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Abstract

We consider the problem of synthesizingeam of lo-

cal behavior controllergo realize a fully controllable
target behavior from a set of available partially con-
trollable behaviors that execute distributively within a
shared partially predictable, but fully observable, en-
vironment. Available behaviors stand for existing dis-
tributed components and are represented with (finite)
nondeterministic transition systems. The target behav-
ior is assumed to be fully deterministic and stands for
the collective behavior that the system as a whole needs
to guarantee. We formally define the problem within a
general framework, characterize its computational com-
plexity, and propose techniques to actually generate a
solution. Also, we investigate the relationship between
the distributed solutions and the centralized ones, in
which a single global controller is conceivable.

I ntroduction

A novel synthesis problem (De Giacomo & Sardina 2007)
was recently proposed in which fally controllable tar-
get behavior module is automatically synthesized from a li-
brary of availablgartially controllablebehaviors executing
within a sharedpartially predictable but fully observable,
environment. The available behaviors stand for existing ac
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heterogeneous members exhibiting collective behavior and
intelligence, also offers an excellent domain in which eoor
dination and task distribution towards obtaining a glotel b
havior could be of great benefit. In all those cases, however,
the set of available behaviors cannot be taken &israry
accessible from a central system—no central entity can be
assumed in such applications. In fact, the most one could
realistically allow under these distributed scenarioins

sort of local control on the existing behavior devices, to-
gether with some kind of communication among such local
controller modules. Because of this, the techniques devel-
oped by De Giacomo & Sardina (2007) are not suitable for
these fully distributed scenarios, since their proposéd-so
tion requires a central coordination system, referred thas
schedulerthat is able to access every existing behavior.

So, in this paper, we study tligstributedsynthesis prob-
lem in which a team ofocal behavior controllerds auto-
matically obtained. The objective is to guarantee a global
distributed behavior starting from a set of distributedéeh
iors acting over a shared partially predictable but fully ob
servable environment. A local controller is able to control
the operation of the single behavior it is attached to as well
as to broadcast messages into a shared channel. In address-
ing the distributed problem, we not only need to envision a
new type of (distributed) solution, but we also have to dnric

cessible devices or components whereas the target behaviori,q setting considerably. For instance, in a fully distréul

represents the desired but non-existing (virtual) compane

context, it is unrealistic to assume that only one behavior

The question then was: can a central system (always) guar-yjj| act at each step, and hence, many concurrent actions

antee a specifideterministicoverall behavior by (partially)
controlling the available devices or components in a step-
by-step manner, that is, by instructing them on which action
to execute next and observing, afterwards, the outcome in
the device used as well as in the environment? Such syn-
thesis problem can be recast in a variety of forms within
several sub-areas of Al, including planning (Meulestu

al. 1999), agent-oriented programming (Georgeff & Lansky
1987; Firby 1989), plan coordination (Katz & Rosenschein
1993), web-service composition (Mcllraith & Son 2002;
Berardiet al. 2005), and others.

It is not hard to see that the above problem is of partic-
ular interest in settings where the existing components are
distributed and independentand thus, not accessible as a
whole. For example, a RoboCup soccer team includes mul-
tiple players acting on their own, possibly exchanging mes-
sages with each other (Bredenfeldal. 2006). Robot ecolo-
gies (Tilden 1993; Saffiotti & Broxvall 2005), the develop-
ment of autonomous microrobot groups consisting of many

have to be allowed.

The main technical contributions of this paper are three-
fold. First, we formally define and solve the distributed-syn
thesis problem in the general case where behaviors and the
environment are represented as arbitrary (nondeterrjist
transition systems with a finite number of states. We char-
acterize the computational complexity of the problem, and
show that when there is a solution, there is one that is finite.
Second, we study the intrinsic relation between centrdlize
solutions and distributed ones, and proved that there is no
loss when we assume a distributed setting: every coordina-
tion that can be done with a centralized controller can be
done with a team of local controllers, and vice-versa. Third
we show how to obtain the smallest finite local controllers.

The setting

Based on (De Giacomo & Sardina 2007), let us start by
defining the formal abstract framework for our problem.



Environment We assume a shared observable environ- el » O)feracy () {track}
ment, which provides an abstract account of the observable q(- “T{jack}} o
effects and preconditions of actions (akin to an action the- {track}SZeg”: (sendy %D send
ory). In giving such an account, we take into consideration <o :{{send} {send} >{freehdd}

that, in general, we have incomplete information about the {rhoto}

actual effects and preconditions of actions. Thus, we allow

E

. L. {track
the observable environment to bendeterministian gen- {f(ﬁehdd} C1, G2 {track} {photo} freehdd}
eral. In that way, the incomplete information on the actual _ _
world shows up as nondeterminism in our formalization. (a) Behaviors  (b) Environment (c) Target
Formally, anenvironment = (A, E, e, d¢) is charac-
terized by the following four entities: Figure 1: A camera surveillance scenario.
e Ais afinite set of shared actions;
e Eis afinite set of possible environment states; those will depend on what transition is actually executed—
e ¢y € Fis the initial state of the environment; nondeterministic behaviors are only partially controléab

We say that a behavid8 = (5, so, G, d5, F'), over the
environment€, is deterministicif there is no environment
statee to statec’ when the actions in the non-empty set of statec of £, and no set of actions, for which there exist two

actionsA are all (concurrently) executed distincttransitiongs, g1, 4, s1) and(s, g2, A, 2) in d such

. ty : ~ thats; # s, andg;(e) = go(e) = true. Notice that given a

Note that our notion of environment shares a lot of simi-  state in a deterministic behavior and a legal set of actioas,
larities with the so-called “transition system” in acticant always know exactly which ithenext state of the behavior.
guages (Gelfond & Lifschitz 1998). In other words, deterministic behaviors are fully coniable

through the selection of the set of actions to perform next,
Behavior A behavior is essentially a program for an agent  while this is not the case for nondeterministic ones.
or the logic of some available device. Such a program how-
ever leaves the selection of the set of actions to perforrhnex The system A systemS = (Bi,...,B,,&) is formed
to the agent itself. More precisely, at each step the program by an environment and n predefined nondeterministic
presents a choice of available sets of (concurrent) actmns  behaviorsBB; over &, called theavailable behaviors A
the agent; the agent selects one of such sets; the actions insystem configuratiois a tuplec = (s1,. .., s,, ¢) denoting
the selected set are executed concurrently; and so on. a snapshot of the system: behavitr withi € {1,...,n},

Obviously, behaviors are not intended to be executed on s in states; and the environmerd is in statee.
their own, but they are executed in the environment (cf.
above). Hence, we equip them with the ability of testing Example 1 (Thescenario) Consider a site surveilled by
conditions (i.e., guards) on the environment when needed. two identical cameras,; andC, whose behaviors are rep-

e 0¢ CE x 2(,)4 x F is the transition relation among states:
og (e, A, e') holds when the environmentay evolvérom

Formally, abehaviorB = (5, so, G, d5, F') over an envi- resented in Fig. 1(a)—edges are labeled by expressions of
ronment€ = (A, E, eg, d¢) is characterized by the follow-  the formg : A, whereg stands for the guard antifor the set
ing give entities: of actions (we omiy when it is equal to the boolean function

true). Both cameras are capable of either tracking objects

* Sis afinite set of behavior states; or taking photos—actionsack and photo, respectively—

e so € Sisthe single initial state of the behavior; but not both at the same time. Each time a photo is taken, it
e (G is a set of guards over the environmént.e., a set of is stored in a local buffer which may unexpectedly become
boolean functions of the form: £ — {true, false}; full. Since there is no way to know if the next photo will

fill the buffer, actionphoto is modeled as a nondeterministic

h . g - | . . : .
* 05 C 5 x G x 25 x Sis the behavior transition relation:  5¢4ion |eading the camera to state if no space is avail-

05(s,9,A,5") h9|d5 when the behavienay evolveérom able on the local buffer and i@, otherwise. A camera can
states to states” when it (concurrently) executes all the  empty its buffer by performing aend action, which trans-
actions inA and guardy applies in the environment; fers the buffer content to a remote storage device (e.grda ha

e finally, I C S is the set of states of the behavior that can drive). A send action can only be performed when space is
be considered final, that is, the states in which the behav- available on such device; otherwise, the camera may ask the

ior can stop executing, but does not necessarily have to.  device for additional space by doing actigrechdd.

The size of a behavior is its number of states, |8} = |S]. The environmenk keeps information about the remote
Observe that, in general, behaviors amndeterministic ~ Storage device. The dynamics bfis depicted in Fig. 1(b):

in that they ma’y allow mo,re than one transition with the €0 stands for the state where there is space available on the

same set of actions and compatible guards evaluating to the device;e; stands for the state where there is no space left.

; . . The target behaviof” (Fig. 1(c)) requires the ability to
g?;ncet}i:)r#g:cygi(ueééztgur?ézﬁoe; mglggﬁaa\‘/i(é)r;ocl)%%%favmlcihbzeéer- perform actions while keeping objects tracked, a task which

tain of which able choi th il be lat : could not be carried out by a single camera. In order to pre-
ain ot which avaiiable choices there will be fater on, SINC€ ot |ocal buffers and the remote storage device from filling

We use abbreviation?! to denote2* — {0} up, a conservative strategy is adopted: after taking a yEctu
2Note that this kind of nondeterminism is oiavilishnature— the remote device is asked for additional space aneha

the actual choice is out of the behavior control. action is performed to empty the local buffer.



Behavior History A behavior historyh for a given be-
havior B = (5, s, G, 05, F') over an environmeng
(A, E, eq,d¢), is any finite sequence of the forfr’, ¢°) -

Al (stiely. - (st et AR (84 ef), for somel > 0,

suchthatforald <k </fand0 <j </¢-—1:

o s¥ =5pands* € S;

o ¥ =¢gander € E;

o AF C A;

o (s7,g, AT sit1) € §g, for someg such thatg(e/) =
true that is, behavioBB canevolve from its current state
57 to states’ T w.rt. the (current) environment staté;

° (e{,A,eJ+1) € J¢, for some set of actiond such that
AT+l C A, that is, the environment can evolve from its
current state’ to the new state‘*.

The setH denotes the set of all behavior histories fr

Traces Given a behaviorB (S, s0,G, 0B, F) and
an environment& (A, E, e, 0s), we define the
traces of3 on € as the sequences of the fotms: (g*, A') -
(g%, A?)---, whereg’ € G and A C A, such that there
exists a behavior historgs?, e?) - A - (st e!)- A% .. for B
over€ wheregi(e~1) = true for all i > 1. In addition, if
the tracet = (g*, A')--- (g%, A?) is finite, then there exists
a finite behavior historys®, ¢%)- A! - .. A*. (5%, ¢*) as above
such that’ € F.

Thetraces of the deterministic behaviaee of particular
interest: any initial fragment of a trace leads to a singgest
in the behavior. Thus, the deterministic behavior itself ca
be seen as a specification of a (possibly infinite) set of frace

System history Assume a systen = (By,...,B,,E&).

A system historys an alternating sequence of system con-
figurations and actions of the fortn = (s¥,...,s% €?) -
[Aiv Al] ( "'55111761)"' ({ 17'-'55£;17€l71)'
[Af,... A’ (sl, ...,st "), for somef > 0, such thaé
o (sf,e

) Azl ) (87, ) el) e (85717 eg_l)'Af ’ (va eg) € HBw
foralli € {1,...,n}, thatis, the “projected” history rel-
ative to behavioB; is in fact a behavior history fa8;;

e at each stepk € {0,...,¢ — 1}, we have that
(e*, UL llA’€+1 eF ) e 55 thati is, the environment can

make a legal transition according to the set of actions ex-
ecuted inall behaviors.

The length of a history:, denoted ag:|, is the number of
system configurations ih. The setH denotes the set of all
system histories.

Behavior Controllers We study two different mecha-
nisms for managing and controlling the available behav-
iors. The first one involves a central component, called the
centralized controllerand extends the notion of “scheduler”
from (De Giacomo & Sardina 2007). The centralized con-
troller has the ability of activating-resuming zero, one, o
more of the available behaviors by instructing each of them

®In some cases it may be sensible to require fyat, A7 = 0
for everyk € {1,...,¢}, especially when shared resource con-
sumed by actions are of concern.

to execute some set of actions among those that are allowed
in their current state (taking into account the environment

It also has the ability of keeping track (at runtime) of the-cu
rent state of each available behavior. The second mechanism
involves a decentralized team lofcal behavior controllers

one for each behavior. At any point in time, each behav-
ior controller can activate, stop, and resume the behatior i
is attached to as well as broadcast messages and access the
whole set of broadcasted messages.

Centralized Controller

We first focus on the synthesis of a centralized controller.
This is essentially an extension of the work in (De Giacomo
& Sardina 2007) so as to allow for multiple (concurrent) ac-
tions at every step. In (De Giacomo & Sardina 2007), in
contrast, only one action at the time was executed and the
centralized controller was essentially a scheduler assign
such action to one of the available behaviors.

Specifically, we are interested in the following problem:
given a systen$ = (B, ..., By, &) and adeterministidoe-
havior, called theiarget behavior3, over £, synthesize a
centralized controllerP such that the target behavior is re-
alized by suitably assigning actions to execute to the avail
able behaviors

Let us formally define our synthesis problem. Let the sys-
tem beS = (B1,...,B,,&), where€ = (A, E, e, d¢) is
the environment an®; = (.5;, s.0, Gi, d;, F;), with ¢ €
{1,...,n}, are the available behaviors. Let the target be-
havior beBBy = (S, so0, 90, Fo). A centralized controlleis
afunctionP : H x 24 — (24)" that, given a system history
h € H and a (non-empty) set of requested actidnS A to
perform, returns the set of actions to be performed by each
behavior such that the requested set of actidns fully re-
alized. Observe that some behaviors may not execute any
action and thus remain still. It may also happen that several
behaviors execute the same action. Variants can be easily
defined where an action is executed by exactly one behavior.
The results presented here would also hold for such variants

One can define when a centralized controller realizes the
target behavior—a solution to the problem—by extending
the definition found in (De Giacomo & Sardina 2007) of
when acentralized controllerP realizes a trace. We omit
this definition for lack of space. Recall that since the targe
behavior is a deterministic transition system, its behaigio
completely characterized by the set of its traces. Thus, a
centralized controller” realizes the target behavid if it
realizes all its traces (see (De Giacomo & Sardina 2007)).

The techniques proposed in (De Giacomo & Sardina
2007), based on a polynomial reduction of the problem
to satisfiability of a Propositional Dynamic Logic formula
(Harel, Kozen, & Tiuryn 2000), can be extended to deal
with our new notion of centralized controlletsAs a con-
sequence, we have the following result.

Theorem 1 Checking the existence of a centralized con-
troller that realizes a target behavid®, relative to a system
S =(By,...,B,,E)is EXPTIME-complete.

Observe that, in general, a centralized scheduler can
have infinite states. However, the next theorem shows

“To avoid an exponential blowup, special care has to be put in
encoding the problem into PDL satisfiability.



that if a centralized controller that realizes the target be
havior does exist, then there exists one withfimite
number of states. To ground the id€asye define a
finite (state) centralized controlleelative to a systeny =

(By,...,By,E)asa tuple? = (%, 00, Nnextsnexty, where:
3} is thefinite set of states of the controller;
oo € X is the single initial state of the controller;

nexta: ¥ x Sy x ... x S, x E x 24 — (24" is the
controller output, which instructs each available behavio
to execute a given set of actions given its current state,
the current states of the behaviors and that of the environ-
ment, and the set of requested actions;

nexts: ¥ x Sy x...x S, x Fx 24 — ¥ is the transition
function_of the controller which states what is the next
state of P after having observed the state of the behaviors
and that of the environment, and the requested actions.

It is possible to univocally define, by induction on the
structure of histories, thmducedcentralized controller (of
the general form above): executing the finite controller in
the system amounts to execute its induced controller. For
sake of simplicity, we shall blur the distinction between a
finite controller and its induced one.

The following result holds for finite controllers, and can
be shown by resorting to the finite model property of PDL:

Theorem 2 If there exists a centralized controller that
realizes a target behaviorB, relative to a system
(By,...,B,, ), then there exists one which is finite.

As a matter of fact, one can give a tighter bound on the
number of states required by the finite controller.

Theorem 3 If there exists a finite centralized controller
that realizes a target behavioB, relative to a system
(By,...,B,, &), then there exists one witk| < |By| and
with a function nexts that is independent of the states of
Bi,...,B,, e, nexts ¥ x E x 24 — %,

Observe that such bound on the number of states of the con-
troller is tight. Indeed, it is easy to find cases in which eher
exists no controller with less states than the target behavi
Finally, we observe that the PDL reduction technique
mentioned above, as the one in (De Giacomo & Sardina
2007), can be used to actually generate a finite centralized
controller. In fact, from a finite model of the PDL for-
mula, one can easily extract tfiaite centralized controller
by definingnextaandnextson the basis of the truth-values of
the propositions in the model. In addition, one can apply the
construction devised for Theorem 3 so as to get a controller
with a minimal (in the above sense) number of states.

Example 2 (Centralized controller) Figure 2 depicts the
centralized controller which realizes the target behatior
from Figure 1(c). Functionsiexta and nextsare repre-
sented together as edges labelled with pdif®, where
I = (s1,89,e,A) andO = (A;, As), with the following
meaning:s; is the current state of came(s (i € {1,2});

e is the environment current statd; is the set of requested
actions to be performed; ant} is the set of actions assigned
to camera’; (i € {1,2}).

SOther representations for the controller are also possibigh
none can be exponentially more succinct than the one adbpted

(cg, c1, %, track, photo)/
({track hoto})
{c1, co, *, {track, photo}
cep photo}, {track})

(c1,c1,*,{track, photo})
{track}, {photo})

eq, track)/

0,
étrac , track)
n~)

(cg,c1, *, {track, freehdd})/
({freehdd}, {track})

Figure 2: Centralized controller for the example scenario.

Distributed Controllers

We next turn to the case in which a centralized controller
is not implementable and, as a result, we have to rely on
distributed controllers. The main difficulty here is thatku
controllers have no access to the complete history, but only
to the local history of the behavior they are controlling. To
overcome that we allow distributed controllers to communi-
cate through message broadcasting. This is essential te mak
them able to cooperate in order to realize the target behavio

Messages We assume to have a set of possible messages
M (more precisely, message types) that can be broadcasted.
That is, we do not put a priori limits to the information that
the distributed controllers can exchange. Later, though, w
will see that a finite set of messages is sufficient.

Extended Local Behavior History We extend the notion
of local histories to incorporate messages fravh. An
extended behavior history}; for a given a behavioB =
(S, s0, G, d5, F) over an environmenf = (A, E, eq, dg),
is any finite sequence of the forrs®,c®, M) - AL .
(st,el, MY (st ef =1 M1y AL . (sfef, MY) such
that the following constraints hold:
o (s9,e9)- At (st el) - (st ef 1) AL (5%, ef) € Hp,
that is, we get a behavior history fét when the set of
broadcasted messages are projected out;

e M°={(andM* C M,forallk € {0,...,¢}.
Observe that the behavior itself puts no constraints on the
messages that are broadcasted at each step. However, we'll

see that the local controller will. The skt denotes the set
of all extendedocal behavior histories foB (over¢).

Local Controllers A local controller is a module that can
be (externally) attached to a behavior in order to contsol it
operation. It has the ability of activating-resuming itsi€o
trolled behavior by instructing it to execute a set of action
Also, the controller has the ability of broadcasting messag
after observing how the attached behavior evolved w.it. th
delegated set of actions, and to access all messages broad-
casted by the other local controllers at every step. Laistéy,
controller has full observability on the environment.

Formally, alocal behavior controllerfor behavior3 is a
pair of functionsC = (P, B) of the following form:

PiHE x24 =24 BiHE x24A x5 —2M




FunctionP states what actiond’ C A to delegate to the at-

tached behavior at local extended behavior histgfywhen
actionsA were requested. Functidb states what messages,

if any, are to be broadcasted under the same circumstancesS =

and the fact that the attached behavior has just moved ® stat
s after executing actiond’. We attach one local controller
C, to each available behavid#; in systems.

In general, local controllers can have
states, though, as for central controllers,
be particularly interested in finite state ones.
finite (state) local behavior controlleffor a behavior B,
and relative to environmedtand a set of messagad, is a

tupleC = (3, M, 0o, nextsnexta nextn), such that:
e Y is thefinite set of states of the controller;

infinite
we will
A

M C M is afinite set of messages;
oo € X is the single initial state of the controller;

nexta: ¥ x S x E x 2M x 24 — 24 s the action out-

put of the controller, which observes the state of the con-

trolled behavior, the state of the environment, the mes-

sages broadcasted, the actions requested for execution
and delegates some of these to its controlled behavior;

nextm: ¥ x S x E x 2M x 24 x § = 2M s the mes-
sage output of the controller, which observes the state of
the controlled behavior, the state of the environment, the

messages broadcasted, the actions requested, and the state (s‘l}”, R

of the controlled behavior resulting from executing the se-

lected subset of these actions, and states what messages’

if any, are to be broadcasted by the controller;

nexts: ¥ x § x E x 2M x 24 — 3 states what is the
next state o after having observed the state of the con-
trolled behavior, the state of the environment, the mes-
sages broadcasted, and the actions requested.

As with finite central controllers, one can univocally de-
fine theinducedocal controller (of the general form above)
of a finite local controller such that running the finite local
controller in the system amounts to execute its induced ver-
sion. Once again, we blur the two notions in the following.

Extended System History We now extend system histo-
ries to include messages fromt. Assume then a system

S = (By,...,B,,&). An extended system history an
alternating sequence of system configurations and actions

of the form h+ = (s9,...,89 €9 MY . [A},... ALl -

(st,..., sk n,e M- .. (Sf_l,...,sffl, 1M

[Af,... A"]. (s‘{, .., st et M%) such that:

o (s9,...,89 €% - [A},... AL] (s%,...,s}l,el)-u
(17, shh et AL AR (sE, L st eh)eEn,

that is, we get a system hlstory after projecting out all
broadcasted messagkt';

Local Controller Synthesis A distributed controlleris a
set of local controllers, one for each available behavibe T
problem we are interested in is the following: given a system
(By,...,B,,£), aset of messagest, and adetermin-
istic target behawoBO overé&, synthesize a distributed con-
troller, i.e., a team of: local controllers, such that the target
behavior is realized by concurrently running all behaviors
under the control of their respective controllers

More precisely, letM be a set of messages, and let the
system beS = (By,...,B,,E), where€ = (A, E, eq, dg)
andB; = (Sl, Si0, Gi, 51’, E), fori e {1, ey TL} Let the
target behavior b, = (So, so0, do, Fp). Since the target
behavior is a deterministic transition system, its behaigo
fully characterized by the set of its traces, that is, by the s
of infinite action sequences that are faithful to its transi,
and of finite sequences that in addition lead to a final state.

So, given a trace = (g', A!) - (¢%, A?)--- of the tar-
get behavior, we say that distributed controller7 =
(C1,...,Cy) realizes the tracet iff for all ¢ and for all

extended system historigs’ € HY! T (H! + is defined
below) such thatg’*!(e) = true in the last environ-

'ment statee* of k¢, we have thakxt, (h¢, A*+1) is non-

empty, whereExt; 7(h, A) is the set of(|h| + 1)-length
extended system histories of the fortm- [A;,..., A,] -

(s sn T el IR such that:

sl elnl prlkly is the last configuration i;

n

_, A;, that is, the requested set of actioAss
fulﬁlled by putting together all the actions executed by
every behavior.

Pi(h|;, A) = A; foralli € {1,...,n}, thatis, the local
controllerC; instructed behaviaB; to execute actiond,;;

o (" g, 4, s!"T) € 5 with g(el"l) = true, that is,
behaviors; can evolve from its current stataé;h‘ to state

‘th with respect to the (current) environment stelfe;

(e"”, A, el"+1) € §¢, that is, the environment can evolve
from its current state!”! to statee!"I*1;

MIPFL = (| Bi(h];, A, s!"IF1), that is, the set of
broadcasted messages is the union of all messages broad-
casted by each local controller.

The setH} ;- of all histories that implement the firstac-
tions of tracet and is prescribed by is defined as follows:

L4 Ht T — {(8107 -+ -3 5n0, €0, {})}!
o« it = Unrens Ext; 7 (h*, A¥+1), for everyk > 0;
In addition, as before, if the traceis finite and ends af-

term actions, and all its guards are satisfied all along, we
require that all histories irt{;"; end with all behaviors in

a final state Finally, we say that aistributed controller

0_ k
o M®=0andM* C M, forallk € {0,.... £}, = (Cy,...,Cy) realizes the target behavids, if it real-
Notice that messages are shared by the IocaI history of eachizes all its traces (recall th#, is deterministic).

available behavior: they all see the same messages. The |n orderto understand the above definitions, let us observe
set{* shall denote the set of all extended system histories. that, intuitively, the team of local controllers realizesace

Also, if bt € HT is as above, theh™|; denotes the corre-
sponding extended Iocgf0|ected historyw.r.t. behavmt&,

thatis,(s?, e M) AL (st et, M1) ... AL (st et MY).

if, as long as the guards in the trace are satisfied, they can
globally perform all actions prescribed by the trace—each
of the local controllers instructs its behavior to do some of



(c1,*, {co}, {t.p}.co)/({p}, {ca})
(c1,* {co}, {t, P}, co)/({r}, {co})
c1,* {e1}, {t,p}, co)/{({t}, {cg
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Figure 3: Distributed controllers for the surveillance sce
nario. Notationt, f, s andp is used to abbreviate actions
track, freehdd, send andphoto, respectively.

them. In order to do so, each local controller can use the
history of its behavior together with the (global) messages
that have been broadcasted so far. In some sense, implicitly
through such messages, each local controller gets informa-
tion on the global system history in order to take the right
decision. Furthermore, at each step, each local controller

Theorem 4 LetS = (By,...,B,,&) be a system and let
By be the target behavior. Then, there exists a distributed
controller that realized3; iff there exists a centralized con-
troller that realizes3,.

The crux of the proof of this theorem (omitted here for space
reasons) is that, through the suitable use of messages, one
can emulate the ability of accessing the states of each of the
available behaviors—such states are not directly obs&vab
in the distributed case. Interestingly, the proof shows itha
is sufficient for the set of messag#s to be finite.

As an immediate consequence of Theorem 4 and Theo-
rem 1, we get a computational complexity characterization
of the synthesis problem in the distributed case as well.

Theorem 5 Checking the existence of a distributed con-
troller that realizes a target behavids, relative to a system
S =(By,...,B,,E)is EXPTIME-complete.

Next, we turn our attention to the relationship betwéen
nite central controllers anfinite distributed controllers, i.e.,
teams of finite local controllers. The main result we get is
the following.

Theorem 6 If there exists a finite central controlldP that
realizesB, relative to a systen$ = (B4,...,8,,&), then

there is a finite distributed controllef = (C4, .. .,C,) that
realizesl3, relative toS.

PROOF AssumeP = (X, 0, nextsnextg realizess,
relative toS. We define the finite state local controller
C; = (X, M, pio, Nexts, nexta, nextm) as follows:

e >, =13
.M:{“j:S”|S€Sjaj:{]‘""’n}};

® Dip = 00,

e nexta(o, s;,e,{“l : s1”,...,%n : s, },A) = A; iff
nextdo, s1,...,8n,6, A) = [A1,..., Ai ..., Anl;

e nextm(o, s,e, M, A, s') = “i : s'";

e nexts(o, s;, e, {“1 : s17,...,% s A =
nextgo, s1,...,Sn, e, A). O

From the above theorem, we get the analog of Theorem 2
for distributed local controllers.

broadcasts messages; such messages will be used in the nextpeqrem 7 1f there exists a distributed controlleF realiz-

step by all behavior controllers to choose how to proceed.

Example 3 (Distributed controllers) Figure 3 depicts the
distributed controllers for cameras; and Cy. Functions
nexta nextm andnextsare (compactly) represented as edges
labelled with pairsl /O, wherel = (s,e, M., A, s’) and

O = (A, Msent): sis the current state of the camera the dis-
tributed controller is attached te;is the current state of the
environment;M,.... is the set of all messages the distributed
controller has received is the set of requested actions to be
performed;A is the set of actions the distributed controller
assigns to its attached camesais the state of the camera
after performing the assigned actioAsand lastly,M ., is

the set of all messages broadcasted by the controller.

Distributed vs Centralized Controllers

We now investigate the relationship between central con-
trollers and distributed ones. The main result on this rela-
tionship is that in going from centralized controllers te-di
tributed ones we do not lose generality.

ing a target behavioB5, relative to a syster(i3s, .. ., B,,, €)
and a set of messaged, then there exists one that is finite.

As a matter of fact, the construction in the proof of The-
orem 6 gives us a way of obtaining a distributed controller:
generate a finite centralized controller realizing the ¢arg
behavior, and then apply the construction above to get the
team of finite local controllers. Interestingly, if we start
from a minimal finite centralized controller satisfying the
size condition in Theorem 3, then what we get is a team of
“optimal” finite local controllers. Indeed, we get the fol-
lowing: (i) the number of states of the local controllers is
[3;] < |Byl; (ii) the total number of different messages in the
solution is bounded by the size of the available behaviors,
i.e.,|M| < |Bi| + - +|B,l|; and(iii) the size of each mes-
sage is bounded Byg n-log | B;|, and at each point there are
at mostn broadcasted messages of such size—this gives us
bounds on the channel required for the messages exchange.
We observe that all these bounds are tight and one cannot do
better than this in general. It is easy to find cases in which



we do needBy| number of states3:| + - - - + |B,,| mes-
sages, and broadcasted messages of siagn - log |B;],
or otherwise we lose the ability of generating a distributed
controller, even when a centralized one does exist.

We now look at the reverse relationship, that is, how we
can get a central controller from a distributed one.

Theorem 8 If there exists a finite distributed controll&r =
(C1,...,Cy) that realizes the target behavidt; relative to

a systenS = (By,...,B,, ), then there is a finite central
controller P that realizestjo relative toS.

PROOFR Let(C, = (¥;, M, 0,0, nexts, nexta, nextm), for

i € {1,...,n}. We define the finite state central controller
P = (X%, 09, nextsnextq relative to systens as follows:

=31 XX 2,

e 0o = (p10,---,Pno);

o nextd (o, ...,0n), 81, -, 8n, €, A) =
[nexta (o1, s1,e, M, A),...,nexta,(on, sn, e, M, A)];

e next§(o1,...,0n),81,-..,8n, ¢, A) =
(nexts (o1, s1,e, M, A),...,nexts,(on, sn,e, M, A)).

O

Looking at the construction used in the theorem above, we
get other interesting bounds: while the central contraler
tained from the local controllers is, in general, of the 2te
the Cartesian product of the states of the local contrgliers
the case where the local controllers aremwithimal(i.e., their
states and state transitions correspond to those of thettarg
behavior), the obtained central controller can be shrunk to
the same number of states (of the target) by projecting out
states that are not reachable from the initial state Fur-
thermore, if one starts fromminimal central controller (as
in Theorem 3), generates the corresponding team of local
controllers using the construction for Theorem 6, and finall
generates back a central controller using the construction
Theorem 8, one gets back the original central controller.

Conclusion

In this paper, we investigated the distributed version ef th
synthesis problem introduced in (De Giacomo & Sardina
2007). As aresult, the solutions proposed here are patatabl
to a much wider range of cases, including those where we
have multiple independent agents and a centralized solutio
as that in (De Giacomo & Sardina 2007), is not conceivable.
We observe that the kind of problems we dealt with are
special forms of reactive process synthesis, both for the ce
tralized (Pnueli & Rosner 1989) and distributed (Pnueli &
Rosner 1990) cases. The main distinction is, apart from
the specific formal settings, the kind of design specifica-
tion to be realized (a target behavior in our case). It is
well known that, in general, distributed solutions are much
harder to get than centralized ones (Pnueli & Rosner 1990;
Kupferman & Vardi 2001). This is not the case in our ap-
proach since we allow for equipping local controllers with

autonomous message exchange capabilities, even if such ca-

pabilities are not present in the behaviors that they cdntro
Such a capability is at the core of the reason why one can
always get a distributed controller from a centralized one.
We close the paper by pointing out that the context in
which the distributed synthesis problem has been tackled in
this paper can be seen as “ideal”: (i) there exists a shared

and fully reliable messaging channel with no a priori size
bound; (ii) the environment is shared and fully observable
by every local behavior controller; and (iii) behaviors are
allowed to synchronize at every step just before the next ac-
tion to be performed. In several practical cases, howeter, i
would be necessary to address variations of this ideal con-
text. Forinstance, in distributed settings where behaaoe
geographically far apart, one should consider behavior con
trollers with local (partial) observability of the envirorent

or even consider different environments all together. Also
when communication is limited and unreliable, robust solu-
tions in which a behavior can be “replaced” upon failure are
desired. Finally, in cases with diverse devices acting at ve
different rates, more asynchronous accounts are of irtteres
These and other variations remain for future study.
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