability of many non-uniform CSP(B) problems by showing that the complement
of each of these problems is expressible in Datalog. Our aim in this section is to obtain
stronger uniform tractability results for the collections of constraint satisfaction problems
whose complements are expressible in Datalog with a bounded number of distinct variables.
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For every positive integer k, let k-Datalog be the collection of all Datalog programs in
which the body of every rule has at most & distinct variables and also the head of every rule
has at most k& variables (the variables of the body may be different from the variables of
the head). For example, the query Non-2-Colorability is expressible in 4-Datalog, since it is
definable by the goal predicate () of the following Datalog program

P(X,Y) :— E(X,Y)
P(X,Y) :— P(X,Z),E(Z,W), E(W,Y)
Q :— P(X,X)

It is well known that Datalog can be viewed as a fragment of least fixed-point logic LFP
(see [CH85, AHV95]). In turn, on the class of all finite structures LFP is subsumed by
the finite-variable infinitary logic £% = U, L , where £*  is the infinitary logic with
arbitrary disjunctions and conjunctions, but with at most k distinct variables (see [KV92]).
In the present paper, we are interested in fragments of £*  and £  that are suitable for
the study of Datalog. For every k > 1, let L%  be the existential positive fragment of L%
with & variables, that is, the collection of all formulas that have at most & distinct variables
and are obtained from atomic formulas using infinitary disjunction, infinitary conjunction,
and existential quantification only. Let () be a query on the class of all finite structures over
a fixed vocabulary o. In [KV95], it was shown that if @) is expressible in k-Datalog, then @
is also definable in 3L  for some &' > k. Moreover, in [KV96] it was shown that if Q is
expressible in LFP* (least fixed-point logic with k variables), then @) is also expressible in
LF . As a matter of fact, the proof can be adapted to yield the following result, which is

optimal as regards the number of distinct variables used.

Theorem 4.1: Let k be a positive integer. Every k-Datalog query is expressible in L% .
Thus, k-Datalog C AL .

In what follows, we present a self-contained proof of the preceding Theorem 4.1. For this,
we first have to give precise definitions of the concepts involved and establish a number of
intermediate results.

Let o be a fixed relational vocabulary. For every k > 1, we write FO* for the collec-
tion of all first-order formulas with at most & distinct variables. We also write IFOF for
the existential positive fragment of FOF, i.e., the collection of all first-order formulas that
have at most £ distinct variables and are obtained from atomic formulas using disjunction,
conjunction, and existential quantification only.

A system of first-order formulas is a finite sequence

O1(1y @y, Sty ey 1)y or(@1, oy Ty Sty ST)

of first-order formulas such that each S; is a relation symbol of arity n;, 1 < </, not in the
vocabulary o. If A is a o-structure, then every such system gives rise to an operator ® from
sequences (Ry,..., R;) of relations R; of arity n;, 1 <i <[, on the universe A to sequences
of relations on the universe of A of the same arities. More precisely,

(I)(Rl, . .,R[) - ((I)l(Rl, . .,R[), . .,(I)[(Rl, . .,R[)),

14



where for every ¢ </
Q,(Ry,. .., R)=A{(ar,...,an,) : AEwi(xi/ar, ..., x0 /a0, S1/R1, ..., S1/R)}.

The stages @ = (®7',...,®]"), m > 1, of ® on a o-structure A are defined by the
following induction on m simultaneously for all + < {:

Ol =,(0,...,0), OI =0 (7, B), i<, m>1.

If each formula ¢;(x1,...,2,,51,...,5), 1 <1 <, of a system is positive in the relation
symbols Sy,...,5;, then the associated operator ® is monotone in each of its arguments
and, as a result, the sequence of its stages is increasing in each component. Thus, for every
finite structure A the sequence of stages of ® converges after finitely many iterations, i.e.,
there is a positive integer mg such that ™ = &7 for every m > mgy. Moreover, the
sequence ¢ = (O ... &) is the least fixed-point of the operator ® on A, i.e., the
smallest sequence (Ry,..., R;) of relations on A such that ®(Ry,..., R)) = (Ry,..., R) (see
[AHV95]). We call this sequence the least fized-point of the system @1, ..., ¢; and denote it
by (¢7°,...,¢7°). Usually, one is interested not in the entire sequence (¢5°,...,¢°), but in
only one of its components; for instance, in the last component ¢7°.

Least fixed-point logic LFP is the extension of first-order logic that has as formulas the
components ¢ of systems ¢1,...,¢; of positive first-order formulas. For every k > 1, let
LFP” be the fragment of LFP obtained by taking the components of least fixed-points of
systems of positive FO*-formulas. Similarly, ILFP” is the fragment of LFP obtained by
taking the componets of least fixed-points of systems of positive IFO*-formulas.

Chandra and Harel [CH85] showed that Datalog has the same expressive power as the
existential fragment of LFP. More precisely, a query is expressible in k-Datalog if and only
if it is ILFP*-definable. In fact, every k-Datalog program p can be “simulated” by a system
of positive IFO*-formulas, and vice versa. Intuitively, every IDB predicate P of p gives rise
to an IFO"formula that is the disjunction of the positive existential formulas that define
the bodies of the rules having the IDB predicate P as head. The resulting system of IFO*-
formulas simulates the k-Datalog program p “step-by-step”, that is to say, each stage of the
system corresponds to a stage in the “bottom-up” evaluation of p. Consequently, to prove
Theorem 4.1 suffices to establish that ILFP* C 3£* | which amounts to establishing that

if ©1,...,p; is a system of positive IFO*formulas, then each component ¢° of the least
fixed-point of this system is 3L -definable.
In the sequel, we assume that for every £ > 1 the variables xy,...,x; are the & distinct

variables of the logics IFOF and 3LF_ .

Lemma 4.2: Let k be a positive integer, let m: {1,... k} — {1,... k} be a function, and
let Q) be a query.

o IfQ is AFO*-definable, then the query Q. is also AFOF-definable, where for every finite

o-structure A and every sequence (ay,...,ay) of elements from the universe of A

(alv .- '7ak) S QW(A) — (aﬂ(l)v .- '7a7r(k)) S Q(A)
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o IfQ is ALK -definable, then the query Q. is also AL, -definable.

Proof: We will show that for every function = : {1,... k} — {1,...,k} and for every
formula (1, ..., z) of AFO* (vesp., AL ) there is a formula @, (1, ..., ;) of IFOF (resp.,
3Lk ) such that for every o-structure A and every sequence (ay,...,a;) of elements from
the universe of A

AEor(ri/ar, ... xnfar) = A= o(x1/arqy, . Tp/anm))-

The proof is by induction on the construction of IFO*-formulas (resp., ALF formulas)
simultaneously for all functions .

o If o(xy,...,24) is the formula x; = x; for some ¢,5 with 1 < ¢ < 57 < k, then
Or(21,...,21) is the formula 2,y = 2.3

o If¢g:{l,....r} — {1,...,k} is a function, R is a relation symbol in o of arity r,
and @(x1,...,2;) is the atomic formula R(zqa),...,Zer)), then or(z1,... ) is the
formula R(x(4(1)), -+ - Tr(q(r)))-

o If o (x1,...,2x) is of the form ¢ (aq,...,x5) A x(21,...,2k), then @ (21,...,21) is the
formula (21, ..., 2p) Axa(@1, .. 2n). Hor(ey, ... 2p) is of the form Ayeg (21, .., 28),
then then @r(x1,...,2;) is the formula Ayecq ¥x(21,..., 7). The case of disjunction
is handled in a similar manner.

e Finally, assume that ¢(xq,...,zx) is a formula of the form (3x;)¢ (x4, .., x) for some
j < k. There are two cases to consider. Suppose first that there is no j' such that
J <k, 3 # j,and 7(5) = 7(j’). Then the desired formula ¢, (x1,...,xx) is the
formula (Jz,(;y)¢r(21,...,2%). Suppose on the other hand that there is some ;" such
that 3/ <k, j'# j, and 7(j) = 7(j’). Then there is some j” < k such that j” is not in
the range of m. Let n": {1,....k} — {1,...,k} be the function such that 7'(¢) = 7 (¢),
if ¢ # j, and 7'(y) = 7”. By applying the induction hypothesis to the function 7’
and to the formula (xy,...,21), we obtain a formula ¢ of IFO* such that for all
o-structures A and all sequences of elements (a1, ..., a;) from the universe of A

AEYu(eyfay, ... opfar) <= AEY(x1/avqy, .. 2k aom)).

Then the desired formula ¢, (21, ..., zx) is the formula (Fa;n )b (xe, ... 25). 11

We are now ready to show that ILFP* C 3£ | for every k > 1, which will imply that
k-Datalog C 3Lk .

Theorem 4.3: Let k, ny,...,n; be positive integers such that n; < k for every 1 <, let
St1,...57 be relation symbols not in the vocabulary o and having arities ny,...,n;, and let

O1(1y @y, Sty ey 1)y or(@1, oy Ty Sty ST)

be a system of positive IFOF -formulas over the vocabulary cU{Sy, ..., S;}. Then the following
are true for the above system and for the operator ® associated with it.
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o For every m > 1, each component ®7, 1 < i <, of the stage @™ = (®7",..., ®]") is
definable by an IFOF-formula on all o-structures (finite or infinite).

o Fach component ©°, 1 < i <, of the least fizred-point (p°,...,¢7°) of the system is
definable by an ALY -formula on all o-structures (finite or infinite).

Proof: Assume first that n; = k for all + <, which means that each S; is a k-ary relation
symbol not in ¢ and each ¢;(x1,..., 2, 51,...,5), 1 <1 <k, is a formula of JFO* over
the vocabulary o U {S7,...,5}. By induction on m simultaneously for all i < [, we will
show that each component @7 of every stage ®” is definable by a formula ¢ (x4, ..., x)) of
JFO*. The claim is obvious for m = 1, since each component ®! of the stage ®' is definable
by the 3FO* formula (1, ..., 24, 51/0,...,5/0), 1 < i < [. Assume now that there are
FFO*-formulas @ (x1,..., k) that define the components @7, 1 < i < m of the stage ™,
which means that for every structure A and every sequence (ay,...,ax) of elements from the
universe of A

(a1,...,a) € O <= (v1/ar,...,xxfar), 1 <i<|.
Let us consider the components ®7"*! of the stage @™+, which are defined by
(ar,...,ap) € M = A= (i /a1, ..., xx/ar, S1/OT, ..., Si/®).

Every occurrence of each relation symbol S;, 1 < 7 <[, in the formulas of the system is in
a subformula of the form S;(xq),...,2xx)) for some function 7 : {1,... k} — {1,... k}.
Since each relation symbol Sy, ..., 5 has only positive occurrences in the formulas of the
system, by using the induction hypothesis and repeatedly applying Lemma 4.2, for each
J <l and each such function 7 we obtain a formula ¢7' (z1,...,21) of JFO* such that

(ar)s- s anp) € O = AE pja(ai/ar, ... x5/ak).

: ,S1) by sub-
stituting each subformula Sj(2xx), ..., %)) by the corresponding formula ¢ (21, ..., z).
Note that we are using the formulas ¢’ (z1,..., ) instead of the formula ¢ (zy,. .., zp),
so that these substitutions can be carried out without renaming variables or introducing
new variables. Thus, for every 7 < m the formula /"' (z;,..., ) is an FFO*-formula that
defines the component ® of the stage "1,

Consider next the case that n; < k for at least one ¢ < [. For every 1 <, let T} be a k-ary

For i < I, let 7" (zy,...,x}) be the formula obtained from @;(1, ..., %, S, ...

relation symbol not in the vocabulary o and let ¢ (21, ..., @n,, @ng1y -« Tk, T1, ..., T7) be the

FFO*formula over the vocabulary o U {1},...,T;} obtained from ¢;(zy,...,zn,, 51, ...,5)

as follows: if n; < k, then we replace each subformula S;(2r1), ..., Zx(,)) by the formula
(T, 41) - Fer) T (Tr(1)s - - s Tr(ng)s Tnjhls - -5 Th)s

while if n; = k, then we replace S;(@r(1),- -, Tr(n,) DY Tj(Tr(1), -+ s Tr(n,)). A straightfor-
ward induction on m simultaneously for all « < m shows that if n; = k&, then 7 = ¥,
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while if n; < k, then for every structure A and every sequence (ay,...,ay) of elements from
the universe of the structure

(a1,...,a,,) € O <= A E (Jan41-.-Jag)(a1,. .. a0, ang1,...,a5) € V).

For every m > 1 and ¢ </, let ¢7"(x1,...,x)) be the JFO*-formula that defines the compo-
nent U7 of the stage W™. If n; < k, then we let ™ (x1,...,2,,) be the formula

(Fapqr - )T (X1, Ty Tty e ey Tk,

while if n; = k, then we let ©7*(xy, ..., x1) be the formula ¢ (1, ..., 2r). Thus e (21,...,2,,)
is an IFO*-formula that defines the component O of the stage &, 1 < ¢ < L.

Finally, each component ¢°(xy,...,x,,) of the least fixed-poin of the system ¢y,..., ¢
is definable on all o-structures by the £F formula \/o_, o™ (21,...,2,.). 1

As explained earlier, Theorem 4.1 follows immediately from the preceding Theorem 4.3.

Corollary 4.4: Let k be a positive integer. Then ILFP* C L5 and, consequently,
k-Datalog C L% .

It should be pointed out that on the class of all finite structures k-Datalog is properly
contained in 3L | since the latter can express non-computable queries.

Next, we describe certain combinatorial games that will play an important role in the

w?

sequel. Let A and B be two relational structures over a common relational vocabulary o.
The existential k-pebble game on A and B is played between two players, the Spoiler and
the Duplicator. The Spoiler places k pebbles (one at a time) on elements of A; after each
move of the Spoiler, the Duplicator responds by placing a pebble on an element of B. Once
all pebbles have been placed, the Spoiler wins if one of the following two conditions holds
for the elements a; and b;, 1 <1 <k, of A and B that have been pebbled in the :-th move
of the Spoiler and the Duplicator:

1. the correspondence a; — b;, 1 < i <k, is not a mapping (that is to say, there exists i
and iy such that iy # i3, a;;, = a;,, and b;, # b;,);

2. the correspondence a; — b;, 1 <1 < k, is a mapping, but it is not a a homomorphism
from the substructure of A with universe {ay,...,ax} to the substructure of B with
universe {by,...,bx}.

If neither of the above two conditions holds, then the Spoiler removes one or more pebbles
and the game resumes. We say that the Duplicator wins the existential k-pebble game on
A and B if he has a strategy that allows him to continue playing “forever”, that is, the
Spoiler can never win a round of the game. A more formal definition of this concept can be
given using families of partial homomorphisms with the forth property up to k (see [KV95]
for details).

If (ar,...,ar) is a k-tuple of elements of A and (by,...,b;) is a k-tuple of elements of
B, then we say that the Duplicator wins the existential k-pebble game on (A, aq,...,ax) and
(B,b1,...,by), if (a1,...,ax) and (by,...,bx) is a winning configuration for the Duplicator,
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that is, the Duplicator can win the game if the i-th pebble of the Spoiler has been placed
on a; and the i-th pebble of the Duplicator has been placed on b;, 1 < < k. The following
result from [KV95] shows that expressibility in 3L*  can be characterized in terms of the
existential k-pebble games.

Theorem 4.5: Let k be a positive integer and () a k-ary query on a class C of finite
structures. Then the following two statements are equivalent:

1. Q is expressible in 3LF  on C.

oow

2. If A, B are two structures in C and (a1, ..., ax), (by,...,bg) are two k-tuples of elements
of A and B such that A |= Q(aa, ..., ax) and the Duplicator wins the existential k-pebble
game on (A,ay,...,a;) and (B,by,...,by), then B = Q(by,...,b).

Corollary 4.6: Let k be a positive integer and () a Boolean query on a class C of finite
structures. Then the following two statements are equivalent:

1. Q is expressible in ALE.  on C.

oow

2. If A and B are two structures in C such that A |E @ and the Duplicator wins the
existential k-pebble game on A and B, then B E Q.

Let o1 and o3 be two disjoint copies of the vocabulary o, that is, for each relation symbol
R of o and for « = 1,2, the vocabulary o; contains a relation symbol R; of the same arity as
R. We write o1 + o for the vocabulary oy U oy U {Dq, Dy}, where Dy and D, are two new
unary relation symbols. Using the vocabulary oy 4+ 02, we can encode a pair (A, B) of two
o-structures A and B by a single oy + o9-structure A + B defined as follows: the universe
of A+ B is the union of the universes of A and B, the interpretation of D; (respectively,
Ds) is the universe of A (respectively, B), and the interpretation of each relation symbol R;
(respectively, Ry) is the interpretation of the relation symbol R on A (respectively, on B).
This encoding makes it possible to formally view queries on pairs of o-structures as queries
on single oy + oy-structures.

Our next result concerns the computational and descriptive complexity of existential
k-pebble games.

Theorem 4.7: Let o be a relational vocabulary and let k be a positive integer.

1. There is a sentence ¢ of least fized-point logic LFP over the vocabulary oy + o5 that
expresses the query: “Given two o-structures A and B, does the Spoiler win the exis-
tential k-pebble on A and B?”.

As a result, there is a polynomial-time algorithm such that, given two finite o-structures
A and B, it determines whether the Spoiler wins the existential k-pebble game on A
and B.

2. For every finite o-structure B, there is a k-Datalog program pp that expresses the
query “Given a o-structure A, does the Spoiler win the existential k-pebble game on A

and B?7.
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Proof: Let 0(xy,..., 25, 41,...,yx) be a quantifier-free formula over the vocabulary o + o
asserting that the correspondence z; — y;, 1 <1 < k, is not a mapping or it is a mapping
that is not a homomorphism from the substructure induced by x1,..., x; over the vocabulary
o1 to the substructure induced by yy,...,yr over the vocabulary o5. Specifically, 8 is the
disjunction of the following formulas:

o v, =ux; Ny #yj, for every 1,7 < k such that ¢ # .

o Ri(xi,...,x;,) N Re(i),... 2, ), for every m-ary relation symbol R in o and every
m-ary tuple of variables from the set {xy,... , ax}.

Let T be a 2k-ary relation symbol not in o1 4+ o3 and let ¢(x1,..., 2k, Y1, .., yx, T') be the
following positive first-order formula over the vocabulary oy + oo U {T'}:

Oz, Tk Y1y Yi) V \/ (Fa))(Vy)(Di(aj) A (D2(y;) = T(xr, ooy Thy Y1y o5 Uk)))-

J=1

It is easy to verify that if A, B are o-structures and (ay,...,ax), (b1,...,b;) are k-tuples of
elements of A and B respectively, then the following statements are equivalent:

I. A+ BE¢®(a1,..., a5, by, ... bg).
2. The Spoiler wins the existential k-pebble on (A, aq,...,ax) and (B,by,...,by).

Let ¢ be the sentence (Jxy)--- (Fag)(Vyr) -+ (Yyr) ™ (215 oy Thy Y1, - -, yx) Of least fixed-
point logic LFP. Consequently, for every o-structure A and every o-structure B the following
statements are equivalent:

1. A+ B E.
2. The Spoiler wins the existential k-pebble game on A and B.

Since every LFP-expressible query is computable in polynomial time, it follows that there is
a polynomial time algorithm that, given two finite o-structures A and B, tells whether the
Spoiler wins the existential k-pebble game on A and B.

Note that the positive first-order formula ¢ above involves existential quantifiers that
are interpreted over the elements of A, and universal quantifiers that are interpreted over
the elements of B. Consequently, if B is a fixed finite o-structure, then the universal quan-
tifiers can be replaced by finitary conjunctions over the elements of B and, thus, ¢ can be
transformed to a k-Datalog program p, that expresses the query: “Given a finite o-structure
A, does the Spoiler win the existential k-pebble game on A and B?”. In what follows, we
describe this Datalog program in some detail. The goal of pg is a 0-ary predicate S. Let
b = (b1,...,b;) be a k-tuple of elements of B. For each such k-tuple, we introduce a k-ary
relation symbol T}, and the following rules:

e For every ¢ and j such that b; # b;, we have a rule
Tb(xllv"'vx;c) C ’

! [ . [ NN
where ¥} = 2, = z;, and 2 = x,, for s # 1, 5.
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e For every m-ary relation symbol R of o and every m-ary tuple (i1,...,i,) such that
B,b

ilv"'vbim |: _'R(l’il,...,l'im),

we have a rule

To(x1, .. oyag) o — Rag, ... 2,).

o For every 5 with 1 < j <k, we have a rule

T(ar,.owe) = N Tograg(Tis s Tjmta Yo Tjgay - Th),s
ceEB
where b[j/c] = (b1,...,bj—1,¢,bj41,...,b) and y is a new variable (note, however, that

the body of the rule has k variables).

o For the goal predicate S, we have the rule

S - /\ To(x1,. .., Tk).

beB*k

We now have all the necessary notation and machinery to establish the main results of
this section.

Theorem 4.8: Let k be a positive integer, B a finite relational structure, and A a class of
finite relational structures such that B € A. Then the following statements are equivalent.

1. =CSP(A, B) is expressible in k-Datalog on A.
2. =CSP(A, B) is expressible in ALY, on A.
3. =CSP(A, B) = {A € A: The Spoiler wins the existential k-pebble game on A and B}.

Proof: The implication (1) = (2) follows from Theorem 4.1. To show that (2) = (3),
assume that 1 is an 3LF  sentence that defines ~CSP(A, B) on A. Let A be a finite
relational structure in A. If A ¢ CSP(A, B), then A |= ¢ and, hence, the Spoiler wins
the existential k-pebble game on A and B. Indeed, if the Duplicator wins this game, then,
by Theorem 4.6, B | ¢, which means that there is no homomorphism from B to B, a
contradiction. Conversely, if the Spoiler wins the existential k-pebble game on A and B,
then A € =CSP(A, B). Indeed, otherwise, there is a homomorphism h : A — B, which
will give the Duplicator a winning strategy for the existential k-pebble game on A and
B; whenever the Spoiler places a pebble on an element a of A, the Duplicator responds
by placing the corresponding pebble on the element h(a) of B. Finally, the implication
(3) = (1) follows from Theorem 4.7. 11

By combining Theorems 4.7 and 4.8, we obtain the following uniform tractability result
for classes of constraint satisfaction problems expressible in Datalog.
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Theorem 4.9: Let k be a positive integer, A a class of finite relational structures, and
B = {BeA:-CSP(A,B) is expressible in k-Datalog}.

Then the uniform constraint satisfaction problem CSP(A,B) is solvable in polynomial time.
Moreover, the running time of the algorithm is O(n?*), where n is the mazimum of the sizes
of the input structures A and B.

We note that it is an open problem whether the class
{B: =~CSP(A, B) is expressible in k — Datalog}

is recursive. In contrast, Schaefer’s class SC, which was the basis for the tractability result
of Theorem 3.3, is recursive (per Theorem 3.1).

Remark 4.10: Some remarks concerning the results of this section are in order now.

1. Feder and Vardi [FV99] showed that for every non-uniform CSP(B) problem there is
a certain k-Datalog program mpg such that if the complement of CSP(B) is expressible
in k-Datalog, then mp expresses it. The preceding Theorems 4.7 and 4.8 give an
alternative proof of this result; moreover, they reveal that as mg we can take the k-
Datalog program pp that expresses the query: “Given A, does the Spoiler win the
existential k-pebble game on A and B?”.

2. To illustrate an application of Theorem 4.9, consider a k-ary Horn Boolean structure
B. Then it is easy to verify that CSP(B) is expressible in k-Datalog. Consequently,
Theorem 4.9 yields a polynomial-time algorithm for CSP(F, B), where F is the class
of all finite structures and B is the class of k-ary Horn Boolean structures.

5 Bounded Treewidth and Constraint Satisfaction

Up to this point, we found tractable cases of the uniform constraint satisfaction problem
CSP(A, B) by imposing restrictions on the class B. In this section, we exhibit tractable cases
of CSP(A, B) that are obtained by imposing restrictions on the class A. For this, we consider
the concept of treewidth of a relational structure; this concept was introduced by Feder and
Vardi [FV93] and generalizes the concept of treewidth of a graph (see [v1.90, Bod93]).

A tree decomposition of a finite relational structure A is a labeled tree T' such that the
following conditions hold:

1. every node of T is labeled by a non-empty subset of the universe V of A,

2. for every relation R of A and every tuple (ay,...,a,) in R, there is a node of T' whose
label contains {a,...,a,},

3. for every a € V, the set of nodes X of T" whose labels include a forms a subtree of T'.
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The width of a tree decomposition 1" is the maximum cardinality of a label of a node in T’
minus 1. Finally, we say that a structure A is of trecwidth k if k is the smallest positive
integer such that A has a tree decomposition of width k.

An alternative way to define the treewidth of a structure A is in terms of the treewidth of
the Gaifman graph of A [Gai82], that is, the graph that has the elements of the universe of A
as nodes and is such that there is an edge between two nodes if and only if the corresponding
elements appear in a tuple in one of the relations of A. We call the treewidth of the Gaifman
graph of A the Gaifman treewidth of A. We now show that the two concepts coincide.

Lemma 5.1: T is a tree decomposition of a structure A iff it is also a tree decomposition
tree of the Gaifman graph of A.

Proof: It is easy to see that if T is a tree decomposition of A, then T is also a tree
decomposition of the Gaifman graph of A. Suppose now that T is a tree decomposition of
the Gaifman graph of A. Consider a tuple (ay,...,a,) in a relation R of A. The elements
{ay,...,a;} form a clique in the Gaifman graph of A. By Lemma 6.49 of [DF99], there is a
node x of T such that {ay,...,a;} is contained in the label of z. It follows that 7' is also a
tree decomposition of A. I

For every k > 1, let A(k) be the class of all finite relational structures of treewidth
k. Bodlaender [Bod93] showed that, for every & > 1, there is a polynomial-time algorithm
that tests whether a given graph is of treewidth k. It follows that, for every & > 1, there
is a polynomial-time algorithm that tests whether a given finite relational structure is of
treewidth k; in other words, each class A(k) is recognizable in polynomial time.

Feder and Vardi [FV93] showed for every finite relational structure B, there is a polynomial-
time algorithm for the non-uniform constraint satisfaction problem CSP(A(k), B). (This also
follows from the fact that the class CSP(B) is known to be expressible in existential monadic
second-order logic [F'V93], and it is also known that membership in classes of graphs definable
in monadic second-order logic is decidable in polynomial time for graphs of bounded-tree
width [DF99].) Here, we show that these non-uniform tractability results do uniformize.

Let A and B be two finite relational structure. From Theorem 2.1 and the accompanied
remarks, i1t follows that the existence of a homomorphism h : A — B is equivalent to
whether Q4(B) is true, where Q4 is the Boolean conjunctive query whose body consist of
the conjunction of all facts in A. We show that if A is a finite relational structure of treewidth
k, then the conjunctive query Q4 is expressible in IFO*!; moreover, an IFO*! formula
equivalent to Q4 can be found in time polynomial in the size of A.

Lemma 5.2: Let A be a structure of treewidth k, then Q* is expressible in JFOF!,

Proof: The key idea underlying the proof is that structures of bounded treewidth have
parse trees [DF99] (Chapter 6.4), which can be constructed in polynomial time from tree
decompositions. Such parse trees are constructed from k-boundaried structures, which are
structures with £ distinguished nodes labeled 1,...,k. Such structured can be combined
to form larger structures. For example, two k-boundaried structures A and B (we assume
a fixed underlying vocabulary) can be glued to obtain a structure A & B by taking their
disjoint union and then identifying the two nodes labeled ¢, for: =1... k.
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A more general way of combining k-boundaried graps is defined as follows. Let a =

(A, fi,..., fa) consist of a k-boundaried structure A with domain D and injective mappings
fi +{1l,...,k} — D. We view « as an n-ary operator of cardinality |D| on k-boundaried
structures. Given k-boundaried structures Ay,...,A,, we construct a(Ay,..., A,) in the

following manner. We take the disjoint union of A, A;,..., A, and identify the j-th distin-
guished node of A; with the node f;(j) of A, fori=1,...,n,j5=1,...,k. The distinguished
nodes of the result are the distinguished nodes of A (labels on other nodes are erased).
Note that the glue operator @ is in essence the binary operator (0, tx, ), where 0 is the
k-boundaried structure with k elements and empty relations, and ¢ is the identity function
on the set {1,... k}.

It is shown in [DF99] that there is a polynomial-time time algorithm that converts a tree
decomposition of a structure C' with at least & + 1 elements of treewidth £ to a parse tree
(i.e., an expression) in terms of a finite set of unary and binary k-boundaried opertors of
cardinality k or k + 1, starting with the constant structure @,. A k-boundaried structure A
can be viewed as a k-ary conjunctive query Q4, whose body consists of the conjunction of all
facts in A, but where only the non-distinguished variables are existentially quantified, i.e.,
the distinguished elements are viewed as free variables. We now show by induction that if C
is k-boundaried structure expressed as a parse tree of k-boundaried operators of cardinality
k or k + 1 starting with 0, then Q° can be expressed in IFO**!. In fact, we prove the
stronger claim that Q¢ can be expressed in IFO**! where the tuples of free variables is an
arbitrary k-tuple of distinct variables from {z1,..., 2541}

The claim clearly holds for (J;,, whose query is the k-variable conjunctive query with empty
body. Consider the expression oAy, ..., A,), where o = (A, fi1,..., fn) is a k-boundaried
n-ary operator of cardinality £ or & + 1, and suppose that we have already constructed
FFO**! conjunctive queries o, @1, . .., ©, for the queries Q4, Q41, ..., Q*, respectively. We
can take the domain D of @) to be {Xi,..., X} or {X1,..., X;s11}. Recall that f; is an
injective mapping from {1,...,k} into D. By the induction hypothesis, we can assume that
the tuple of free variabes of ¢; is (Xyy,..., Xsx)). We can also assume that ¢ is of the
form

Q(Xj17“‘7Xjk):_ B,
where X X, (resp., Xj,..., X, X;

PR in> Xjppr) is some permutation of Xy,..., X (resp.,
Xi,...y, Xk, Xkp1). Observe, that there is an implicit existential quantifier when |D| has

k + 1 elements. We can then express Q(41-4n) by

Q(lev"'vXjk) = B79917"'799n'

In proof, note that there is a homomorphism from the structure a( Ay, ..., A,) to a structure
B iff there are homomorphisms h : A — B, and h; : A, — B, for « = 1,...,n, such
that if @ is a distinguished element of A; labeled j and f;(j) = b, then we must have that
h(b) = h;(a). In other words, to get a homomorphism from «a(A;,...,A,) to B we need
to find homomorphisms from A, Aq,..., B that meet the compatibility conditions required
by the mappings fi,..., f,. The IFO*! queries ¢, 01,..., ¢, give us the required n + 1
homomorphisms, and the compatibility between the different homomorphisms is guaranteed
by labeling distinct elements that must be mapped identically by the same variable. I
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Remark 5.3: The fragment 3FO is more general than the fragment of conjunctive queries
as 1t also allows for negations and disjunctions. Consider the fragment JFO, 4 that allows
no negative formulas and no conjunctions. This fragment has the same expressive power as
conjunctive queries. It can be shown that the fragment EIFO]/“\:"_: can express precisely the
queries Q4, where A is a structure of treewidth k. Thus, the relationship between treewidth

and number of variables is tight. I

We can now derive the main result of this section.

Theorem 5.4: Let k be a positive integer, A(k) the class of finite relational structures of
treewidth k, and F the class of all finite relational structures. Then the uniform constraint
satisfaction problem CSP(A(k),F) is solvable in polynomial time.

Proof: We showed in Lemma 5.2 that if A is a finite relational structure of treewidth k, then
an IFO"*! formula equivalent to @4 can be found in time polynomial in the size of A. Thus,
in this case, checking the existence of a homomorphism & : A — B reduces to the evaluation
of an IFO*! query on the structure B. As shown in [Var95], IFFO**! has polynomial-time
combined complexity, which implies that CSP(A(k), F) is solvable in polynomial time. I

A precise complexity analysis of CSP(A(k),F) is provided in [GLS98], where it is shown
that the problem is LOGFCL-complete (LOGCFL is the class of decision problems that are
logspace-reducible to a context-free language).

We note that another way to define the treewidth of a structure A is in terms of its
incidence graph [CRI7]. The incidence graph of A is a bipartite graph that has all the tuples
in relations of A as nodes in one part, the elements of the universe of A as nodes in the other
part, and there is an edge from a node ¢ to a node a iff ¢ is a tuple in A and «a is an element
that occurs in t. We call the treewidth of the incidence graph of A the incidence treewidth
of A. Given a tree decomposition T" of A, we can convert it into a tree decomposition T’
of the incidence graph of A as follows. T” has the same graph structure as T'. For every
relation R of A and every tuple ¢t = (a1,...,a,) in R, there is a node = of T" whose label
contains {ay,...,a,}. We simply add ¢ (which is a node of the incidence graph of A) to the
label of x in T". It is easy to see that 7" is a tree decomposition. Thus, if A has treewidth &,
then it has incidence treewidth at most £ + 1. In the other direction, we can convert a tree
decomposition T" of the incidence graph of A to a tree decomposition T” of A by replacing
a tuple t = (ai,...,a,) in the label of a node « of T' by the set of elements {aq,...,a,}.
Thus, if the incidence treewidth is k, then the treewidth is at most (k 4+ 1)n — 1, where n
is the maximal arity of a relation in A. As an example of the gap between the two notions,
consider structure A with a single tuple (aq,...,a,). It is easy to see that its treewidth is
n — 1 (since its Gaifman graph is an n-clique, while its incidence treewidth is 0, since its
incidence graph is a tree.

As mentioned in the introduction, Chekuri and Ramajaran [CR98] showed that the uni-
form constraint satisfaction problem CSP(Q(k),F) is solvable in polynomial time, where
Q(k) is the class of structure of querywidth k (Chekuri and Ramajaran actually studied the
conjunctive-query containment problem, which explains the term “querywidth”). (In [CR97]
only vocabularies of bounded arities were considered, but the result was extended in [CR9S§]
to general vocabularies.) They also showed that the incidence treewidth of a structure A
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provides a strict upper bound for its query width by showing that a tree decomposition
of the incidence graph is also what they called query decomposition. (Note, however, that
the property of having treewidth k& can be tested in linear time [Bod93], while the prop-
erty of having querywidth 4 is NP-complete [GL.S99].) Thus, the polynomial tractability of
CSP(A(k), F) follows also from the results in [CR98]. Gottlob, Leone, and Scarcello [GL.S99]
define yet another notion of width, called hypertree width. They showed that the querywidth
of a structure A provides a strict upper bound for the hypertree width of A, but that the
class H(k) of structures of hypertree width at most k as well as the class CSP(H(k), F) are
efficiently recognizable.

As this discussion shows, the treewidth of a structure A is at least the arity of its widest
relation (more precisely, it is at least the number of distinct elements occuring in a tuple
of A minus 1). It is desirable, therefore, to decrease the arity of the relations in A. This
can be done by encoding the structures A and B by binary structures (i.e., structures with
binary relations only). We refer to the binary encoding of a structure A by binary(A). The
vocabulary of binary(A) contains a binary relation symbol Epg,; for each pairs of (not
necessarily distinct) relations symbols P, Q of A and each pair of argument positions ¢, j of
P, Q, respectively. The domain of binary(A) is the set of tuples occurring in the relations of
A. The relation Epg ;. ; contains the pair (s, 1) if the i-th element of s and the j-th element of
t are identical. Note that in binary(A) we have that the relation Epp;,; contains all tuple in
P, that if (s,t) is in Epg, j, then (¢, s) the relation Qqg p,;i, and that if (s,?) in the relation
Epg.i; and (t,u) is in the relation Eg g i, then (s,u) is in the relation Epp ;. We refer to
this as the reflexive-symmetric-transitive closure of the £ relations.

Lemma 5.5: There is a homomorphism from A to B iff there is a homomorphism from

binary(A) to binary(B).

Proof: Assume that there a homomorphism A from A to B. For a tuple ¢, define h(t)
componentwise. It is easy to see that h is a homomorphism from binary(A) to binary(B):
Suppose that Epg,; contain the pair (s,?) in binary(A), then the elements s; and t¢; are
identical, which implies that h(s;) = h(t;). It follows that the pair (h(s),h(t)) is in the
relation Epg,; in binary(B).

Conversely, suppose that h is a homomorphism from binary(A) to binary(B). Let a be
the i-th element of a tuple ¢ in a relation P of A and let b be the i-th element of h(t). We
define h(a) to be b. It is easy to see that h is a homomorphism from A to B, provided it
is well defined. Suppose a is also the j-th element of a tuple w in a relation () in A. Then
(t,u) is in the relation Epg,; in binary(A). But then we must have that (h(?), h(u)) is in
the relation Fpg,; in binary(B), which implies that b is also the j-th element of the tuple

h(u). 1

It is worth noting that in binary(A) it is not necessary to encode all coincidence relations
in A. It suffices to put enough tuples there so that the reflexive-symmetric-transitive closure
encodes all such coincidence relations. For example, that if (s,¢) in the relation Fpg;; and
(t,u)is in the relation Eg gk, then it is not necessary to store (s, u) is in the relation Ep g k.
It is not difficult to prove that Lemma 5.5 still holds. The reason for this optimization is
that to minimize the treewidth of binary(A) it is desirable to minimize the number of tuples
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of binary(A). It is possible to show that, under such an optimized encoding, acyclic join
queries [AHV95, UlI89] can be encoded by structures of bounded treewidth.

A class that is more general than the class of bounded treewidth graphs is the class of
bounded cliquewidth graphs. It is shown in [CO98] than if a graph has treewidth &, then its
cliquewidth is bounded from above by 2¥*! 4 1. Thus, a class of graphs that has bounded
treewidth also has bounded cliquewidth. Courcelle, Makowsky, and Rotics [CMR98] showed
that if a class C is effectively of bounded cliquewidth, then every monadic second-order
property on C is polynomial. It follows that CSP(A, B) is in PTIME for each B if A is of
bounded cliquewidth. On the other hand, every clique has cliquewidth 2 [CO98], and we
have observed above that the the class CSP(K, G) is NP-complete. Thus, while the tractablty
result of constraint satisfaction for bounded treewidth structures does uniformize, this is not
the case for bounded cliquewidth structures.

6 Concluding Remarks

In this paper, we brought into center stage the close connection between conjunctive-query
containment and constraint satisfaction. Moreover, we showed that several tractable cases
of non-uniform CSP(B) problems uniformize and, thus, yield tractable cases of uniform
constraint satisfaction and conjunctive query containment.

During the past several years, a group of researchers has pursued tractable cases of
constraint satisfaction CSP(A, B) by investigating the class of functions under which the
relations in the structures in B are closed [JC95, JCG95, JCG96, Jea97] (see [PJI7] for a
survey). In [FV93, FV99], a preliminary investigation has been carried out on the connection
between expressibility of CSP(B) problems in Datalog and closure of the relations in B under
certain functions. In a forthcoming paper, we will elaborate further on this connection and
delineate the relationship between the two approaches.

Acknowledgement. We’d like to thank Georg Gottlob, Leonid Libkin, and Werner Nutt
for useful discussions. In particular, Georg Gottlob helped us clarify the relationship between
treewidth and incidence treewidth in Section 5.
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