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Abstract

Conjunctive�query containment is recognized as a fundamental problem in database

query evaluation and optimization� At the same time� constraint satisfaction is recog�

nized as a fundamental problem in arti�cial intelligence� What do conjunctive�query

containment and constraint satisfaction have in common� Our main conceptual con�

tribution in this paper is to point out that� despite their very di�erent formulation�

conjunctive�query containment and constraint satisfaction are essentially the same

problem� The reason is that they can be recast as the following fundamental algebraic

problem� given two �nite relational structures A and B� is there a homomorphism

h � A� B� As formulated above� the homomorphism problem is uniform in the sense

that both relational structures A and B are part of the input� By �xing the structure

B� one obtains the following non�uniform problem� given a �nite relational structure

A� is there a homomorphism h � A � B� In general� non�uniform tractability results

do not uniformize� Thus� it is natural to ask� which tractable cases of non�uniform

tractability results for constraint satisfaction and conjunctive�query containment do

uniformize�

Our main technical contribution in this paper is to show that several cases of

tractable non�uniform constraint satisfaction problems do indeed uniformize� We ex�

hibit three non�uniform tractability results that uniformize and� thus� give rise to

polynomial�time solvable cases of constraint satisfaction and conjunctive�query con�

tainment� We begin by examining the tractable cases of Boolean constraint�satisfaction

problems and show that they do uniformize� This can be applied to conjunctive�query

containment via Booleanization	 in particular� it yields one of the known tractable

cases of conjunctive query containment� After this� we show that tractability results

for constraint�satisfaction problems that can be expressed using Datalog programs

�A preliminary version of this paper appeared in Proc� ��th ACM Symp� on Principles of Database

Systems� June ����� pp� ��	
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with bounded number of distinct variables also uniformize� Finally� we establish that

tractability results for queries with bounded treewidth uniformize as well� via a con�

nection with �rst�order logic a with bounded number of distinct variables�

� Introduction

Conjunctive queries have had a conspicuous presence in both the theory and practice of
database systems since the ����s� Conjunctive queries constitute a broad class of frequently
used queries� because their expressive power is equivalent to that of the Select�Join�Project
queries in relational algebra �AHV�	� Ull
��� For this reason� several algorithmic problems
concerning conjunctive queries have been investigated in depth� In particular� conjunctive�
query containment was recognized fairly early as a fundamental problem in database query
evaluation and optimization� Indeed� conjunctive�query containment is essentially the same
problem as conjunctive query evaluation� moreover� conjunctive�query containment can be
used as a tool in query optimization� since query equivalence is reducible to query contain�
ment�
Chandra and Merlin �CM��� studied the computational complexity of conjunctive query

containment and showed that it is an NP�complete problem� In recent years� there has
been renewed interest in the study of conjunctive query containment� because of its close
relationship to the problem of answering queries using materialized views �LMSS�	� RSU�	��
The latter has emerged as a central problem in integrating information from heterogeneous
sources� an area that lately has been the focus of concentrated research eorts �see �Ull��� for
survey�� Since conjunctive�query containment is intractable in its full generality� researchers
have embarked on a search for tractable cases� These are obtained by imposing syntactic
or structural restrictions on the conjunctive queries Q� and Q� that serve as input to the
problem� �is Q� � Q���� In particular� Saraiya �Sar��� showed that conjunctive�query
containment can be solved in linear time� if every database predicate occurs at most twice
in the body of Q�� More recently� Chekuri and Rajaraman �CR��� CR�
� showed that� for
every k � �� conjunctive�query containment can be solved in polynomial time� if Q� has
querywidth at most k and a query decomposition of Q� of width k is available� The concept
of querywidth is closely related to the well�studied concept of treewidth of a graph �see
�vL��� Bod����� It should be noted that queries of width � are precisely the acyclic queries�
thus� Chekuri and Rajaraman�s results extend the earlier work of Yannakakis �Yan
�� and
Qian �Qia��� on query evaluation and containment for acyclic queries�
Starting with the pioneering work of Montanari �Mos���� researchers in arti�cial intelli�

gence have investigated a class of combinatorial problems that became known as constraint�
satisfaction problems �CSP�� The input to such a problem consists of a set of variables�
a set of possible values for the variables� and a set of constraints between the variables�
the question is to determine whether there is an assignment of values to the variables that
satis�es the given constraints� The study of constraint satisfaction occupies a prominent
place in arti�cial intelligence� because many problems that arise in dierent areas can be
modeled as constraint�satisfaction problems in a natural way� these areas include Boolean
satis�ability� temporal reasoning� belief maintenance� machine vision� and scheduling �see
�Dec��� Kum��� Mes
�� Tsa����� In its full generality� constraint satisfaction is a NP�
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complete problem� For this reason� researchers in arti�cial intelligence have pursued both
heuristics for constraint�satisfaction problems and tractable cases obtained by imposing re�
strictions on the constraints �see �MF��� Dec��� PJ�����
What do conjunctive�query contaiment and constraint satisfaction have in common� De�

spite their very dierent formulation� it turns out that conjunctive�query containment and
constraint satisfaction are essentially the same problem� The reason is that they can be recast
as the following fundamental algebraic problem� given two �nite relational structures A and
B� is there a homomorphism h � A� B� Indeed� on the side of conjunctive�query contain�
ment� it is well known that Q� � Q� if and only if there is a homomorphism h � QD

� � QD
� �

where QD
i is the canonical database associated with the query Qi� i � �� � �CM���� On

the side of constraint satisfaction� a perusal of the literature reveals that all constraint�
satisfaction problems studied can be viewed as special cases of the above homomorphism
problem �FV��� FV��� �see also �Jea����� It should be noted that several researchers� includ�
ing �Bib

� Dec��� GJC��� PJ���� have observed that there are tight connections between
constraint�satisfaction problems and certain problems in relational databases� In particular�
Gyssens� Jeavons and Cohen �GJC��� pointed out that the set of all solutions to a constraint
satisfaction problem coincides with the join of certain relations extracted from the given
constraint�satisfaction problem� Thus� solving constraint�satisfaction problems and evaluat�
ing joins are interreducible� In turn� conjunctive�query evaluation and join valuation are also
reducible to each other �Ull
��� Since Chandra and Merlin �CM��� showed that conjunctive
query evaluation and conjunctive query containment are equivalent problems� this provides
a dierent �although less direct� way to establish the tight connection between conjunctive
query containment and constraint satisfaction� Nonetheless� it is fair to say that overall there
is little interaction between the community that pursues tractable cases of conjunctive query
containment and the community that pursues tractable cases of constraint satisfaction� One
of our main goals in this paper is to make the connection between conjunctive query contain�
ment and constraint satisfaction explicit� bring it to front stage and� thus� further enhance
the interaction between database theory and arti�cial intelligence�
As formulated above� the homomorphism problem is uniform in the sense that both re�

lational structures A and B are part of the input� By �xing the structure B� one obtains
the following non�uniform problem CSP�B�� given a �nite relational structure A� is there
a homomorphism h � A � B� Over the past twenty years� researchers in computational
complexity have studied such non�uniform problems in an attempt to determine for which
structures B the associated CSP�B� problem is tractable and for which it is intractable�
The �rst remarkable success on this front was obtained by Schaefer �Sch�
�� who pinpointed
the computational complexity of Boolean CSP�B� problems� in which the structure B is
Boolean �i�e�� has the set f�� �g as its universe�� Schaefer established a dichotomy theorem
for Boolean CSP�B� problems� Speci�cally� he identi�ed six classes of Boolean structures
and showed that CSP�B� is solvable in polynomial time� if B is in one of these classes� but
CSP�B� is NP�complete in all other cases� Note that each Boolean CSP�B� problem can
be viewed as a generalized satis�ability problem� In particular� Schaefer�s �Sch�
� dichotomy
theorem provides a coherent explanation for the computational complexity of Horn Sat�
is�ability� ��Satis�ability� One�in�Three Satis�ability� and other such Boolean satis�ability
problems� After this� Hell and Ne�set�ril �HN��� established a dichotomy theorem for CSP�B�

�



problems in which B is an undirected graph� if B is ��colorable� then CSP�B� is solvable
in polynomial time� otherwise� CSP�B� is NP�complete� Observe that if Kk is a clique with
k nodes� then CSP�Kk� is the k�Colorability problem� k � �� Thus� Hell and Ne�set�ril�s
dichotomy theorem generalizes the results concerning the computational complexity of the k�
Colorability problem for each k � �� Motivated by these dichotomy results� Feder and Vardi
�FV��� raised the question� is every CSP�B� problem either solvable in polynomial time
or NP�complete� Although they did not settle this question� Feder and Vardi �FV��� were
able to isolate two conditions that imply polynomial�time solvability of CSP�B� problems�
moreover� they argued that all known polynomially solvable CSP�B� problems satisfy one
of these conditions� The �rst condition asserts that the complement of the CSP�B� problem
at hand is expressible in Datalog �CSP�B� itself cannot be expressible in Datalog� because
it is not a monotone problem�� this condition covers such known tractable cases as Horn
Satis�ability� ��Satis�ability� and ��Colorability� The second condition is group�theoretic
and covers Schaefer�s �Sch�
� tractable class of a�ne satis�ability problems�
In general� non�uniform tractability results do not uniformize� Thus� tractability results

for each problem in a collection of non�uniform CSP�B� problems do not necessarily yield
a tractable case of the uniform constraint satisfaction problem �or of the conjunctive query
containment problem�� The reason is that both structures A and B are part of the input to
the constraint satisfaction problem� and the running times of the polynomial�time algorithms
for CSP�B� may very well be exponential in the size of B� Thus� it is natural to ask�
which tractable cases of non�uniform CSP�B� problems uniformize and give rise to uniform
tractable cases of constraint satisfaction and� equivalently� to conjunctive�query containment�
Our main technical contribution in this paper is to show that several cases of tractable

non�uniform CSP�B� problems do indeed uniformize� We begin by examining the main
tractable cases of Boolean CSP�B� problems considered by Schaefer �Sch�
�� These are the
cases where CSP�B� corresponds to a ��satis�ability problem� a Horn satis�ability problem�
a dual Horn satis�ability problem� or an a�ne satis�ability problem� For all these cases�
uniform polynomial�time algorithms can be obtained by combining polynomial�time algo�
rithms that detect membership in these cases� build a corresponding Boolean formula� and
apply the polynomial�time algorithm for satis�ability of such formulas� It should be pointed
out� however� that the formula�building algorithms for ��Satis�ability� Horn satis�ability�
and dual Horn satis�ability are in the worst case quadratic in the size of B� In turn� this
yields cubic�time algorithms for the corresponding uniform constraint�satisfaction problems�
We show here that a better bound can be achieved by designing algorithms that skip the
formula�building phase� Although these results are about Boolean constraint�satisfaction
problems� they turn out to have applications to conjunctive�query containment� For this� we
show that conjunctive�query containment problems can be binarized and reduced to Boolean
constraint�satisfaction problems� As a concrete application� we show that Sarayia�s �Sar���
tractable case of conjunctive�query containment can be derived using this technique�
After this� we focus on the connections between Datalog and constraint satisfaction� As

mentioned earlier� Feder and Vardi �FV��� FV��� realized that the tractability of many non�
uniform CSP�B� problems can be globally explained by the fact that the complement of
each of these problems is expressible in Datalog� Using pebble�game techniques introduced
in �KV�	�� we show here that such non�uniform tractability results uniformize� as long as
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Datalog programs with a bounded number of distinct variables are considered� Speci�cally�
we establish that� for every k � �� there is a polynomial�time algorithm for testing whether
there is a homomorphism h � A � B� where A and B are two given relational structures
such that the complement of CSP�B� is expressible by a Datalog program with at most k
distinct variables in each rule�
Up to this point� we have obtained tractable cases of the constraint satisfaction problem

�is there a homomorphism h � A � B�� by imposing restrictions on the structure B� At
the level of conjunctive�query containment Q� � Q�� this amounts to imposing restrictions
on the query Q�� Our last result yields a tractable case of conjunctive�query containment
by imposing restrictions on the query Q�� it uniformizes another non�uniform tractability
result for CSP�B� problems in �FV���� Speci�cally� we consider queries of bounded treewidth
and establish that� for every k � �� there is a polynomial�time algorithm for testing whether
Q� � Q�� where Q� is a conjunctive query of treewidth at most k� For this� we show that
every conjunctive query of treewidth k � � is expressible in FOk� the fragment of �rst�order
logic with at most k distinct variables� and then apply a polynomial�time algorithm for
evaluating FOk queries� �See Section 	 for a discussion of related work��

� Preliminaries

Formally� a n�ary conjunctive query Q is a query de�nable by a positive existential �rst�
order formula ��X�� � � � �Xn� having conjunction as its only Boolean connective� that is� by
a formula of the form

��Z�� � � � ��Zm���X�� � � � �Xn� Z�� � � � � Zm��

where ��X�� � � � �Xn� Z�� � � � � Zm� is a conjunction of extensional database predicates� The
free variables X�� � � � �Xn of the de�nining formula are called the distinguished variables of
Q� Such a conjunctive query is usually written as rule� whose head is Q�X�� � � � �Xn� and
whose body is ��X�� � � � �Xn� Z�� � � � � Zm�� For example� the formula

��Z��Z���P �X�� Z�� Z�� �R�Z�� Z�� �R�Z��X��

de�nes a conjunctive query Q� which as a rule becomes

Q�X��X�� �� P �X�� Z�� Z��� R�Z�� Z��� R�Z��X���

If D is a database� then Q�D� is the n�ary relation on D obtained by evaluating the query Q
on D� that is� the collection of all n�tuples from D that satisfy the query� Note that we need
to choose an order for the free variables� In the example above we chose the order X��X��
but the order X��X� is also acceptable� For example� we can write the query as the rule�

Q�X��X�� �� P �X�� Z�� Z��� R�Z�� Z��� R�Z��X���

Let Q� and Q� be two n�ary queries having the same tuple of distinguished variables�
If Q��D� � Q��D� for every database D� we say that Q� is contained in Q�� and write

	



Q� � Q�� The conjunctive�query containment problem asks� given two conjunctive queries
Q� and Q�� is Q� � Q��
It is well known that conjunctive�query containment can be reformulated as a conjunctive�

query evaluation problem and also as a homomorphism problem� The link to these two other
problems is via the canonical database DQ associated with Q� This database is de�ned as
follows� Each variable occurring in Q is considered a distinct element inDQ� Every predicate
in the body of Q is a predicate of DQ as well� moreover� for every distinguished variable Xi

of Q� there is a distinct unary predicate Pi �not occurring in Q�� As regards the facts of
DQ� every subgoal in the body of Q gives rise to a tuple in the corresponding predicate
of DQ� and if Xi is a distinguished variable of Q then Pi�Xi� is a fact of D

Q� Thus� in
the example above� the canonical database consists of the facts P �X�� Z�� Z��� R�Z�� Z���
R�Z��X��� P��X��� P��X��� Recall that a homomorphism between two relational structures
A and B over the same vocabulary is a mapping h � A� B such that if �c�� � � � � ck� � PA�
then �h�c��� � � � � h�ck�� � PB� where P is any predicate symbol in the vocabulary� and PA

and PB are the interpretations of P on A and B� The relationship between conjunctive
query containment� conjunctive query evaluation� and homomorphisms is provided by the
following theorem�

Theorem ���� �CM��� Let Q� and Q� be two n�ary conjunctive queries having the same
tuple of distinguished variables� Then the following statements are equivalent�

	 Q� � Q��

	 �X�� � � � �Xn� � Q��DQ��� where �X�� � � � �Xn� is the tuple of the distinguished variables
of Q��

	 There is a homomorphism h � DQ� � DQ� �

Note that every database D gives rise to a Boolean conjunctive query QD whose body con�
sists of the conjunction of all facts in D� where we view the elements of the databases as
existentially quanti�ed variables� In turn� this makes it possible to show that both con�
junctive query evaluation and the existence of homomorphism between two �nite relational
structures are reducible to conjunctive query containment� In particular� there is a homo�
morphism h � A� B if and only if QB � QA�
Let us now focus on the constraint�satisfaction problem� As mentioned earlier� this

problem is usually formulated as the question� does there exists an assignment of possible
values to given variables� so that certain constraints are satis�ed� Instead� we will consider
an alternate elegant formulation in terms of homomorphisms� Let A and B be two classes
of �nite relational structures� The �uniform� constraint�satisfaction problem CSP�A�B�
is the following decision problem� given a structure A � A and a structure B � B� is
there a homomorphism h � A � B� Note that� by its very de�nition� each CSP�A�B�
problem is in NP� We write CSP�B� for the special uniform case CSP�A�B� in which A is
the class of all �nite relational structures over the vocabulary of B� If B consists of a single
structure B� then we write CSP�A� B� instead of CSP�A� fBg�� We refer to such problems
as non�uniform constraint satisfaction problems� because the inputs are just structures A
in A� We also write CSP�B� for the special non�uniform case CSP�A� B� in which A is
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the class of all �nite relational structures over the vocabulary of B� Note that if B is a
Boolean structure� i�e�� it has f�� �g as its universe� then CSP�B� is a generalized satis�ability
problem in the sense of Schaefer �Sch�
� �see also �GJ��� LO�� page ������ For example� if
B � �f�� �g� f��� �� ��� ��� �� ��� ��� �� ��g� then CSP�B� is equivalent to Positive One�in�Three
��SAT� Thus� CSP�B� may very well be an NP�complete problem�
We are interested in identifying classes A and B such that CSP�A�B� is solvable in

polynomial time� Such classes give rise to tractable cases of the constraint satisfaction
problem and� hence� of the conjunctive query containment problem as well� For the past
twenty years� researchers in computational complexity have investigated CSP�B� problems�
and have discovered several polynomial�time cases� As a general rule� however� non�uniform
tractable results do not uniformize� Indeed� it is not hard to construct classes A and B of
�nite relational structures such that CSP�A�B� is NP�complete� but for each B � B the
non�uniform CSP�A� B� problem is solvable in polynomial time� For example� let K be the
class of all �nite cliques� and let G be the class of all �nite undirected graphs� It is clear that
CSP�K�G� is NP�complete� since it is equivalent to the Clique problem� For every �xed
�nite undirected graph G� however� one can determine in a constant number of steps whether
G has a clique of size k� This example is not isolated� since other NP�complete problems
can be viewed this way� In particular� if P is the class of all �nite paths� then CSP�P�G�
is equivalent to the Hamiltonian Path Problem� whereas for every �nite graph G there is a
linear�time algorithm for CSP�P� G�� These negative results notwithstanding� in the sequel
we will establish that several interesting non�uniform tractable cases do uniformize and give
rise to tractable cases of constraint satisfaction and conjunctive query containment�

� Boolean Constraint Satisfaction

Schaefer studied the computational complexity of Boolean CSP�B� problems� for which
he established a dichotomy �Sch�
�� More speci�cally� he identi�ed six classes of Boolean
structures and showed that CSP�B� is solvable in polynomial time� if B is in one of these
classes� but CSP�B� is NP�complete in all other cases� This classi�cation is in terms of
de�ning formulas� A k�ary Boolean relation R can be viewed as a set of truth assignments
on the propositional variables p�� � � � � pk� Thus� for each k�ary Boolean relation R there is
a propositional formula �R over the variables p�� � � � � pk such that R � models��R�� We call
�R a de�ning formula of R� and we say that R is de�nable by �R� Schaefer showed that for
a Boolean structure B� we have that CSP�B� is in PTIME if one of the following six cases
holds�

�� each relation in B contains the tuple h�� � � � � �i�

�� each relation in B contains the tuple h�� � � � � �i�

�� each relation in B is Horn �i�e�� de�nable by a CNF formula with at most one positive
literal per clause��

�� each relation in B is dual Horn �i�e�� de�nable by a CNF formula with at most one
negative literal per clause��
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	� each relation in B is bijunctive �i�e�� de�nable by a ��CNF formula��

�� each relation in B is a�ne �i�e�� de�nable by a conjunction of linear equations���

Furthermore� Schaefer established that if B is not in any of these six classes� then CSP�B�
is NP�complete�
We say that a Boolean structure B is a Schaefer structure if B is in at least one of

the above six classes� in which case CSP�B� is solvable in polynomial time� We call the
class of all Schaefer structures Schaefer	s class� denoted SC� Our main result in this section
is that CSP�SC� is solvable in polynomial time� which means that Schaefer�s tractability
results completely uniformize� As a �rst step� we need to show that structures in SC can be
recognized in polynomial time� This follows from results in �DP��� Sch�
��

Theorem ���� The class SC is recognizable in polynomial time�

Proof� The �rst two cases are trivially recognizable� Schaefer showed that a Boolean
relation R is bijunctive if and only if the following condition holds� if t�� t�� t� � R� then
�t�
t����t�
t����t�
t�� � R �here Boolean operations are applied to tuples componentwise��
In addition� Schaefer showed that a Boolean relation R is a�ne if and only if the following
condition holds� if t�� t�� t� � R� then �t� � t� � t�� � R� Finally� Dechter and Pearl �DP���
showed that a Boolean relation R is Horn �resp�� dual Horn� if and only if the following
condition holds� if t�� t� � R� then t� � t� � R �resp�� t� 
 t� � R��� Clearly� each of these
conditions can be checked in polynomial time�

We say that a relation R is a trivial Schaefer relation if it is covered by the �rst two cases
of Schaefer�s classi�cation� and we say that R is a nontrivial Schaefer relation if it is covered
by the four interesting cases of Schaefer�s classi�cation �i�e�� Horn� dual Horn� bijunctive�
and a�ne�� In the latter cases� the relation R is de�nable by a formula �R with a certain
syntactical structure� The next step is to show that� given a nontrivial Schaefer relation R�
we can construct a de�ning formula �R in polynomial time�

Theorem ���� There is a polynomial algorithm that constructs for each nontrivial Schaefer
relation R a de�ning formula �R�

Proof� There are four cases to consider� Dechter and Pearl �DP��� showed how to construct
�R in polynomial time� when R is Horn or dual Horn� It remains to deal with the cases that
R is bijunctive or a�ne�
Let R be a k�ary bijunctive relation� Then there is a �CNF formula � over the proposi�

tional variables fp�� � � � � pkg such that R � models���� If c is a ��clause over p�� � � � � pk�
we say that R satis�es c� denoted R j� c� if R � models�c�� Consider the formula
�R �

V
Rj�c c� where the conjunction ranges over all ��clauses c over fp�� � � � � pkg� We

claim that R � models��R� and� consequently� �R is a de�ning formula of R� Clearly�
R � models��R�� Moreover� if c is a conjunct in �� then R satis�es c� Thus c is also a
conjunct of �R and so models��R� � models��� � R� which implies that R � models��R��
Clearly� �R can be constructed in time O�jjRjj � k���

�A linear equation is a formula of the form �pi� � pi� � � � �� pil�� false or �pi� � pi� � � � �� pil�� true�
�For precursors of this result see �McK��� Riv����






LetR be a k�ary a�ne relation� Note that every linear formula �pi��pi��� � ��pil� false

�resp�� true� can be viewed as the equation pi� � pi� � � � �� pil � � �resp�� � �� over the
Boolean �eld� Let R� � f�t� �� j t � Rg� Each linear equation satis�ed by R corresponds
to a Boolean �k � ���vector a � �a�� � � � � ak��� such that a�t� � � � �� ak��tk�� � �� for each
t � �t�� � � � � tk��� � R�� Thus� the set of such vectors a is the nullspace NR� of R�� that is�
the vector space of solutions to the homogeneous linear equation system R�a � � over the
Boolean �eld� where R� is viewed as a Boolean jRj � �k � �� matrix �note that jRj � jR�j��
By the Fundamental Theorem of Linear Algebra� the dimension of the space NR� is at
most min�k��� jRj�� By Gaussian elimination� we can convert R� to a row�echelon matrix in
polynomial time and obtain a basis of NR�� whose size is at most min�k��� jRj� �KW�
�� Each
vector a � �a�� � � � � ak��� in the basis corresponds to a linear formula �pi� � pi� � � � �� pil�
false �or� true� that is satis�ed by R� We claim that the conjunction �R of these formulas
constitutes a de�ning formula of R� ClearlyR � models��R�� Moreover� we already observed
that each linear equation e satis�ed by R corresponds to a vector ae in NR�� Thus� ae can
be obtained as a linear combination of basic vectors� in other words� e is a consequence of
�R and so models��R� � R�

We can now prove the main result of this section�

Theorem ���� CSP�SC� is solvable in polynomial time�

Proof� Suppose we are given a pair A�B of relational structures� where B � SC� We have
to determine whether there is a homomorphism from A to B� By Theorem ���� we can
determine in polynomial time which of the six tractable cases in Schaefer�s classi�cation
describes B� If B is a trivial Schaefer structure� then there is a homomorphism from A to
B� so we can assume that B is a nontrivial Schaefer structure� For each k�ary relation Q in
A� let Q� be the corresponding relation in B �i�e�� Q and Q� are the interpretations of the
same relation symbol�� Apply Theorem ��� to construct �Q� �recall that �Q� is a formula over
fp�� � � � � pkg�
We can view each element of A as a propositional variable� For a tuple t � �t�� � � � � tk� �

Q� let �Q��t� be the formula obtained from �Q� by substituting ti for pi� � � i � k� Let
�Q �

V
t�Q �Q��t�� Note that the length of �Q is O�jQjj�Q�j�� Let �A �

V
Q�A �Q� We

claim that there is a homomorphism from A to B precisely when �A is satis�able� Indeed�
suppose that there is a homorphism h � A � B� Consider the truth assignment � de�ned
by � �ti� � h�ti�� for each element ti of a tuple t � Q� Choose a speci�c tuple t � Q� As
h�t� � Q�� the truth assignment � � de�ned by � ��pi� � h�ti� satis�es the formula �Q�� so �
satis�es �Q��t�� It follows that � satis�es �Q� Conversely� suppose that the truth assignment
� satis�es �Q� De�ne the homomorphism h�ti� � � �pi� for each element ti of a tuple t � Q�
Choose a speci�c tuple t � Q� As � satis�es �Q��t�� the truth assignment � � de�ned by
� ��pi� � � �ti� satis�es ��Q� It follows that h�t� � Q�� Note� however� that �A is a conjunction
of Horn clauses� dual Horn clauses� ��clauses� or linear formulas� depending on the type of
B� Thus� satis�ability of �A can be checked in time that is linear in the length of �A in
the �rst three cases �BB��� DG
�� Pap���� and cubic in the length of �A in the fourth case
�Sch�
��

�



When R is an a�ne relation� the length of the de�ning formula �R constructed above is
bounded by the size of R� In contrast� if R is bijunctive� Horn� or dual Horn� then the length
of �R is proportional to O�k�� �where k is the arity of R�� which can be quite larger than
the size of R� Thus� the complexity of our algorithm is cubic in these cases� It is possible�
however� to skip the formula�building stage of our algorithm and design a direct algorithm
that essentially tests for satis�ability of �A without explicitly constructing it�

Theorem ���� Let B be the class of Horn� dual Horn� or bijunctive structures� Then CSP�B�
is solvable in quadratic time�

Proof� We �rst describe the algorithm for the Horn case �an analogous algorithm works for
the dual Horn case�� Let R be a k�ary Horn relation� Take �k� � f�� � � � � kg� For X � �k� and
j � �k�� we say that R satis�es X � j if R � models�

V
i�X pi � pj�� To determine if there is

a homomorphism from a structure A to a Horn structure B� the algorithm maintains a set
One of elements of A that have to be mapped to �� Initially� One is empty� Let t be a tuple
in a relation Q of A� We de�ne One�t� � fi j ti � Oneg� The algorithm repeatedly selects a
tuple t in a relation Q of A and then adds tj to One� if Q� satis�es One�t�� j� where Q� is
the relation in B that corresponds to Q� When One cannot be enlarged anymore� there is
a homomorphism from A to B if and only if for each tuple t in a relation Q of A� there is
a tuple t� in the corresponding relation Q� of B such that One�t� � One�t��� To prove this
claim note that every element in One clearly has to be mapped to �� Thus� this condition
is necessary� To see that it is also su�cient� consider the homomorphism h such h�ti� � ��
if ti � One� and h�ti� � �� if ti �� One� We claim that h�t� � Q� for each t � Q� Indeed�
consider the collection T of all tuples t� � Q� such that One�t� � One�t��� We know that T is
not empty� Let u �

V
T �i�e�� the conjunction of all tuples in T �� SinceQ is a Horn relation� it

is closed under conjunction� so u � T � Q� �see proof of Theorem ����� If One�t� � One�u��
we are done� Otherwise� there is some j � �k� such that j � One�u� �One�t�� But then Q�

satis�es One�t�� j� which means that the algorithm would have added tj to One� in which
case we would have j � One�t� � contradiction�
We now claim that this algorithm can be implemented to run in time O�jjAjj � jjBjj�� A

naive implementation would take time O�jjAjj� � jjBjj�� since One can be extended at most
jjAjj times� and each extension of One takes time O�jjAjj � jjBjj�� as we have to �nd a tuple
t � Q� requiring an external loop over all tuples of A� and add tj to One� if Q� satis�es
One�t�� j� requiring an internal loop over all tuples of B� A more e�cient implementation
would focus on the elements of A that are to be added to One� In the preprocessing stage�
we build linked lists that link all occurrences in A of an element a� When a is added to One�
we traverse the list for a and process all tuples t in which a occur� After this� we update
One�t� and then� by scanning B� we check whether this triggers the addition of another
element to One� Thus� every occurrence of an element of A is visited at most once� resulting
in a running time of O�jjAjj � jjBjj�� �This implementation is inspired by the linear�time
algorithms for Horn satis�ability �BB��� DG
����
Consider now the bijunctive case� A linear�time algorithm for ��CNF formulas proceeds

in phases �LP���� In each phase� we choose an unassigned variable u and assign an arbitrary
truth value to it� We then use the binary clauses in the formula to propagate the assignment�
If x is assigned � and we have a clause �x 
 y� then y is assigned �� and if we have a clause

��



�x
�y� then y is assigned �� Similarly� if x is assigned � and we have a clause x
 y� then y
is assigned �� and if we have a clause x
�y� then y is assigned �� If this results in a variable
z assigned both � and �� then we undo all assignments of this phase� and we try to assign
to u the other truth value� If both attempts fail� then the formula is unsatis�able� If either
the �rst or the second attempt is successful� then we proceed to the next phase� As each
variable is assigned a truth value at most twice� the algorithm is linear�
Given the pair A�B of structures� where B is bijunctive� we can emulate the above

algorithm� The variables are the elements of A� The clauses are implied by the structure B
�see proofs of Theorems ��� and ����� The algorithm proceeds in phases� In each phase� we
choose an unassigned element a of A and assign to it a value i � f�� �g� We then use the
structure B to propagate the assignment� Suppose that a � tk for a tuple t in a relation Q
of A� Let TQ��k�i be the set of all tuples t� in the corresponding relation Q� of B such that
t�k � i� Suppose now that for some j � f�� �g we have that t�l � j for all t� � TQ��k�i� in this
case� we know that the element tl must be assigned the value j� If this propagation results in
an element b of A assigned both � and �� then we undo all assignments of this phase� and we
try to assign the value �� i to a� If both attempts fail� then there is no homomorphism from
A to B� If the �rst or second attempt are successful� then we proceed to the next phase�
Note that each element is assigned value at most twice� but propagating a value requires
scanning the pairs t�k� t

�
l of all tuples t

� � Q�� Listing components of a tuple without listing
the whole tuple� requires preprocessing the structures to construct the appropriate linked
lists� Thus� the complexity of our algorithm is O�jjAjj � jBj� jjBjj�� �Note that jjBjj is the
size of the encoding of B� while jBj is the number of tuples in B��

What are the implications of Theorem ��� for conjunctive�query containment� At �rst
sight� it seems that its applicability is limited� since Boolean constraint�satisfaction problems
correspond to testing whether Q� � Q�� where Q� uses only two variables �corresponding to
the Boolean values � and ��� and thus seems very restricted� Nonetheless� the critical obser�
vation is that every instance �A�B� of a constraint�satisfaction problem can be converted�
with a small blow�up� to a Boolean constraint�satisfaction problem �Ab� Bb� by encoding all
elements of B in binary notation� Speci�cally� if n is the number of elements in B� then we
can encode every element of B by a bit vector of length m � dlog ne� Thus� a k�ary relation
Q� of B becomes a km�ary Boolean relation Q�

b of Bb� Note that since one needs ndlog ne
bits to encode n elements� there is essentially no blow�up in this conversion� We then replace
every element a in A by an m�vector ha�� � � � � ami consisting of m distinct copies of a� For
each relation Q of A� this yields a km�ary relation Qb� This conversion blows up the size of
the instance by a factor of dlog ne� where n � jBj�

Lemma ���� There is a homomorphism from A to B if and only if there is a homomorphism
from Ab to Bb�

Proof� We can assume that the elements of B are �� � � � � n� Suppose �rst that there is a
homomorphism h � A � B� For each element a of A� if h�a� � j� then de�ne hb�ai� to be
the i�th bit of j� for i � �� � � � �m� It is easy to see that hb is a homomorphism from Ab to
Bb� Suppose now that there is a homomorphism hb � Ab � Bb� For each element a of A�
de�ne h�a� to be the number whose binary notation is hhb�a��� � � � � hb�am�i� It is easy to see
that h is a homomorphism from A to B�

��



We refer to the process of converting a constraint�satisfaction problem to a Boolean constraint�
satisfaction problem as Booleanization�
We now present an application of this technique� A two�atom conjunctive query is one

in which every database predicate occurs at most twice in the body�

Proposition ��	� �Sar��� Testing whether a two�atom conjunctive query Q� is contained in
a conjunctive query Q� can be done in polynomial time�

Proof� By Lemma ��	� we can Booleanize the problem and reduce it to testing the existence
of a homomorphism from a structure A to a Boolean structure B� where every relation in
B has at most two tuples� Recall that if B has n elements� then the conversion increases
the arity of the relations in A by a factor of dlog ne� By the criterion for bijunctivity �see
the proof of Theorem ���� every relation in B is indeed bijunctive� By Theorem ��� and
Theorem ���� the test can be done in time O��jjQ�jj � log jjQ�jj� � jjQ�jj��

It is worth noting that the proof in �Sar��� yields a slightly better upper bound� as it is shown
there that testing whether a two�atom conjunctive query Q� is contained in a conjunctive
query Q� can be done in time O�jjQ�jj� jjQ�jj��
We conclude this section by presenting two examples that provide additional evidence

for the power of Booleanization�

Example ��
� ��Colorability
Let B be a graph consisting of two nodes and a single undirected edge between them�

It is easy to see that CSP�B� is the class of all ��colorable graphs� and thus a tractable
constraint�satisfaction problem� We now show that this well known tractability result can
be derived via Booleanization� Indeed� B gives rise to the Boolean structure B� � �f�� �g� R��
where R � f��� ��� ��� ��g� This structure is both bijunctive �since R has cardinality �� and
a�ne �since R is the set of solutions of �x� y� true�� Thus� Booleanization provides two
dierent explanations as to why ��Colorability is solvable in polynomial time�

Example ���� CSP�C��
Let C� be a directed cycle with four nodes� that is C� � �fa� b� c� dg� E�� where E �

f�a� b�� �b� c�� �c� d�� �d� a�g� If we Booleanize C� using the labeling

a �� ��� b �� ��� c �� ��� d �� ���

then we obtain the Boolean structure C �
� � �f�� �g� E

��� where

E� � f��� �� �� ��� ��� �� �� ��� ��� �� �� ��� ��� �� �� ��g�

Clearly� E� is neither ��valid nor ��valid� Using the criteria in the proof of Theorem ���� it
can be easily veri�ed that E � is not Horn� dual Horn or bijunctive� but it is an a�ne Boolean
relation� For instance� E� is not Horn �resp� dual Horn�� because the componentwise � �resp�

� of the �rst two tuples of E� is ��� �� �� �� �resp� ��� �� �� ���� which is not in E�� Similarly�
E� is not bijunctive� because the componentwise majority of the �rst three tuples of E�

is ��� �� �� ��� which is not in E�� Finally� E� is a�ne� because it is closed by taking the

��



componentwise � of arbitrary triples in E�� Alternatively� E� can be seen to be a�ne by
observing that E� is the set of solutions of the system

�x� y � z� false� �y � w� true�

It follows that CSP�C�� is solvable in polynomial time� Naturally� this could also have been
seen directly by observing that CSP�C�� is ��Colorability in disguise� Indeed� since homomor�
phisms compose and since C� is ��colorable� it is easy to see that there is a homomorphism
from a given a directed graph G to C� if and only if G is ��colorable �HN����

It should be pointed out that the way Booleanization is carried out may give rise to a
Schaefer structure of dierent type� Speci�cally� we claim that there is a labeling of C� that
results into a Boolean structure that is both a�ne and bijunctive� To see this� consider the
labeling

a �� ��� b �� ��� c �� ��� d �� ���

The resulting Boolean structure is B�� � �f�� �g� E���� where

E�� � f��� �� �� ��� ��� �� �� ��� ��� �� �� ��� ��� �� �� ���

We leave it as an exercise for the reader to verify� using the criteria in the proof of Theorem
���� that E�� is neither Horn nor dual Horn� but it is both bijunctive and a�ne�

� Datalog and Constraint Satisfaction

A Datalog program is a �nite set of rules of the form

t� �� t�� � � � � tm�

where each ti is an atomic formula R�x�� � � � � xn�� The relational predicates that occur in the
heads of the rules are the intensional database predicates �IDBs�� while all others are the
extensional database predicates �EDBs�� One of the IDBs is designated as the goal of the
program� Note that IDBs may occur in the bodies of rules and� thus� a Datalog program is a
recursive speci�cation of the IDBs with semantics obtained via least �xed�points of monotone
operators �see �Ull
���� Each Datalog program de�nes a query which� given a set of EDB
predicates� returns the value of the goal predicate� Moreover� this query is computable in
polynomial time� since the bottom�up evaluation of the least �xed�point of the program
terminates within a polynomial number of steps �in the size of the given EDBs� �see �Ull
����
Thus� expressibility in Datalog is a su�cient condition for tractability of a query�
IfB is a �nite relational structure andA is a class of structures� then we write �CSP�A� B�

for the complement of CSP�A� B�� that is� the class of structures A such that there is no
homomorphism h � A � B� Feder and Vardi �FV��� provided a unifying explanation for
the tractability of many non�uniform CSP�B� problems by showing that the complement
of each of these problems is expressible in Datalog� Our aim in this section is to obtain
stronger uniform tractability results for the collections of constraint satisfaction problems
whose complements are expressible in Datalog with a bounded number of distinct variables�

��



For every positive integer k� let k�Datalog be the collection of all Datalog programs in
which the body of every rule has at most k distinct variables and also the head of every rule
has at most k variables �the variables of the body may be dierent from the variables of
the head�� For example� the query Non���Colorability is expressible in ��Datalog� since it is
de�nable by the goal predicate Q of the following Datalog program

P �X�Y � � � E�X�Y �

P �X�Y � � � P �X�Z�� E�Z�W �� E�W�Y �

Q � � P �X�X�

It is well known that Datalog can be viewed as a fragment of least �xed�point logic LFP
�see �CH
	� AHV�	��� In turn� on the class of all �nite structures LFP is subsumed by
the �nite�variable in�nitary logic L�

�� �
S
k L

k
��� where L

k
�� is the in�nitary logic with

arbitrary disjunctions and conjunctions� but with at most k distinct variables �see �KV�����
In the present paper� we are interested in fragments of Lk

�� and L
�
�� that are suitable for

the study of Datalog� For every k � �� let �Lk
�� be the existential positive fragment of L

�
��

with k variables� that is� the collection of all formulas that have at most k distinct variables
and are obtained from atomic formulas using in�nitary disjunction� in�nitary conjunction�
and existential quanti�cation only� Let Q be a query on the class of all �nite structures over
a �xed vocabulary 	� In �KV�	�� it was shown that if Q is expressible in k�Datalog� then Q
is also de�nable in �Lk�

�� for some k
� 
 k� Moreover� in �KV��� it was shown that if Q is

expressible in LFPk �least �xed�point logic with k variables�� then Q is also expressible in
Lk
��� As a matter of fact� the proof can be adapted to yield the following result� which is
optimal as regards the number of distinct variables used�

Theorem ���� Let k be a positive integer� Every k�Datalog query is expressible in �Lk
���

Thus� k�Datalog � �Lk
���

In what follows� we present a self�contained proof of the preceding Theorem ���� For this�
we �rst have to give precise de�nitions of the concepts involved and establish a number of
intermediate results�
Let 	 be a �xed relational vocabulary� For every k � �� we write FOk for the collec�

tion of all �rst�order formulas with at most k distinct variables� We also write �FOk for
the existential positive fragment of FOk� i�e�� the collection of all �rst�order formulas that
have at most k distinct variables and are obtained from atomic formulas using disjunction�
conjunction� and existential quanti�cation only�
A system of �rst�order formulas is a �nite sequence

���x�� � � � � xn� � S�� � � � � Sl�� � � � � �l�x�� � � � � xnl� S�� � � � � Sl�

of �rst�order formulas such that each Si is a relation symbol of arity ni� � � i � l� not in the
vocabulary 	� If A is a 	�structure� then every such system gives rise to an operator � from
sequences �R�� � � � � Rl� of relations Ri of arity ni� � � i � l� on the universe A to sequences
of relations on the universe of A of the same arities� More precisely�

��R�� � � � � Rl� � ����R�� � � � � Rl�� � � � ��l�R�� � � � � Rl���

��



where for every i � l

�i�R�� � � � � Rl� � f�a�� � � � � ani� � A j� �i�x��a�� � � � � xni�ani � S��R�� � � � � Sl�Rl�g�

The stages �m � ��m
� � � � � ��

m
l �� m � �� of � on a 	�structure A are de�ned by the

following induction on m simultaneously for all i � l�

��
i � �i��� � � � � ��� �

m��
i � �i��

m
� � � � � ��

m
l �� i � l� m � ��

If each formula �i�x�� � � � � xni� S�� � � � � Sl�� � � i � l� of a system is positive in the relation
symbols S�� � � � � Sl� then the associated operator � is monotone in each of its arguments
and� as a result� the sequence of its stages is increasing in each component� Thus� for every
�nite structure A the sequence of stages of � converges after �nitely many iterations� i�e��
there is a positive integer m� such that �m � �m� for every m � m�� Moreover� the
sequence �m� � ��m�

� � � � � ��m�

l � is the least �xed�point of the operator � on A� i�e�� the
smallest sequence �R�� � � � � Rl� of relations on A such that ��R�� � � � � Rl� � �R�� � � � � Rl� �see
�AHV�	��� We call this sequence the least �xed�point of the system ��� � � � � �l and denote it
by ���� � � � � � �

�
l �� Usually� one is interested not in the entire sequence ��

�
� � � � � � �

�
l �� but in

only one of its components� for instance� in the last component ��l �
Least �xed�point logic LFP is the extension of �rst�order logic that has as formulas the

components ��i of systems ��� � � � � �l of positive �rst�order formulas� For every k � �� let
LFPk be the fragment of LFP obtained by taking the components of least �xed�points of
systems of positive FOk�formulas� Similarly� �LFPk is the fragment of LFP obtained by
taking the componets of least �xed�points of systems of positive �FOk�formulas�
Chandra and Harel �CH
	� showed that Datalog has the same expressive power as the

existential fragment of LFP� More precisely� a query is expressible in k�Datalog if and only
if it is �LFPk�de�nable� In fact� every k�Datalog program � can be �simulated� by a system
of positive �FOk�formulas� and vice versa� Intuitively� every IDB predicate P of � gives rise
to an �FOk�formula that is the disjunction of the positive existential formulas that de�ne
the bodies of the rules having the IDB predicate P as head� The resulting system of �FOk�
formulas simulates the k�Datalog program � �step�by�step�� that is to say� each stage of the
system corresponds to a stage in the �bottom�up� evaluation of �� Consequently� to prove
Theorem ��� su�ces to establish that �LFPk � �Lk

��� which amounts to establishing that
if ��� � � � � �l is a system of positive �FOk�formulas� then each component ��i of the least
�xed�point of this system is �Lk

���de�nable�
In the sequel� we assume that for every k � � the variables x�� � � � � xk are the k distinct

variables of the logics �FOk and �Lk
���

Lemma ���� Let k be a positive integer� let  � f�� � � � � kg �� f�� � � � � kg be a function� and
let Q be a query�

	 If Q is �FOk�de�nable� then the query Q� is also �FO
k�de�nable� where for every �nite

	�structure A and every sequence �a�� � � � � ak� of elements from the universe of A

�a�� � � � � ak� � Q��A��� �a���	� � � � � a��k	� � Q�A��

�	



	 If Q is �Lk
���de�nable� then the query Q� is also �Lk

���de�nable�

Proof� We will show that for every function  � f�� � � � � kg �� f�� � � � � kg and for every
formula ��x�� � � � � xk� of �FO

k �resp�� �Lk
��� there is a formula ���x�� � � � � xk� of �FO

k �resp��
�Lk

��� such that for every 	�structure A and every sequence �a�� � � � � ak� of elements from
the universe of A

A j� ���x��a�� � � � � xk�ak��� A j� ��x��a���	� � � � � xk�a��k	��

The proof is by induction on the construction of �FOk�formulas �resp�� �Lk
���formulas�

simultaneously for all functions �

	 If ��x�� � � � � xk� is the formula xi � xj for some i� j with � � i � j � k� then
���x�� � � � � xk� is the formula x��i	 � x��j	�

	 If q � f�� � � � � rg �� f�� � � � � kg is a function� R is a relation symbol in 	 of arity r�
and ��x�� � � � � xk� is the atomic formula R�xq��	� � � � � xq�r	�� then ���x�� � � � � xk� is the
formula R�x��q��		� � � � � x��q�r		��

	 If ���x�� � � � � xk� is of the form ��x�� � � � � xk����x�� � � � � xk�� then ���x�� � � � � xk� is the
formula���x�� � � � � xk�����x�� � � � � xk�� If ���x�� � � � � xk� is of the form

V
��
 ��x�� � � � � xk��

then then ���x�� � � � � xk� is the formula
V
��
 ���x�� � � � � xk�� The case of disjunction

is handled in a similar manner�

	 Finally� assume that ��x�� � � � � xk� is a formula of the form ��xj���x�� � � � � xk� for some
j � k� There are two cases to consider� Suppose �rst that there is no j� such that
j� � k� j� �� j� and �j� � �j��� Then the desired formula ���x�� � � � � xk� is the
formula ��x��j	����x�� � � � � xk�� Suppose on the other hand that there is some j� such
that j � � k� j� �� j� and �j� � �j��� Then there is some j�� � k such that j�� is not in
the range of � Let � � f�� � � � � kg �� f�� � � � � kg be the function such that ��i� � �i��
if i �� j� and ��j� � j��� By applying the induction hypothesis to the function �

and to the formula ��x�� � � � � xk�� we obtain a formula ��� of �FOk such that for all
	�structures A and all sequences of elements �a�� � � � � ak� from the universe of A

A j� ����x��a�� � � � � xk�ak��� A j� ��x��a����	� � � � � xk�a���k	��

Then the desired formula ���x�� � � � � xk� is the formula ��xj�������x�� � � � � xk��

We are now ready to show that �LFPk � �Lk
��� for every k � �� which will imply that

k�Datalog � �Lk
���

Theorem ���� Let k� n�� � � � � nl be positive integers such that ni � k for every i � l� let
S�� � � � Sl be relation symbols not in the vocabulary 	 and having arities n�� � � � � nl� and let

���x�� � � � � xn� � S�� � � � � Sl�� � � � � �l�x�� � � � � xnl� S�� � � � � Sl�

be a system of positive �FOk�formulas over the vocabulary 	�fS�� � � � � Slg� Then the following
are true for the above system and for the operator � associated with it�

��



	 For every m � �� each component �m
i � � � i � l� of the stage �m � ��m

� � � � � ��
m
l � is

de�nable by an �FOk�formula on all 	�structures ��nite or in�nite��

	 Each component ��i � � � i � l� of the least �xed�point ���� � � � � � �
�
l � of the system is

de�nable by an �Lk
���formula on all 	�structures ��nite or in�nite��

Proof� Assume �rst that ni � k for all i � l� which means that each Si is a k�ary relation
symbol not in 	 and each �i�x�� � � � � xk� S�� � � � � Sl�� � � i � k� is a formula of �FOk over
the vocabulary 	 � fS�� � � � � Slg� By induction on m simultaneously for all i � l� we will
show that each component �m

i of every stage �
m is de�nable by a formula �m

i �x�� � � � � xk� of
�FOk� The claim is obvious for m � �� since each component ��

i of the stage �
� is de�nable

by the �FOk formula �i�x�� � � � � xk� S���� � � � � Sl���� � � i � l� Assume now that there are
�FOk�formulas �m

i �x�� � � � � xk� that de�ne the components �
m
i � � � i � m of the stage �m�

which means that for every structure A and every sequence �a�� � � � � ak� of elements from the
universe of A

�a�� � � � � ak� � �
m
i ��j� �m

i �x��a�� � � � � xk�ak�� � � i � l�

Let us consider the components �m��
i of the stage �m��� which are de�ned by

�a�� � � � � ak� � �
m��
i �� A j� �i�x��a�� � � � � xk�ak� S���

m
� � � � � � Sl��

m
l ��

Every occurrence of each relation symbol Sj� � � j � l� in the formulas of the system is in
a subformula of the form Sj�x���	� � � � � x��k	� for some function  � f�� � � � � kg �� f�� � � � � kg�
Since each relation symbol S�� � � � � Sl has only positive occurrences in the formulas of the
system� by using the induction hypothesis and repeatedly applying Lemma ���� for each
j � l and each such function  we obtain a formula �m

j���x�� � � � � xk� of �FO
k such that

�a���	� � � � � a��k	� � �
m
j �� A j� �j���x��a�� � � � � xk�ak��

For i � l� let �m��
i �x�� � � � � xk� be the formula obtained from �i�x�� � � � � xk� S�� � � � � Sl� by sub�

stituting each subformula Sj�x���	� � � � � x��k	� by the corresponding formula �
m
j���x�� � � � � xk��

Note that we are using the formulas �m
j���x�� � � � � xk� instead of the formula �

m
j �x�� � � � � xk��

so that these substitutions can be carried out without renaming variables or introducing
new variables� Thus� for every i � m the formula �m��

i �x�� � � � � xk� is an �FO
k�formula that

de�nes the component �m
i of the stage �

m���
Consider next the case that ni � k for at least one i � l� For every i � l� let Ti be a k�ary

relation symbol not in the vocabulary 	 and let �i�x�� � � � � xni� xni��� � � � � xk� T�� � � � � Tl� be the
�FOk�formula over the vocabulary 	 � fT�� � � � � Tlg obtained from �i�x�� � � � � xni� S�� � � � � Sl�
as follows� if nj � k� then we replace each subformula Sj�x���	� � � � � x��nj	� by the formula

��xnj��� � � � ��xk�Tj�x���	� � � � � x��nj	� xnj��� � � � � xk��

while if nj � k� then we replace Sj�x���	� � � � � x��nj	� by Tj�x���	� � � � � x��nj	�� A straightfor�
ward induction on m simultaneously for all i � m shows that if ni � k� then �m

i �  m
i �

��



while if ni � k� then for every structure A and every sequence �a�� � � � � ak� of elements from
the universe of the structure

�a�� � � � � ani� � �
m
i �� A j� ��ani�� � � ��ak���a�� � � � � ani� ani��� � � � � ak� �  

m
i ��

For every m � � and i � l� let �m
i �x�� � � � � xk� be the �FO

k�formula that de�nes the compo�
nent  m

i of the stage  
m� If ni � k� then we let �m

i �x�� � � � � xni� be the formula

��xni�� � � ��xk��
m
i �x�� � � � � xni� xni��� � � � � xk��

while if ni � k� then we let �m
i �x�� � � � � xk� be the formula�

m
i �x�� � � � � xk�� Thus �

m
i �x�� � � � � xni�

is an �FOk�formula that de�nes the component �m
i of the stage �

m� � � i � l�
Finally� each component ��i �x�� � � � � xni� of the least �xed�poin of the system ��� � � � � �l

is de�nable on all 	�structures by the �Lk
���formula

W�
m�� �

m
i �x�� � � � � xni��

As explained earlier� Theorem ��� follows immediately from the preceding Theorem ����

Corollary ��� � Let k be a positive integer� Then �LFPk � �Lk
�� and� consequently�

k�Datalog � �Lk
���

It should be pointed out that on the class of all �nite structures k�Datalog is properly
contained in �Lk

��� since the latter can express non�computable queries�
Next� we describe certain combinatorial games that will play an important role in the

sequel� Let A and B be two relational structures over a common relational vocabulary 	�
The existential k�pebble game on A and B is played between two players� the Spoiler and
the Duplicator� The Spoiler places k pebbles �one at a time� on elements of A� after each
move of the Spoiler� the Duplicator responds by placing a pebble on an element of B� Once
all pebbles have been placed� the Spoiler wins if one of the following two conditions holds
for the elements ai and bi� � � i � k� of A and B that have been pebbled in the i�th move
of the Spoiler and the Duplicator�

�� the correspondence ai �� bi� � � i � k� is not a mapping �that is to say� there exists i�
and i� such that i� �� i�� ai� � ai�� and bi� �� bi���

�� the correspondence ai �� bi� � � i � k� is a mapping� but it is not a a homomorphism
from the substructure of A with universe fa�� � � � � akg to the substructure of B with
universe fb�� � � � � bkg�

If neither of the above two conditions holds� then the Spoiler removes one or more pebbles
and the game resumes� We say that the Duplicator wins the existential k�pebble game on
A and B if he has a strategy that allows him to continue playing �forever�� that is� the
Spoiler can never win a round of the game� A more formal de�nition of this concept can be
given using families of partial homomorphisms with the forth property up to k �see �KV�	�
for details��
If �a�� � � � � ak� is a k�tuple of elements of A and �b�� � � � � bk� is a k�tuple of elements of

B� then we say that the Duplicator wins the existential k�pebble game on �A� a�� � � � � ak� and
�B� b�� � � � � bk�� if �a�� � � � � ak� and �b�� � � � � bk� is a winning con�guration for the Duplicator�

�




that is� the Duplicator can win the game if the i�th pebble of the Spoiler has been placed
on ai and the i�th pebble of the Duplicator has been placed on bi� � � i � k� The following
result from �KV�	� shows that expressibility in �Lk

�� can be characterized in terms of the
existential k�pebble games�

Theorem ���� Let k be a positive integer and Q a k�ary query on a class C of �nite
structures� Then the following two statements are equivalent


�� Q is expressible in �Lk
�� on C�

�� If A� B are two structures in C and �a�� � � � � ak�� �b�� � � � � bk� are two k�tuples of elements
of A and B such that A j� Q�a�� � � � � ak� and the Duplicator wins the existential k�pebble
game on �A� a�� � � � � ak� and �B� b�� � � � � bk�� then B j� Q�b�� � � � � bk��

Corollary ��	� Let k be a positive integer and Q a Boolean query on a class C of �nite
structures� Then the following two statements are equivalent


�� Q is expressible in �Lk
�� on C�

�� If A and B are two structures in C such that A j� Q and the Duplicator wins the
existential k�pebble game on A and B� then B j� Q�

Let 	� and 	� be two disjoint copies of the vocabulary 	� that is� for each relation symbol
R of 	 and for i � �� �� the vocabulary 	i contains a relation symbol Ri of the same arity as
R� We write 	� � 	� for the vocabulary 	� � 	� � fD��D�g� where D� and D� are two new
unary relation symbols� Using the vocabulary 	� � 	�� we can encode a pair �A�B� of two
	�structures A and B by a single 	� � 	��structure A � B de�ned as follows� the universe
of A � B is the union of the universes of A and B� the interpretation of D� �respectively�
D�� is the universe of A �respectively� B�� and the interpretation of each relation symbol R�

�respectively� R�� is the interpretation of the relation symbol R on A �respectively� on B��
This encoding makes it possible to formally view queries on pairs of 	�structures as queries
on single 	� � 	��structures�
Our next result concerns the computational and descriptive complexity of existential

k�pebble games�

Theorem ��
� Let 	 be a relational vocabulary and let k be a positive integer�

�� There is a sentence � of least �xed�point logic LFP over the vocabulary 	� � 	� that
expresses the query
 Given two 	�structures A and B� does the Spoiler win the exis�
tential k�pebble on A and B���

As a result� there is a polynomial�time algorithm such that� given two �nite 	�structures
A and B� it determines whether the Spoiler wins the existential k�pebble game on A
and B�

�� For every �nite 	�structure B� there is a k�Datalog program �B that expresses the
query Given a 	�structure A� does the Spoiler win the existential k�pebble game on A
and B���

��



Proof� Let ��x�� � � � � xk� y�� � � � � yk� be a quanti�er�free formula over the vocabulary 	�� 	�
asserting that the correspondence xi �� yi� � � i � k� is not a mapping or it is a mapping
that is not a homomorphism from the substructure induced by x�� � � � � xk over the vocabulary
	� to the substructure induced by y�� � � � � yk over the vocabulary 	�� Speci�cally� � is the
disjunction of the following formulas�

	 xi � xj � yi �� yj� for every i� j � k such that i �� j�

	 R��xi�� � � � � xim���R��xi�� � � � � xim�� for every m�ary relation symbol R in 	 and every
m�ary tuple of variables from the set fx�� � � � � xkg�

Let T be a �k�ary relation symbol not in 	� � 	� and let ��x�� � � � � xk� y�� � � � � yk� T � be the
following positive �rst�order formula over the vocabulary 	� � 	� � fTg�

��x�� � � � � xk� y�� � � � � yk� 

k�

j��

��xj���yj��D��xj� � �D��yj�� T �x�� � � � � xk� y�� � � � � yk����

It is easy to verify that if A� B are 	�structures and �a�� � � � � ak�� �b�� � � � � bk� are k�tuples of
elements of A and B respectively� then the following statements are equivalent�

�� A�B j� ���a�� � � � � ak� b�� � � � � bk��

�� The Spoiler wins the existential k�pebble on �A� a�� � � � � ak� and �B� b�� � � � � bk��

Let � be the sentence ��x�� � � � ��xk���y�� � � � ��yk����x�� � � � � xk� y�� � � � � yk� of least �xed�
point logic LFP� Consequently� for every 	�structure A and every 	�structure B the following
statements are equivalent�

�� A�B j� ��

�� The Spoiler wins the existential k�pebble game on A and B�

Since every LFP�expressible query is computable in polynomial time� it follows that there is
a polynomial time algorithm that� given two �nite 	�structures A and B� tells whether the
Spoiler wins the existential k�pebble game on A and B�
Note that the positive �rst�order formula � above involves existential quanti�ers that

are interpreted over the elements of A� and universal quanti�ers that are interpreted over
the elements of B� Consequently� if B is a �xed �nite 	�structure� then the universal quan�
ti�ers can be replaced by �nitary conjunctions over the elements of B and� thus� � can be
transformed to a k�Datalog program �p that expresses the query� �Given a �nite 	�structure
A� does the Spoiler win the existential k�pebble game on A and B��� In what follows� we
describe this Datalog program in some detail� The goal of �B is a ��ary predicate S� Let
b � �b�� � � � � bk� be a k�tuple of elements of B� For each such k�tuple� we introduce a k�ary
relation symbol Tb and the following rules�

	 For every i and j such that bi �� bj� we have a rule

Tb�x
�
�� � � � � x

�
k� � � �

where x�i � x�j � xi� and x�s � xs� for s �� i� j�

��



	 For every m�ary relation symbol R of 	 and every m�ary tuple �i�� � � � � im� such that

B� bi�� � � � � bim j� �R�xi� � � � � � xim��

we have a rule
Tb�x�� � � � � xk� � � R�xi� � � � � � xim��

	 For every j with � � j � k� we have a rule

T �x�� � � � � xk� � �
�

c�B

Tb�j�c��x�� � � � � xj��� y� xj��� � � � � xk��

where b�j�c� � �b�� � � � � bj��� c� bj��� � � � � bk� and y is a new variable �note� however� that
the body of the rule has k variables��

	 For the goal predicate S� we have the rule

S � �
�

b�Bk

Tb�x�� � � � � xk��

We now have all the necessary notation and machinery to establish the main results of
this section�

Theorem ���� Let k be a positive integer� B a �nite relational structure� and A a class of
�nite relational structures such that B � A� Then the following statements are equivalent�

�� �CSP�A� B� is expressible in k�Datalog on A�

�� �CSP�A� B� is expressible in �Lk
�� on A�

�� �CSP�A� B� � fA � A � The Spoiler wins the existential k�pebble game on A and Bg�

Proof� The implication ��� �� ��� follows from Theorem ���� To show that ��� �� ����
assume that � is an �Lk

�� sentence that de�nes �CSP�A� B� on A� Let A be a �nite
relational structure in A� If A �� CSP�A� B�� then A j� � and� hence� the Spoiler wins
the existential k�pebble game on A and B� Indeed� if the Duplicator wins this game� then�
by Theorem ���� B j� �� which means that there is no homomorphism from B to B� a
contradiction� Conversely� if the Spoiler wins the existential k�pebble game on A and B�
then A � �CSP�A� B�� Indeed� otherwise� there is a homomorphism h � A � B� which
will give the Duplicator a winning strategy for the existential k�pebble game on A and
B� whenever the Spoiler places a pebble on an element a of A� the Duplicator responds
by placing the corresponding pebble on the element h�a� of B� Finally� the implication
��� �� ��� follows from Theorem ����

By combining Theorems ��� and ��
� we obtain the following uniform tractability result
for classes of constraint satisfaction problems expressible in Datalog�

��



Theorem ���� Let k be a positive integer� A a class of �nite relational structures� and

B � fB � A � �CSP�A� B� is expressible in k�Datalogg�

Then the uniform constraint satisfaction problem CSP�A�B� is solvable in polynomial time�
Moreover� the running time of the algorithm is O�n�k�� where n is the maximum of the sizes
of the input structures A and B�

We note that it is an open problem whether the class

fB � �CSP�A� B� is expressible in k �Datalogg

is recursive� In contrast� Schaefer�s class SC� which was the basis for the tractability result
of Theorem ���� is recursive �per Theorem �����

Remark ���� Some remarks concerning the results of this section are in order now�

�� Feder and Vardi �FV��� showed that for every non�uniform CSP�B� problem there is
a certain k�Datalog program B such that if the complement of CSP�B� is expressible
in k�Datalog� then B expresses it� The preceding Theorems ��� and ��
 give an
alternative proof of this result� moreover� they reveal that as B we can take the k�
Datalog program �B that expresses the query� �Given A� does the Spoiler win the
existential k�pebble game on A and B���

�� To illustrate an application of Theorem ���� consider a k�ary Horn Boolean structure
B� Then it is easy to verify that CSP�B� is expressible in k�Datalog� Consequently�
Theorem ��� yields a polynomial�time algorithm for CSP�F �B�� where F is the class
of all �nite structures and B is the class of k�ary Horn Boolean structures�

� Bounded Treewidth and Constraint Satisfaction

Up to this point� we found tractable cases of the uniform constraint satisfaction problem
CSP�A�B� by imposing restrictions on the class B� In this section� we exhibit tractable cases
of CSP�A�B� that are obtained by imposing restrictions on the class A� For this� we consider
the concept of treewidth of a relational structure� this concept was introduced by Feder and
Vardi �FV��� and generalizes the concept of treewidth of a graph �see �vL��� Bod�����
A tree decomposition of a �nite relational structure A is a labeled tree T such that the

following conditions hold�

�� every node of T is labeled by a non�empty subset of the universe V of A�

�� for every relation R of A and every tuple �a�� � � � � an� in R� there is a node of T whose
label contains fa�� � � � � ang�

�� for every a � V � the set of nodes X of T whose labels include a forms a subtree of T �

��



The width of a tree decomposition T is the maximum cardinality of a label of a node in T
minus �� Finally� we say that a structure A is of treewidth k if k is the smallest positive
integer such that A has a tree decomposition of width k�
An alternative way to de�ne the treewidth of a structure A is in terms of the treewidth of

the Gaifman graph of A �Gai
��� that is� the graph that has the elements of the universe of A
as nodes and is such that there is an edge between two nodes if and only if the corresponding
elements appear in a tuple in one of the relations of A� We call the treewidth of the Gaifman
graph of A the Gaifman treewidth of A� We now show that the two concepts coincide�

Lemma ���� T is a tree decomposition of a structure A i� it is also a tree decomposition
tree of the Gaifman graph of A�

Proof� It is easy to see that if T is a tree decomposition of A� then T is also a tree
decomposition of the Gaifman graph of A� Suppose now that T is a tree decomposition of
the Gaifman graph of A� Consider a tuple �a�� � � � � an� in a relation R of A� The elements
fa�� � � � � akg form a clique in the Gaifman graph of A� By Lemma ���� of �DF���� there is a
node x of T such that fa�� � � � � akg is contained in the label of x� It follows that T is also a
tree decomposition of A�

For every k � �� let A�k� be the class of all �nite relational structures of treewidth
k� Bodlaender �Bod��� showed that� for every k � �� there is a polynomial�time algorithm
that tests whether a given graph is of treewidth k� It follows that� for every k � �� there
is a polynomial�time algorithm that tests whether a given �nite relational structure is of
treewidth k� in other words� each class A�k� is recognizable in polynomial time�
Feder and Vardi �FV��� showed for every �nite relational structureB� there is a polynomial�

time algorithm for the non�uniform constraint satisfaction problem CSP�A�k�� B�� �This also
follows from the fact that the class CSP�B� is known to be expressible in existential monadic
second�order logic �FV���� and it is also known that membership in classes of graphs de�nable
in monadic second�order logic is decidable in polynomial time for graphs of bounded�tree
width �DF����� Here� we show that these non�uniform tractability results do uniformize�
Let A and B be two �nite relational structure� From Theorem ��� and the accompanied

remarks� it follows that the existence of a homomorphism h � A � B is equivalent to
whether QA�B� is true� where QA is the Boolean conjunctive query whose body consist of
the conjunction of all facts in A� We show that if A is a �nite relational structure of treewidth
k� then the conjunctive query QA is expressible in �FOk��� moreover� an �FOk�� formula
equivalent to QA can be found in time polynomial in the size of A�

Lemma ���� Let A be a structure of treewidth k� then QA is expressible in �FOk���

Proof� The key idea underlying the proof is that structures of bounded treewidth have
parse trees �DF��� �Chapter ����� which can be constructed in polynomial time from tree
decompositions� Such parse trees are constructed from k�boundaried structures� which are
structures with k distinguished nodes labeled �� � � � � k� Such structured can be combined
to form larger structures� For example� two k�boundaried structures A and B �we assume
a �xed underlying vocabulary� can be glued to obtain a structure A � B by taking their
disjoint union and then identifying the two nodes labeled i� for i � � � � � � k�
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A more general way of combining k�boundaried graps is de�ned as follows� Let � �
�A� f�� � � � � fn� consist of a k�boundaried structure A with domain D and injective mappings
fi � f�� � � � � kg � D� We view � as an n�ary operator of cardinality jDj on k�boundaried
structures� Given k�boundaried structures A�� � � � � An� we construct ��A�� � � � � An� in the
following manner� We take the disjoint union of A�A�� � � � � An and identify the j�th distin�
guished node of Ai with the node fi�j� of A� for i � �� � � � � n� j � �� � � � � k� The distinguished
nodes of the result are the distinguished nodes of A �labels on other nodes are erased��
Note that the glue operator � is in essence the binary operator ��k� �k� �k�� where �k is the
k�boundaried structure with k elements and empty relations� and �k is the identity function
on the set f�� � � � � kg�
It is shown in �DF��� that there is a polynomial�time time algorithm that converts a tree

decomposition of a structure C with at least k � � elements of treewidth k to a parse tree
�i�e�� an expression� in terms of a �nite set of unary and binary k�boundaried opertors of
cardinality k or k � �� starting with the constant structure �k� A k�boundaried structure A
can be viewed as a k�ary conjunctive query QA� whose body consists of the conjunction of all
facts in A� but where only the non�distinguished variables are existentially quanti�ed� i�e��
the distinguished elements are viewed as free variables� We now show by induction that if C
is k�boundaried structure expressed as a parse tree of k�boundaried operators of cardinality
k or k � � starting with �k� then QC can be expressed in �FOk��� In fact� we prove the
stronger claim that QC can be expressed in �FOk�� where the tuples of free variables is an
arbitrary k�tuple of distinct variables from fx�� � � � � xk��g�
The claim clearly holds for �k� whose query is the k�variable conjunctive query with empty

body� Consider the expression ��A�� � � � � An�� where � � �A� f�� � � � � fn� is a k�boundaried
n�ary operator of cardinality k or k � �� and suppose that we have already constructed
�FOk�� conjunctive queries ����� � � � � �n for the queries QA� QA� � � � � � QAn� respectively� We
can take the domain D of Q to be fX�� � � � �Xkg or fX�� � � � �Xk��g� Recall that fi is an
injective mapping from f�� � � � � kg into D� By the induction hypothesis� we can assume that
the tuple of free variabes of �i is �Xf��	� � � � �Xf�k	�� We can also assume that � is of the
form

Q�Xj� � � � � �Xjk � �� B�

where Xj� � � � � �Xjk �resp�� Xj� � � � � �Xjk �Xjk��� is some permutation of X�� � � � �Xk �resp��
X�� � � � �Xk�Xk���� Observe� that there is an implicit existential quanti�er when jDj has
k � � elements� We can then express Q��A������An	 by

Q�Xj�� � � � �Xjk � �� B���� � � � � �n�

In proof� note that there is a homomorphism from the structure ��A�� � � � � An� to a structure
B i there are homomorphisms h � A � B� and hi � Ai � B� for i � �� � � � � n� such
that if a is a distinguished element of Ai labeled j and fi�j� � b� then we must have that
h�b� � hi�a�� In other words� to get a homomorphism from ��A�� � � � � An� to B we need
to �nd homomorphisms from A�A�� � � � � B that meet the compatibility conditions required
by the mappings f�� � � � � fn� The �FO

k�� queries ����� � � � � �n give us the required n � �
homomorphisms� and the compatibility between the dierent homomorphisms is guaranteed
by labeling distinct elements that must be mapped identically by the same variable�
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Remark ���� The fragment �FO is more general than the fragment of conjunctive queries
as it also allows for negations and disjunctions� Consider the fragment �FO��� that allows
no negative formulas and no conjunctions� This fragment has the same expressive power as
conjunctive queries� It can be shown that the fragment �FOk��

��� can express precisely the
queries QA� where A is a structure of treewidth k� Thus� the relationship between treewidth
and number of variables is tight�

We can now derive the main result of this section�

Theorem ���� Let k be a positive integer� A�k� the class of �nite relational structures of
treewidth k� and F the class of all �nite relational structures� Then the uniform constraint
satisfaction problem CSP�A�k��F� is solvable in polynomial time�

Proof� We showed in Lemma 	�� that if A is a �nite relational structure of treewidth k� then
an �FOk�� formula equivalent to QA can be found in time polynomial in the size of A� Thus�
in this case� checking the existence of a homomorphism h � A� B reduces to the evaluation
of an �FOk�� query on the structure B� As shown in �Var�	�� �FOk�� has polynomial�time
combined complexity� which implies that CSP�A�k��F� is solvable in polynomial time�

A precise complexity analysis of CSP�A�k��F� is provided in �GLS�
�� where it is shown
that the problem is LOGFCL�complete �LOGCFL is the class of decision problems that are
logspace�reducible to a context�free language��
We note that another way to de�ne the treewidth of a structure A is in terms of its

incidence graph �CR���� The incidence graph of A is a bipartite graph that has all the tuples
in relations of A as nodes in one part� the elements of the universe of A as nodes in the other
part� and there is an edge from a node t to a node a i t is a tuple in A and a is an element
that occurs in t� We call the treewidth of the incidence graph of A the incidence treewidth
of A� Given a tree decomposition T of A� we can convert it into a tree decomposition T �

of the incidence graph of A as follows� T � has the same graph structure as T � For every
relation R of A and every tuple t � �a�� � � � � an� in R� there is a node x of T whose label
contains fa�� � � � � ang� We simply add t �which is a node of the incidence graph of A� to the
label of x in T �� It is easy to see that T � is a tree decomposition� Thus� if A has treewidth k�
then it has incidence treewidth at most k � �� In the other direction� we can convert a tree
decomposition T of the incidence graph of A to a tree decomposition T � of A by replacing
a tuple t � �a�� � � � � an� in the label of a node x of T by the set of elements fa�� � � � � ang�
Thus� if the incidence treewidth is k� then the treewidth is at most �k � ��n � �� where n
is the maximal arity of a relation in A� As an example of the gap between the two notions�
consider structure A with a single tuple �a�� � � � � an�� It is easy to see that its treewidth is
n � � �since its Gaifman graph is an n�clique� while its incidence treewidth is �� since its
incidence graph is a tree�
As mentioned in the introduction� Chekuri and Ramajaran �CR�
� showed that the uni�

form constraint satisfaction problem CSP�Q�k��F� is solvable in polynomial time� where
Q�k� is the class of structure of querywidth k �Chekuri and Ramajaran actually studied the
conjunctive�query containment problem� which explains the term �querywidth��� �In �CR���
only vocabularies of bounded arities were considered� but the result was extended in �CR�
�
to general vocabularies�� They also showed that the incidence treewidth of a structure A
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provides a strict upper bound for its query width by showing that a tree decomposition
of the incidence graph is also what they called query decomposition� �Note� however� that
the property of having treewidth k can be tested in linear time �Bod���� while the prop�
erty of having querywidth � is NP�complete �GLS����� Thus� the polynomial tractability of
CSP�A�k��F� follows also from the results in �CR�
�� Gottlob� Leone� and Scarcello �GLS���
de�ne yet another notion of width� called hypertree width� They showed that the querywidth
of a structure A provides a strict upper bound for the hypertree width of A� but that the
class H�k� of structures of hypertree width at most k as well as the class CSP�H�k��F� are
e�ciently recognizable�
As this discussion shows� the treewidth of a structure A is at least the arity of its widest

relation �more precisely� it is at least the number of distinct elements occuring in a tuple
of A minus ��� It is desirable� therefore� to decrease the arity of the relations in A� This
can be done by encoding the structures A and B by binary structures �i�e�� structures with
binary relations only�� We refer to the binary encoding of a structure A by binary�A�� The
vocabulary of binary�A� contains a binary relation symbol EP�Q�i�j for each pairs of �not
necessarily distinct� relations symbols P�Q of A and each pair of argument positions i� j of
P�Q� respectively� The domain of binary�A� is the set of tuples occurring in the relations of
A� The relation EP�Q�i�j contains the pair �s� t� if the i�th element of s and the j�th element of
t are identical� Note that in binary�A� we have that the relation EP�P�i�i contains all tuple in
P � that if �s� t� is in EP�Q�i�j� then �t� s� the relation QqQ�P�j�i� and that if �s� t� in the relation
EP�Q�i�j and �t� u� is in the relation EQ�R�j�k� then �s� u� is in the relation EP�R�i�k� We refer to
this as the re!exive�symmetric�transitive closure of the E relations�

Lemma ���� There is a homomorphism from A to B i� there is a homomorphism from
binary�A� to binary�B��

Proof� Assume that there a homomorphism h from A to B� For a tuple t� de�ne h�t�
componentwise� It is easy to see that h is a homomorphism from binary�A� to binary�B��
Suppose that EP�Q�i�j contain the pair �s� t� in binary�A�� then the elements si and tj are
identical� which implies that h�si� � h�tj�� It follows that the pair �h�s�� h�t�� is in the
relation EP�Q�i�j in binary�B��
Conversely� suppose that h is a homomorphism from binary�A� to binary�B�� Let a be

the i�th element of a tuple t in a relation P of A and let b be the i�th element of h�t�� We
de�ne h�a� to be b� It is easy to see that h is a homomorphism from A to B� provided it
is well de�ned� Suppose a is also the j�th element of a tuple u in a relation Q in A� Then
�t� u� is in the relation EP�Q�i�j in binary�A�� But then we must have that �h�t�� h�u�� is in
the relation EP�Q�i�j in binary�B�� which implies that b is also the j�th element of the tuple
h�u��

It is worth noting that in binary�A� it is not necessary to encode all coincidence relations
in A� It su�ces to put enough tuples there so that the re!exive�symmetric�transitive closure
encodes all such coincidence relations� For example� that if �s� t� in the relation EP�Q�i�j and
�t� u� is in the relation EQ�R�j�k� then it is not necessary to store �s� u� is in the relation EP�R�i�k�
It is not di�cult to prove that Lemma 	�	 still holds� The reason for this optimization is
that to minimize the treewidth of binary�A� it is desirable to minimize the number of tuples
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of binary�A�� It is possible to show that� under such an optimized encoding� acyclic join
queries �AHV�	� Ull
�� can be encoded by structures of bounded treewidth�
A class that is more general than the class of bounded treewidth graphs is the class of

bounded cliquewidth graphs� It is shown in �CO�
� than if a graph has treewidth k� then its
cliquewidth is bounded from above by �k�� � �� Thus� a class of graphs that has bounded
treewidth also has bounded cliquewidth� Courcelle� Makowsky� and Rotics �CMR�
� showed
that if a class C is e�ectively of bounded cliquewidth� then every monadic second�order
property on C is polynomial� It follows that CSP�A�B� is in PTIME for each B if A is of
bounded cliquewidth� On the other hand� every clique has cliquewidth � �CO�
�� and we
have observed above that the the class CSP�K�G� is NP�complete� Thus� while the tractablty
result of constraint satisfaction for bounded treewidth structures does uniformize� this is not
the case for bounded cliquewidth structures�

� Concluding Remarks

In this paper� we brought into center stage the close connection between conjunctive�query
containment and constraint satisfaction� Moreover� we showed that several tractable cases
of non�uniform CSP�B� problems uniformize and� thus� yield tractable cases of uniform
constraint satisfaction and conjunctive query containment�
During the past several years� a group of researchers has pursued tractable cases of

constraint satisfaction CSP�A�B� by investigating the class of functions under which the
relations in the structures in B are closed �JC�	� JCG�	� JCG��� Jea��� �see �PJ��� for a
survey�� In �FV��� FV���� a preliminary investigation has been carried out on the connection
between expressibility of CSP�B� problems in Datalog and closure of the relations in B under
certain functions� In a forthcoming paper� we will elaborate further on this connection and
delineate the relationship between the two approaches�
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