

# **Epistemic First-Order Queries over Description Logic Knowledge Bases**

### Giuseppe De Giacomo

Università di Roma "La Sapienza"



### **Motivation**



- Good techniques for doing instance checking are known
  - But DLs are poor query languages [Lenzerini-Schaerf-AAAI'91]
  - Also for most DLs, coNP-hard in data complexity
- Techniques for answering CQs and UCQs are known
  - High complexity for expressive DLs [cf. next talk]
  - In LOGSPACE (as for SQL in DBs) for DL-lite
- What about going beyond UCQs?
  - FOL/SQL queries over KB are undecidable

But, often users expect to have SQL-like query capabilities!!!

# **Example**

### TBox:

 $\exists \ edge^{-} \sqsubseteq Node$  $\exists \ edge \sqsubseteq Node$  $RedN \sqsubseteq Node$  $BlueN \sqsubseteq Node$  $RedN \sqsubseteq \neg BlueN$  $Node \sqsubseteq RedN \sqcup BlueN$ 



### ABox:

edge(a,b) edge(b,c) RedN(b)

edge(c,a)edge(c,d) edge(d,a)BlueN(d)



Giuseppe De Giacomo

**Epistemic First-Order Queries** 

# **Queries**



 $q(x) := \exists y, z, w. \ edge(x,y) \land edge(y,z) \land edge(z,w)$ 



 $q(x,y,z) := edge(x,y) \wedge edge(y,z) \wedge edge(z,x)$ 



 $q(x) := \exists y, z. \ edge(x,y) \land edge(y,z) \land edge(z,x)$ 



 $q(x) := \exists y, z. \ edge(x,y) \land edge(y,z) \land edge(z,x) \land (BlueN(y) \lor RedN(z))$ 



**Epistemic First-Order Queries** 

Giuseppe De Giacomo

# **Queries**

$$q(x) := \exists y. BlueN(y) \land \neg edge(x,y)$$



 $q(x,y) := edge(x,y) \land \neg \exists z. (edge(z,x) \land edge(z,y))$ 



 $q(x,y) :- edge(x,y) \land \forall z. (edge(z,x) \Rightarrow edge(z,y))$ 



 $q() :- \forall x,y. (edge(x,y) \Rightarrow edge(y,x))$ 



**Epistemic First-Order Queries** 

Giuseppe De Giacomo

#### 5

# An experiment on relational databases



## SQL query:

$$q(x)$$
:-  $\exists b.(Person(x,b) \land b = 1940) \lor \exists b.(Person(x,b) \land b \neq 1940)$ 

### Person

| name    | birthdate |
|---------|-----------|
| john    | 1940      |
| paul    | 1942      |
| george  | 1943      |
| richard | null      |
|         |           |

### Answer:

{john,paul,george}

What about richard? Since the DBMS doesn't know his birthdate, the DBMS can't extablish whether it is equal to 1940 or different from 1940, hence the DBMS skips it!

# **Epistemic Query Language (EQL)**



- Let KB be a DL KB, intepreted over fixed domain Δ and standard names
- EQL = FOL + epistemic operator (minimal knowledge) over KB

$$\varphi ::= A(t) \mid P(t_1, ..., t_n) \mid t_1 = t_2 \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \exists x. \varphi \mid \mathbf{K} \varphi$$

A: concept name in KB
P: role/relation name in KB
t: constant in KB or variable

#### Cf:

- Levesque's "Foundations of a Functional Approach to KR" [- AIJ'84]
- Reiter's "What should a DB know?" [- JLP'92]
- Levesque & Lakemeyer's "The Logic of KBs" [- Book'01]
- Epistemic operator and DLs [Donini-Lenzerini-Nardi-Schaerf-Nutt-KR'92]

**Epistemic First-Order Queries** 

Giuseppe De Giacomo

7

# **EQL: semantics**

Information Society

- Let KB a KB and  $\varphi$  a EQL formula
- Epistemic interpretation *E*, *w* 
  - E is the set of all models of KB
  - w is one such model
- $\varphi$  true in E, w, written  $E, w \models \varphi$

$$\begin{array}{lll} E,w \vDash \mathsf{A}(c) & \text{iff} & c \in A^w \\ E,w \vDash P(c_1,...,c_n) & \text{iff} & (c_1,...,c_n) \in P^w \\ E,w \vDash c_1 = c_2 & \text{iff} & c_1 = c_2 \\ E,w \vDash \neg \varphi & \text{iff} & E,w \nvDash \varphi \\ E,w \vDash \varphi_I \wedge \varphi_2 & \text{iff} & E,w \vDash \varphi_I \text{ and } E,w \vDash \varphi_2 \\ E,w \vDash \exists \ x.\varphi \ (x) & \text{iff} & E,w \vDash \varphi \ (c) \text{ for some } c \\ E,w \vDash \mathbf{K}\varphi & \text{iff} & E,v \vDash \varphi \text{ for all } v \in E \end{array}$$

# **EQL:** objective and subjective formulas ¶



- Objective formulas
  - no occurrence of **K**
  - talk about what is true in the world
  - example:  $\exists x, y. edge(x,y)$
  - $E, w \models \varphi$  reduces to  $w \models \varphi$
- Subjective formulas
  - all atoms under the scope of **K**
  - talk about what is known by the KB
  - example:  $\exists x, y. K edge(x,y)$
  - $E, w \models \varphi$  reduces to  $E \models \varphi$
- Non objective and non subjective formulas
  - talk about what is true in world in relation to what is known by the KB
  - example:  $\exists x, y. edge(x,y) \land \mathbf{K} edge(x,y)$

Epistemic First-Order Queries

Giuseppe De Giacomo

0

## **EQL:** knowledge & logical implication



Fundamental property of EQL: minimal knowledge

$$KB \vDash \varphi$$
 iff  $KB \vDash K\varphi$   
 $KB \nvDash \varphi$  iff  $KB \vDash \neg K\varphi$ 

In other words:

- $K_{\phi}$  can be read as  $\phi$  is logically implied
- $\neg \mathbf{K} \varphi$  can be read as  $\varphi$  is not logically implied ie  $\neg \varphi$  is satisfiable

### Example:

 $Kedge(a,b) \wedge Kedge(b,c) \wedge Kedge(c,a)$ 

can be read:

- edges (*a*,*b*), (*b*,*c*), (*c*,*d*) are known
- edges (a,b), (b,c), (c,d) are logically implied

# **EQL:** queries



• EQL query:

$$q(x_1,...,x_n) := \varphi(x_1,...,x_n)$$

Answer:

$$ans(q, KB) = \{ (c_1, ..., c_n) \mid KB \models \varphi(c_1, ..., c_n), c_i \in \Delta \}$$

**Epistemic First-Order Queries** 

Giuseppe De Giacomo

11

# **EQL:** queries - **CQs** without existential variables



Example [cf.LUBM, Ralph's talk, Bijan's talk]

$$q(x,y,z) := edge(x,y) \wedge edge(y,z) \wedge edge(z,x)$$

is equivalent to (since  $KB \models \varphi$  iff  $KB \models \mathbf{K}\varphi$ )

$$q(x,y,z) := \mathbf{K}(edge(x,y) \wedge edge(y,z) \wedge edge(z,x))$$

is equivalent to (since  $\boldsymbol{K}$  distributes over ANDs)

$$q(x,y,z)$$
:-  $Kedge(x,y) \wedge Kedge(y,z) \wedge Kedge(z,x)$ 

# EQL-lite(Q)



- Restriction on EQL, parametric wrt an objective query language Q
- EQL-lite(Q) queries have the form (with α in Q)

$$\varphi ::= \mathbf{K} \alpha \mid t_1 = t_2 \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \exists x. \varphi$$

and are domain independent (cf. relational algebra)

**Epistemic First-Order Queries** 

Giuseppe De Giacomo

# **Example**

### TBox:

 $\exists \ edge^{-} \sqsubseteq Node$  $\exists$  edge  $\sqsubseteq$  Node

 $RedN \sqsubseteq Node$ 

 $BlueN \sqsubseteq Node$ 

 $RedN \sqsubseteq \neg BlueN$ 

 $Node \sqsubseteq RedN \sqcup BlueN$ 



### ABox:

edge(a,b)

edge(b,c)

edge(c,a)

edge(c,d)

edge(d,a)

*RedN(b)* 

BlueN(d)



# **Example**



• Query:

 $q(x) := \exists y, z. \ edge(x,y) \land \frac{RedN(y)}{edge(y,z)} \land \frac{BlueN(z)}{edge(z,x)}$ 



• Answer: {*a*}



**Epistemic First-Order Queries** 

Giuseppe De Giacomo

15

# **Example**



 $q(x) := \exists y, z. \; \mathbf{K} \; edge(x,y) \land \mathbf{K} \; \underbrace{RedN(y)} \land \mathbf{K} \; edge(y,z) \land \mathbf{K} \; BlueB(z) \land \mathbf{K} \; edge(z,x)$ 





Answer: {}



# **Example**

### • TBox:

 $\exists$  edgeR $^- \sqsubseteq Node$  $\exists$  edgeB $^- \sqsubseteq Node$  $\exists$  edgeB $^- \sqsubseteq Node$  $\exists$  edgeB $^- \sqsubseteq Node$  $NodeRB \sqsubseteq \exists$  edgeR



### ABox:

edgeB(a,a) NodeRB(a)





**Epistemic First-Order Queries** 

Giuseppe De Giacomo

17

# **Queries**

• Query:

$$q1(x) := \exists y, z, w. \ edgeB(x,y) \land \\ edgeR(x,z) \land edgeR(y,z)$$

Answer: {a}

• Query:

$$q2(x,y,z) := edgeB(x,y) \land edgeR(x,z) \land edgeR(y,z)$$
  
Answer: {}

• Query:

$$q3(x) := \exists y, z, w. \ \textit{\textbf{K}} \ edgeB(x,y) \land \ \textit{\textbf{K}} \ edgeR(x,z) \land \ \textit{\textbf{K}} \ edgeR(y,z)$$

Answer: {}





# EQL-lite(Q): main result



- A Q query  $\alpha$  is KB-range restricted iff ans( $\alpha$ ,KB) is finite.
- An EQL-lite(Q) query is KB-range restricted iff all  $\alpha$  appearing in it are KB-range restricted.
- **Thm:** if ans( $\alpha$ ,KB) is finite, then it contains only constants occurring in KB.
- **Thm:** Let *KB* be a KB expressed in the DL  $\mathcal{L}$  and let  $\mathbf{C}$  be the data complexity of answering queries in Q over KBs in  $\mathcal{L}$ , then, answering a *KB*-range restricted EQL-lite(Q) is in LOGSPACE<sup>C</sup> wrt data complexity.

**Epistemic First-Order Queries** 

Giuseppe De Giacomo

19

# **EQL-lite on concepts/roles in** SHIQ **KB**

Information Booking

- [cf. Ralph's and Bijan's talks]
- $\mathcal{SHIQ}$  concepts and roles  $\rightarrow Q$
- SHIQ → KB (or variants)
- Answering Q queries → instance checking which is coNP-complete in data complexity for SHIQ
- Answering EQL-lite queries is LOGSPACE<sup>coNP</sup>

# **EQL-lite** on UCQ in $\mathcal{ALCQI}$ KB



- UCQs  $\rightarrow Q$
- $\mathcal{ALCQI} \rightarrow \mathsf{KB}$
- Query answering of UCQs in ALCQI KBs is coNP-complete in data complexity [cf. next talk]
- Answering EQL-lite queries is LOGSPACE<sup>coNP</sup>

Epistemic First-Order Queries

Giuseppe De Giacomo

21

# EQL-lite on concepts/roles in $\mathcal{EL}$ KB



- $\mathcal{EL}$  concepts and roles  $\rightarrow Q$
- $\mathcal{EL} \to KB$  (in fact any member of the  $\mathcal{EL}$  family)
- Answering Q queries → instance checking, which is PTIME-complete in data complexity for EL
- Answering EQL-lite queries is PTIMEcomplete

# **EQL-lite on UCQ in DL-lite KB**



- UCQs  $\rightarrow Q$
- DL-lite → KB
   (in fact any member of the DL-lite family)
- Answering UCQs in DL-lite is LOGSPACE in data complexity, actually FOL reducible
- Answering EQL-lite queries is LOGSPACE, actually FOL reducible (rewritable in SQL)

**Epistemic First-Order Queries** 

Giuseppe De Giacomo

22

### **Conclusions**



- EQL-lite ≈ FOL queries for most users
- EQL-lite can be seen as a semantically well characterized approximation of FOL queries
- EQL-lite is based on a controlled use of the epistemic (minimal knowledge) operator
- Jumping from Q to EQL-lite(Q) is (almost) for free
- EQL-lite on UCQs over DL-lite is FOL-reducible (SQL!)
- EQL-lite is very interesting also for modeling constraints over ontologies