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Abstract. Web services are emerging as a promising technology for the
effective automation of inter-organizational interactions. However, de-
spite the growing interest, several issues still need to be addressed to
provide Web services with benefits similar to what traditional middle-
ware brings to intra-organizational application integration. In this paper,
we present a framework that supports the model-driven development of
Web services. Specifically, we show how, starting from the external spec-
ifications of a Web service (e.g., interface and protocol specifications),
we can support the generation of extensible service implementation tem-
plates as well as of complete (executable) service specifications, thereby
considerably simplifying the service development work.

Keywords: Web services, Web service conversation, Web service com-
position, model-driven generation.

1 Introduction

Web services, and more in general service-oriented architectures (SOAs), are
emerging as the technologies and architectures of choice for implementing dis-
tributed systems and performing application integration within and across com-
panies’ boundaries. The basic principles of SOAs consist in modularizing func-
tions and exposing them as services, that are typically specified using (de jure
or de facto) standard languages and interoperate through standard protocols.
Modern SOAs have two important characteristics that are relevant to the
topics discussed in this paper. The first is that service descriptions are more
detailed with respect to what happened in conventional middleware. This is be-
cause clients and services are typically developed by separate teams, possibly
even by different companies, and service descriptions are all what client develop-
ers have to understand to know how the service behaves. In particular, a trend
that is gathering momentum is that of including, as part of the service descrip-
tion, not only the service interface, but also the business protocol supported by
the service, i.e., the specification of which message exchange sequences are sup-
ported by the service, for example expressed in terms of constraints on the order
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in which service operations should be invoked. In the following, we use the term
external specification to refer to the combination of the interface and business
protocol specifications, that define the externally visible behavior of a service.

The second characteristic is that when services are described and interact
in a standardized manner, the task of developing complex services by compos-
ing other (basic or composite) services is considerably simplified with respect
to conventional middleware, where composition technologies (such as workflow
technology) where available but failed to become widely adopted, mostly due to
the heterogeneity of the services to be combined and therefore to the difficulty
in developing composite services. Indeed, as SOA-related technologies mature,
service composition is expected to play a bigger and bigger role in service devel-
opment [1,10].

Today, most Web services platform provide support for bottom-up design,
especially in terms of taking existing code (e.g., Java classes) and deriving WSDL
interface specifications for it. Analogously, support for top-down design is in
terms of taking service interface specifications and generating Java (or otherwise)
interfaces. While these are useful tools, they do not take into account protocol
specifications and in particular they do not facilitate the development of services
that are compliant with a certain protocol specification (i.e., whose execution
is in accordance with the specified external behavior). This task is left to the
developer, who must implement the protocol management logic and verify that
each service implementation behaves as declared in the external specifications,
which is a very time consuming activity.

This paper presents a framework that aims at addressing this issue, by sup-
porting the model-driven design of Web services. We specifically focus on top-
down design of composite services that, as stressed above, is likely to become
a key activity in Web services development due to the increased adoption of
protocol and composition languages and technologies. In this area, we provide
two main contributions, corresponding to two different approaches that may be
taken in top-down design. First, we show how, starting from the external speci-
fications, it is possible to generate a skeleton of a composite service (also called
service composition template) that is compliant with the service specification.
Designers can then extend this skeleton with business logic, thereby completing
the specification of the service up to the point where detailed, executable service
specifications are obtained, typically in the form of a process definition. As an
alternative approach, instead of generating and extending the composition skele-
ton (that deals with the service as a whole), the designer may wish to start the
development by separately defining the composition logic for each operation’.
The proposed framework also supports this case, by combining the specification
of the operation implementations with the external specifications to produce a
more complete, executable specifications of a service that not only implements
the service operations as specified, but also takes care of maintaining the conver-
sation state in a way that is compliant with the business protocol specifications,

! As we will see, this is possible only if the service operations are independent, aside
from the constraints defined by the protocol.
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by generating the appropriate logic and combining it with the operation imple-
mentation logic. Thanks to this automated code generation, service development
is considerably simplified and protocol compliance is ensured, thereby reducing
the time and effort needed to generate correct service implementations. We be-
lieve that as business protocols become widely adopted, such a framework will
be an important part of any Web service development environment.

As a concrete example, we will show how the proposed framework can auto-
matically generate BPEL specifications [3] starting from protocol specifications
expressed in the Self-Serv service description and composition models [5].

The remainder of this paper is organized as follows: Section 2 briefly oveviews
the conversation model and main constructs of BPEL. Section 3 discusses the
generation of service implementation skeletons from external service specifica-
tions. Section 4, discusses an alternative approach which allows the generation
of more complete executable specifications from service composition and con-
versation models. In Section 5, we discuss related work, give some concluding
remarks, and outline future research directions.

2 Concept Definitions

This section briefly describes the service conversation model we use for the ex-
ternal specifications of services and summarizes the main constructs of BPEL.

2.1 Service Conversation Model: An Overview

In this section, we briefly describe the protocol definition model and language
we use in this paper. The reason for selecting this specific model is because it has
been proven to support the definition of many commonly needed protocols, and
because it is fairly rich and complex, thereby enabling us to treat the problem in
its generality. Briefly stated, a conversation is a sequence of message exchanges
that can occur between a client and a service as part of the invocation of a
Web service. This exchange occurs according to a business protocol (also called
conversation protocol in the following), i.e., a specification of the set of correct
and accepted conversations.

Following our previous work [5], we choose to specify the conversation model
of a Web service as an extended state machine, where states denote the different
logical stages in which a service could be in its interaction with a client, while
transitions among states occur (mostly, but not only) as a result of operation
invocations. Figure 1 presents an example of a simplified conversation model
supported by the Web portal of a bookseller. States are labeled with a logical
name, such as BookFound, BookOrdered. Transitions are labeled with events
corresponding to operation invocations, such as Login or OrderBook.

Furthermore, transitions are extended beyond the traditional state machine
model to capture abstractions that are necessary to model Web service conversa-
tions, including activation and completion patterns. Activation patterns describe
the triggering features of a transition (e.g., when the transition should occur).
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T4:SearchBookByISBN()

T1:Login() T5:0rderBook() T7
BookFound BookOrdered BookShipped ShipmentConfirmed
. ‘ T6:CancelBopkPurchase() T8:RetyrnBook() Ti0
T3:SearchBookByAuthor() T2:SearchBookByTitle()

OrderCanceled BookReturned

T11:RefundPriceDifference()
DifferenceRefunded

Fig. 1. Sample of an eBookShop service conversation protocol

Completion patterns describe the implications and the effect of a transition from
requester perspective (e.g., whether requesters can cancel an operation and what
is the cancellation fee).

Activation Abstractions. In the extended state machine model, besides
the fact that a transition is activated by invoking an operation, an activation
property specifies an activation mode, activation event and pre-conditions. The
activation mode indicates whether the triggering of the transition is explicit
(mode="user") or implicit (mode="provider"). When the activation mode is ex-
plicit, the transition is activated by explicitly invoking a service operation. When
the activation mode is implicit, the transition will occur automatically after
the occurrence of a temporal event. A pre-condition is a triple (O-condition,
U-condition, and T-condition), where:

o An O-condition specifies conditions on service objects (i.e., service request
parameters);

o A U-condition specifies conditions on requester profiles. It is used to specify
the fact that an operation can be invoked only by certain users (e.g., an
operation is only available to “premium” customers);

o A T-condition specifies temporal constraints to allow the description of timed
transitions (e.g., a transition can occur only within a certain time period).

We adopt XPath as a language to express queries and conditions. The defini-
tions of temporal constraints use XPath time functions (e.g., current-time) and
some predefined time functions in our model. In the remainder, begin(t) (resp.,
end(t)) denotes the beginning (resp., termination) date of the last invocation of
the transition T within the same conversation instance. The conversation model
features the following temporal predicates:

o Me-invoke prescribes when an implicit transition must be automatically fired;

o C-invoke prescribes a deadline or a time window within which a transition
can be fired.
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M-invoke is used to specify temporal events. C-invoke is used to specify tem-
poral pre-conditions of a transition. Formally, a temporal constraint is specified
as either Pred(boolop,d), where Pred may be M-invoke, or C-invoke. boolop is a
comparison operator (e.g., =, <, >) and d is either an absolute date time or
a relative date time (e.g., begin(t)). The constraint M-invoke(boolop,d) is only
authorized for implicit transitions and means that the transition is automati-
cally fired when the condition current-time boolop d is evaluated to true. Here,
current-time denotes the system time. The constraint C-invoke(boolop,d) means
that the transition can be triggered only if the condition current-time boolop d
is evaluated to true.

Table 1 illustrates temporal conditions of eBookShop conversation proto-
col. For instance, the table shows that the operation associated to transi-
tion Tg can only be invoked within 7 days after the completion of Ty (i.e.
begin(Ts) < end(T5)+7). The transition Ty will be automatically performed 30
days after the completion of the transition 77 (i.e. begin(Ty) >= end(T7) + 30).

Table 1. eBookShop Conversation time properties

Transition | T-condition
Ty ...T5 true
Ts C-invoke(<,end(T5) + 7)
T M-inVOke(>:,€’l’Ld(T5) + 7)
Ts C-invoke(<, end(T7) + 30)
Ty M-invoke(>=, end(Tr) + 30)
Tio M-inVOke(>:,€’l’Ld(Tg) + 2)
T11 C—invoke(<,end(T10) + 10)

Completion Abstractions. The completion property of a transition speci-
fies the effect of a transition. With regard to this property, we distinguish the
following types of transitions?

o Effect-less denotes a transition which has no permanent effect from the
client’s perspective. Canceling this kind of transition does not require the
execution of any particular operation. For example, the transition T2, car-
ried out during the execution of the operation SearchBookByTitle(), does not
have any permanent effect, as far as the client is concerned;

o Compensatable denotes a transition which has an effect that can be undone
by explicitly invoking a compensation operation. A compensatable transi-
tion is characterized by giving the name of the corresponding compensation
transition and its cancellation cost. Consider, for instance, the transition T7.
The effect of this transition consists of transferring money from the client
bank account to the provider account. However, the effect of this transi-
tion can be (partially) undone (i.e., the client can be refunded) if the client

2 Other types of transactional properties are identified but not presented here due to
space limitations. The interested reader is referred to [4] for details.
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decides to return the purchased items (operation ReturnBook()). The tran-
sition T8:CancelBookPurchase() can be used to compensate the transition
T5:0rderBook();

o Definite denotes a transition whose transactional effects are permanent (i.e.,
are not compensatable). For example, after the delivery of the purchased
items, the eBookShop.com service remains in the state BookShipped during 30
days, corresponding to the period of time where the user can, under certain
conditions, return the purchased items (operation ReturnBook). After this
period of time, the transition cannot be undone. This abstraction is conveyed
by labeling the transition T9, for instance, as a definite transition.

2.2 Overview of BPEL

BPEL (Business Process Execution language) [3] is an XML-based language
intended to specify processes that involve operations provided by one or several
Web services. It can be used to define executable and abstract processes. An
abstract process defines a set of message exchanges between a Web service and a
client of the Web service, without revealing the Web service’s internal business
logic. An ezecutable process defines the service business logic based on a number
of constituent activities, the partners involved in these activities, the messages
exchanged between partners, and ezception handling procedures.

An activity in a BPEL process is either primitive or structured. The types of
primitive activity are: invoke, to invoke a web service operation; receive, to
wait for a message from an external source; reply, to reply to an external source
message; wait, to remain idle for a given time period; assign, to copy data from
one variable to another; throw, to raise exception errors; and empty, to do noth-
ing. Structured activities are defined using the following control flow constructs:
sequence, for representing sequential order between activities; switch, for exe-
cution conditional routing; while, for loop iteration; pick, for non-deterministic
choices based on events; flow, for parallel execution routing; and scope, for
grouping activities to be treated by the same fault-handler and possibly within
a given transactional context.

Given a set of activities contained within the same flow block, control 1inks,
allow the definition of dependencies between two activities. The target activity
of a control link may only start when the source activity has ended.

3 Generating Implementation Skeletons
from External Service Specifications

Now that the basic conversation concepts have been introduced, we show how ex-
ternal service specifications can be used to generate internal specifications, that
is, executable business logic. The basic idea consists in generating a service im-
plementation skeleton starting from the service interface (specified for instance
in a WSDL document) and from a protocol specified with the model described
above. The skeleton includes code that maintains the conversation state and
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checks whether messages are received and sent in accordance with coordination
protocol definitions, returning an error to the client if a message is not compliant.
It has constructs for receiving service invocation messages, detecting transition
activation events (such as explicit operation invocations or temporal events for
implicit transitions), triggering transitions, and ensuring that the implications
and effects of transitions are performed in accordance with the defined coordina-
tion protocol. In a nutshell, the skeleton implements what we call conversation
management logic.

The skeleton does not include any service-specific business logic, i.e., it does
not include information on how the individual operations are implemented. Oper-
ation invocations appear as black boxes in the skeleton, and it is up to the service
developer to extend the skeleton by refining the implementation of each of the
operations. The benefits of the model-driven generation is that developers “sim-
ply” focus on implementing the internal business logic. The code for managing
the conversation state and verifying compliance of messages with conversations
is automatically generated, thereby considerably simplifying the development.

The remainder of this section describes how the different aspects of a pro-
tocol translate into a service skeleton. Although we will focus on the concepts
behind this mapping, we endow these concepts with examples based on the use
of the protocol model introduced earlier and of BPEL as service implementation
language. The presentation revolves around the three logical steps of the trans-
formation: first, we show how each transition is mapped into a process skeleton
(called transition skeleton). Then, we show how each state is mapped into a
state skeleton, which combines the skeletons of the transition in output to that
state. Finally, once we have defined how individual states and transitions are
mapped, we show how the state skeletons are linked together into an overall
process skeleton, based on the overall graph topology of the statechart.

In BPEL terms, we follow the generation approach depicted in Figure 2(a): A
service protocol is transformed into a BPEL flow of activities (the state skeletons,
Figure 2(b)). To preserve and enforce the overall conversation model, that is, to
enforce the semantic of the whole protocol, state skeletons are linked together
using BPEL links.

3.1 Mapping Transitions

Transitions in the protocol definition are mapped into transition skeletons that
1) check that the preconditions are met (generating a fault message in response
otherwise), 2) execute the operation implementation logic (which will have to
be specified by the designer), and 3) return a reply to the client, by sending a
message corresponding to the operation output parameters.

Each time a transition t is activated from a state S where ¢ is allowed, the
corresponding skeleton of ¢ evaluates the transition preconditions (T-condition,
U-condition and O-condition in case of explicit transitions or U-condition and
O-condition in case of implicit transitions). If all the conditions are true, then
the skeleton proceeds by executing the operation implementation logic of the
operation associated to ¢, and the result is returned via a <reply> activity to the
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External service <process name="...

specifications

| <variables> |
L<Ivariables>

Mapping
transitions j————————————= |
| <flow suppressJoinFailure="no"> |
Transition

skeletons <links>

|
\ ‘ \
| <link name="..."> |
Mapping I - |
states | <link name="...">
! | <flinks> }
State skeletons } <!-- Mapping of states --> |
|
. I <1-- state skeleton --> |
Connecting | |
¥ states | <!I-- state skeleton--> |
\ \
Process skeleton | </flow> |
L J
</process>
(a) The generation (b) Generated BPEL process
approach skeleton

Fig. 2. Process skeleton generation

client. The definition of the data flow, and specifically of which process variables
flow into the receive activity (i.e., how the return values are determined), is to
be done by the designer as it is part of the internal business logic, not part of
the external specifications. If the preconditions are evaluated to false, an error
message is returned to the client by an automatically generated (i.e. <reply>)
activity that returns a fault. As we will see later when discussing state skeletons,
if such conditions are false then the transition is still active (it has not been
triggered, and therefore the conversation has not changed its state), and therefore
we will need a looping mechanism to get back to the point where the transition
can be triggered (e.g., by new operation invocations). We will discuss in the
following how to map the fact that the transition is waiting for an operation
invocation (or for a time interval to elapse) in order to be triggered, as the
appropriate mapping for this depends not only on the transition, but on the
characteristics of the state to which the transition belongs, as shown later in
this section.

Furthermore, in the case of a compensatable transition, a skeleton of a com-
pensation handler is generated in order to implement the compensation activ-
ity of the transition. More precisely, a transaction begin/end block is trans-
formed into a <scope></scope> BPEL block. If a transaction ¢ is compensa-
table, its compensation transition, say t., is transformed into <compensate>
BPEL construct. The skeleton of the compensatable transition ¢ will contain
a <compensationHandler> that will be executed if ¢ is compensated, and that
of the transition ¢, will contain a <compensate> construct that will be used to
compensate t.

Finally, it is worth noting that transition activation patterns (e.g., explicit
invocation message or temporal events) are not considered during mapping of
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transitions but are dealt with during mapping of states. As explained in the next
section, the reason of this choice is that the constructs generated to implement
a transition activation patterns depend on the type of the state (e.g., a state
with one or multiple output transitions). As a consequence of this choice, the
generated transition skeletons are very similar for both implicit and explicit
transitions.

3.2 Mapping States

This section shows how each state is mapped into a state skeleton by combining
the skeletons of the transitions in output to the state.

<while Vg ="false"> <while Vg="false">

Synchronization Synchronization
relationships relationships

| <target linkname=...> | |
I'| through links | Jarget linkname=..> } through links

| <target linkname:

I
| <receive> |
Mappingan | ——————— ——— —— B
<Ireceive> | | explicit transition
I

‘Cx-- explicit transition skeleton > | <onMessage ...>

| <!-- explicit transition skeleton -->

|
|
<fwhile> ‘donMessage> | | Mapping explicit
| | transitions
(a) Mapping states with one explicit | <onMessage ...> |
output transition | <!--explicit transition skeleton -->
| <JonMessage> |
e |
<while Vg="false"> | -

| <onAlarm until=...>
. . | <!-implicit transition skeleton -->
relationships <lonAlarm>

|

Synchronization |
|

through links \ |
|

|

|

Mapping implicit

. transitions
| <onAlarm until=...>

| <!--implicit transition skeleton -->

| </onAlarm>
. Mapping an L
[ " implicit transiton | T T T T T T T T T T T T ™
<I-- implicit transition skeleton --> | <Ipick >
| P
</while> <lwhile>

(b) Mapping states with one B . N
implicit output transition (c) Mapping states with multiple
output transitions

Fig. 3. States skeletons

First, assume that a state S has only one output transition ¢,, and that ¢, is
explicit. In this case, we want to express the semantics that when the conversa-
tion is in state S, the transition is active and therefore the corresponding skeleton
must be waiting for an operation invocation (i.e., for an incoming message to
arrive). In BPEL, this means that the generated state skeleton will include a
<receive> activity followed by the transition skeleton of ¢, (Figure 3 (a)). If ¢,
is implicit, then this means that the protocol semantics waits for a certain pe-
riod to elapse before triggering the transition. This is expressed by introducing
a delay node, represented by a <wait> activity followed by the implicit skeleton
of t, (Figure 3 (b)).

Consider now the general case in which a state S of a service protocol has
n output transitions t1,ts, t,, mapped into transition skeletons ski,sks,. .. ski,.
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Then, since these transitions are in output to the same state, they are all active
at the same time. Furthermore, only one at a time can be processed, since as
one transition is triggered then the conversation changes state and therefore the
other transitions need to be disabled. To enforce this semantic in BPEL, we place
the activities skq,ske, ...sky, into a pick construct, that has as one onMessage
statement for each explicit transition, corresponding to the operation input mes-
sage for that transition, and one onAlarm statement for each implicit transition,
corresponding to the M-invoke condition for that transition (c.f., figure 3(c)).
Then, the remainder of the skeletons is placed into an activity which is invoked
if the event (i.e., message or alarm) occur. The semantics of the pick is such
that only one branch of the pick is executed, i.e., only one event is processed.
This is what we want, as when an event is received, then it is processed and the
conversation changes state, so that operation invocations corresponding to other
transitions in output from the same state are not processed.

There is an exception to this rule in the case in which the invocation fails
due to the fact that the activation condition is false. To cater for this case, the
pick activities are inserted into a while construct where a state variable, noted
Vs for the state S, that controls the loop is set to true at the start of the loop,
and set to false if any of the activation conditions for the invoked operations are
false (Figure 3).

We observe also that the reason for handling the simplified case (state with
only one output transition) differently, although the general case cover the sim-
plified one as well, is because in simple cases it is possible to generate simpler
skeleton, that are easier to interpret for the developer and therefore easier to
extend with proprietary business logic.

3.3 Handling Connections among State Skeletons

We now show how state skeletons can be linked together to express the seman-
tics of the statecharts. This is the final step of this generation process. Due to
space constraints, this section only gives an overview of the concepts used to
handle connections among state skeletons, omitting some implementation de-
tails, which are often specifics of this or that implementation language (e.g., for
BPEL these include handling dead path elimination or the handling of loops
in the statechart with an acyclic flow language). We begin the description by
showing how state skeletons are linked together in the general case (i.e., states
with multiple input/output transitions). Basically, this amounts to linking to-
gether the different pick activities (along with their enclosing while loop), as
shown in Figure 3(c)). This is done as follows: all while loops are inserted into
a higher level flow statement. The dependencies among the states are modeled
by links. Each state skeleton (i.e., each while loop) will have as many outgoing
links as there are states connected in output, each going to the while skeleton
corresponding to one of the output states. Each outgoing link is endowed with
a link transitionCondition, automatically inserted by the mapper, that iden-
tifies whether the flow should move to that state (i.e., should activate the while
loop). The condition is based on variables, also automatically defined by the
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mapper, that are set to true depending on which branch of the pick activity is
executed, that is, depending on which transition has been followed and therefore
on which state the conversation should go to. Note that the variables are set only
of the invocation succeed, that is, only if the transition is actually followed. Note
also that if a state has multiple incoming transition, then it will have multiple
incoming links, which is consistent with the semantics of the protocol as a state
is entered as any one of the input transition occurs.

Handling Special Cases. There are some special cases that require specific treat-
ments as they are not supported by the general approach described above. For
example, in BPEL, self-transitions (i.e., transitions that end up in the same state)
cannot be handled explicitly because BPEL do not support cyclic process graphs
(e.g., in BPEL, links must not create a control cycle). However, such transitions
can be handled using a condition in the while loop of a state, similarly to the
case of invocation failures described in the previous section. Therefore, in case of
self-transitions, the state variable Vg that controls the loop is set to false even
when the transition is executed correctly, thereby enabling a self-transition to
return to its starting state after a successful execution of its associated operation.

Also note that, just like for state skeletons, simplifications with respect to
the general approach described above can be made for statecharts with simpler
topologies. For example, if we have a linear statechart (each state has one in-
put and one output transition), then the linkage among state skeletons can be
achieved by wrapping state skeletons into a sequence constructs. Again, these
simplifications are dependent on the details of the selected execution language.

4 Generating Service Operation Implementation Logic

4.1 Concepts

Instead of generating the composition skeleton and then extending it with oper-
ation implementation logic, the developer may take an alternative approach and
start by first defining the implementation logic for each operation, and by then
having the CASE tool generate BPEL (or otherwise) specifications that com-
bine conversation management logic (the skeleton) with the specified operation
implementation logic, up to the point executable specifications are generated.
This approach has advantages and limitations. On the plus side, it provides
independence from the execution language (i.e., the one generated by the CASE
tool and ultimately executed by the service composition engine). In fact, in the
approach described in the previous section, the developer specifies the operation
implementation logic in BPEL (by extending the skeleton). Instead, if the exe-
cutable code is automatically generated, developers can use different languages
to specify how each operation is implemented, independently of what language
is supported by the composition engine. For example, they could use statecharts,
Petri nets, activity diagrams, or BPEL. It will be up to the tool to then translate
these specifications into BPEL (or into whatever execution language is selected).
As CASE tools evolve, we expect that they will be able to provide more and more
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flexibility in terms of support for a variety of operation specification languages
(the ones developers use to specify the operation implementation) and for a va-
riety of executable languages, to be able to generate specifications for several
composition engines.

This approach is however not applicable in the general case, and this is why
we discuss it separately. In fact, there are cases in which it is not possible to spec-
ify the implementation of the different operations independently of each other.
As an example, assume that a service interface includes operations getCredit-
CardNumber(), getExpirationDate(), and getName(). The service implementer
would like to specify that once both a credit card number, an expiration date,
and a name have been entered, then operation wverifyCredentials(), offered by
an internal application or by a third party, is invoked. In this case, the imple-
mentation logic for these three operations would consists of waiting until they
have all been invoked (in workflow terminology, this implies the presence of an
and-join), and then call the verifyCredentials() service. The operations can still
be separately implemented, for example by having the three operation imple-
mentations set variables once they are completed as well as check variables (to
verify if the other two operations have been executed as well) before invoking
the verification service. However, this may result in a cumbersome design, that
gets overly complex as the level of interactions among operation increases.

This being said, we expect most of the operation implementations to be
functionally independent (i.e., to share state information and data, but to be
such that the business logic can be independently specified)?. After all, this is
what is done when services are implemented in Java. Therefore, we believe that
providing users with the opportunity of separately specifying implementation
logic for each operation - in a language of their liking - and of then automatically
generating executable specifications will turn out to be a very useful and widely
applicable functionality.

As a final comment before showing a concrete example of how this automated
generation achieved in our prototype system for a given specification and a given
execution language, we stress that hybrid approaches are also possible. In fact,
the operation specification language can be at different levels of abstractions.
If the specifications are so detailed to be executable, then the CASE tool will
directly generate executable specifications from the combination of protocol de-
scriptions and operation specifications. Otherwise, if specification are at a higher
level (e.g., they only contain the operations to be invoked and their execution
dependencies, but not the data dependencies or how data is transferred from one
operation invocation to the next), then the output of the CASE tool will still
need to be refined, although the refinement is simpler as more can be done by the
tool. This also enables a flexible mechanism for separating roles during develop-
ment: for example, an operation can be fully implemented by a developer. In this
case, a low-level operation specification language can be used. Otherwise, an ar-
chitect may first want to define the operation implementation at a high level, to

3 Our framework, as well as the prototype implementation, allows for context to be
shared among the different operation implementation logic specified by the user.
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then let a developer fill in the details (including the inevitable platform-specific
details). In this case, a high-level language will be best as operation specification
language.

4.2 A Sample Mapping: From Self-Serv to BPEL

We now present a concrete example of the generation of the operation imple-
mentation logic starting from the operation specification. Specifically, we will
use as example the languages supported by our prototype implementation, de-
veloped within the Self-Serv system [5]. As execution language, we use BPEL. As
operation specification language, Self-Serv supports a variation of statecharts.

For ease of presentation, we abstract from the details of the Self-Serv spec-
ification model, and present a simplified version here. In particular, we assume
that an interface operation O can be implemented in terms of invocation of
operation o, offered by service s, (denoted by the syntax O = s,.0,). In this
case, we call the operation O a singleton operation. Otherwise, operation O
can be structured, and consist of the parallel or sequential invocation of other
operations O; and O;. Sequential invocation of two operations O; and O; is de-
noted by the syntax O; ; O;, while parallel execution is denoted by O; || O;. In
turn, operations O; and O; can also be structured and be further decomposed,
until elementary operations, corresponding to invocations of actual operations
offered by a service interface, are reached. Examples of operation composition,
and their corresponding pictorial representations based on the statechart model
of Self-Serv, are shown in figure 4.

Operation Composition Corresponding statchart

secureAccess
™ Login secureAccess.Login .—'—> ®
1.Searct JISB(.) .—»(., kShop1.Sear v }.@
|

T4 SearchBookByISBN |

p_2. YISBN(...) L“’( . ] )©J

BestBookshop.Returnk(...) ® C:i
T8 ReturnBook B ReturnBook Purchase

c .)

Fig. 4. Operation implementation logic of 3 eBookShop service transitions

We now describe how the BPEL implementation skeleton is generated start-
ing from the external specification and the operation implementation specifica-
tion both expressed with the Self-Serv model. Note that we are still generating
skeletons (although more complete than the ones of the previous section) since
in this case the operation specification language is at a high abstraction level.
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Table 2 presents rules used to generate the BPEL code of an operation given its
specification. Moreover, in case the specified operation is associated to a compen-
satable transition, the generation rules describe how the implementation logic of
the corresponding compensating operations is generated.

Table 2. Composition Model generation rules to BPEL

Entity Method |BPEL construct

Internal invoke <!-- empty implementation logic -->
compensation [<!-- empty compensation logic -->
Singleton invoke <invoke partner="Si" operation="opj" ../>
Si.op; compensation |0p; is related to a Definite or Effect-less transition in S; protocol
<!-- empty compensation logic -->

op; is related to a Compensatable transition in S protocol

<invoke partner="Si" operation="opjc" ../>
Serial invoke <sequence>
()f?;()fﬂ; <!-- generating operation implementation logic of OPj -->
<!-- generating operation implementation logic of OPk -->
</sequence>

compensation |<sequence>

<!-- generating OPk compensation logic -->
<!-- generating OPj compensation logic -->
</sequence>
Parallel invoke <flow>
OPJHOPk <!-- generating operation implementation logic of OPj -->
<!-- generating operation implementation logic of OPk -->
</flow>

compensation |<flow>

<!-- generating OPj compensation logic -—>
<!-- generating OPk compensation logic -->
</flow>

As the table shows, if an interface operation op associated to a transition ¢
is a singleton operation, then the corresponding BPEL skeleton will include an
<invoke ../> activity to invoke the related operation op; of the service S; (see
table 2). If ¢ is compensatable, the compensating operation of op, say op., can
be inferred automatically, but only if S;.op; is compensatable according to the
conversation protocol of the service .S;. In this case, the <compensationHandler>
of BPEL skeleton of ¢ will contain an <invoke ../> activity to invoke the com-
pensating operation of op;.

If an operation op consists of serial composition OPj; OPk, the correspond-
ing BPEL skeleton will contain a <sequence></sequence> block of the oper-
ations OPj, OPk. The generation of the implementation logic of the opera-
tion op is performed through a recursive analysis of its serial component op-
erations. If the operation op is associated to a compensatable transition t,
then <compensationHandler> of ¢ will contain a <sequence></sequence> block
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of compensation operations of the component operations of op. The compen-
sation operations should appear in the opposite order of the corresponding
operations of the composition sequence. Note that since the operation in the
<sequence></sequence> block can be structured, this has to be recursed until
elementary operations are found, at which point the compensating operation
of the invoked operation is determined from the protocol specifications of the
invoked services.

Finally, if an op is parallel operation, the corresponding BPEL skeleton will
contain a <flow></flow> block of the component operations. If the operation
op is associate to compensatable transition ¢, then the <compensationHandler>
<flow></flow> block of the BEPL skeleton of ¢ will contain a the corresponding
compensation operations the component operations of op.

5 Discussion

The work presented in this paper discusses issues related to web service conversa-
tion models and model-driven service development. With regard to first aspect,
several efforts that recognize the need for extending existing service description
languages to cater for constraints such the valid sequence of service invocations
[7]. These include work done in standardisation efforts such as BPEL, WSCL
(www.w3.org/TR/wscl10) and WSCI (www.w3.org/TR/wsci). Our work makes
complementary contributions to the efforts mentioned above by endowing ser-
vice descriptions with abstractions such as temporal constraints, implications
and effects of service invocations.

With regard to the second aspect, it should be noted that model driven de-
velopment of applications is a well established practice [8]. However, in terms of
managing the Web service development lifecycle, technology is still in the early
stages. We believe that the level of automation can be substantially increased
with respect to what is available today, especially in terms of factorizing into the
middleware those chores common to the development of many Web services. The
approach proposed here has several advantages with respect to previous art, in-
cluding early formal analysis and consistency checking of system functionalities,
refinement and code generation. For example, the work proposed in [2] features
generation rules from UML activity diagrams to BPEL processes. The work pre-
sented in [9] focuses on generating executable process descriptions from UML
process models. The contribution of our work is specializing the model driven
approach to web service conversation and composition models. As mentioned
before, our approach focuses on specifying service composition models along
with the conversation definitions and generating the executable specifications of
a service that not only implements the service operations as specified, but also
guarantees of conformance of the service implementation with the conversation
specification.

The framework presented in this paper has been implemented in a proto-
type, built as an extension of the Self-Serv service development platform [6].
In particular, the prototype implements the generative approach where con-
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versation models are specified using an extended state machine model as pro-
posed in [4], composition models are specified using statecharts, and executable
processes are described using BPEL. Through the tool, users can visually edit
service conversations and composition models and automatically generate the
BPEL skeletons, which can then be extended by the developers and even-
tually executed using BPEL execution engine such as the IBM’s BPWS4J
(www.alphaworks.ibm.com/tech/bpws4j).

This model-driven development framework is one of the components of a
broader CASE tool, partially implemented, that manages the entire service de-
velopment lifecycle. In fact, we envision a model driven service development
framework where various service functionalities such as composition logic, con-
versation management, trust negotiation, security, and exception handling are
specified using high level notations. Based on these notations, effective automa-
tion of various aspects of service development activities will become a reality
(e.g., formal analysis and validation of service composition models, generation
of service composition skeletons, generation of conversation models and trust
negotiation policies of composite services, etc). The development of this kind
of framework and its supporting infrastructure is clearly a complex endeavor,
likely to require further progress both in terms of research and of standardiza-
tion. Our early results related to other parts of the model-driven generation
approach, such as the details of the conversation model and the security/trust
negotiation models can be found in [4,11].

Our ongoing work involves the generation of conversation models starting
from the composition model. Another line of research and development is related
to the identification of what should be generated as part of the specification of
the (composite) service and what should be instead embedded into the middle-
ware. For example, the automatic generation of conversation management logic
can be handled in two ways: one has been proposed in this paper, and involves
the automatic generation of the service specification. Another approach consists
in developing a separate middleware component, that we call conversation con-
troller, which is separate from the service implementation: it sits in between
clients and services and enforces protocol compliance, by maintaining the con-
versation state and verifying that each operation invocation is in accordance
with the conversation state and protocol definition. The two approaches have
pros and cons. Having a middleware component is useful in that it hides com-
plexity from the developer and manages protocols automatically, and can also
provide such features as logging, monitoring, and analysis. It is also more robust
to changes, as protocol evolution can be handled independently from changes to
the detailed service specification. On the other hand, this approach requires yet
another middleware component, which by the way is not available yet. Although
not supported by the current prototype, the approach proposed here is anyway
applicable to both scenarios, as the generation of the conversation management
logic described in Section 3 can be used to feed specifications to the conversa-
tion management middleware instead of resulting in extensible process skeletons.
This requires modifications to the tool that are conceptually relatively simple
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although implementation intensive. The benefits in terms of independence of the
specific conversation management language supported by the tool would remain
the same.

In summary we believe that, once the research and development work on
the aspects described above has been completed, this approach will result in a
comprehensive platform that can substantially reduce the service development
effort and therefore foster the widespread adoption of Web service technology
and of service-oriented architectures.
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