
Automatic Synthesis of New Behaviors from a Library of Available Behaviors

Giuseppe De Giacomo
Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”
Roma, Italy

degiacomo@dis.uniroma1.it

Sebastian Sardina
Department of Computer Science

RMIT University
Melbourne, Australia

ssardina@cs.rmit.edu.au

Abstract
We consider the problem of synthesizing a fully
controllable target behavior from a set of available
partially controllable behaviors that are to execute
within a shared partially predictable, but fully ob-
servable, environment. Behaviors are represented
with a sort of nondeterministic transition systems,
whose transitions are conditioned on the current
state of the environment, also represented as a non-
deterministic finite transition system. On the other
hand, the target behavior is assumed to be fully
deterministic and stands for the behavior that the
system as a whole needs to guarantee. We for-
mally define the problem within an abstract frame-
work, characterize its computational complexity,
and propose a solution by appealing to satisfiability
in Propositional Dynamic Logic, which is indeed
optimal with respect to computational complexity.
We claim that this problem, while novel to the
best of our knowledge, can be instantiated to mul-
tiple specific settings in different contexts and can
thus be linked to different research areas of AI, in-
cluding agent-oriented programming and cognitive
robotics, control, multi-agent coordination, plan in-
tegration, and automatic web-service composition.

1 Introduction
Imagine an intelligent system built from a variety of different
components or devices operating (that is, performing actions)
on the same shared environment. For example, consider the
case of a blocks world scenario in which different kind or ver-
sions of robotic arms can move, paint, clean, dispose blocks,
and so on. Next, imagine that the central system possesses
some information about the logic of these components or
devices—e.g., a particular arm type can paint or clean a block
after picking it up, but another type of arm is only capable of
painting blocks. However, the knowledge about these devices
is partial in that their internal logic may potentially expose
nondeterministic features. For instance, the system may have
no information regarding the use of paint in a painting arm,
and thus, it is always unable to predict whether the arm will
run out of paint after a painting action. If it does, then the arm
cannot be used to paint again until it is recharged. Nonethe-
less, the central system hasfull observabilityon the state of

the devices in question: after the arm is used to paint a block,
the central system will come to know whether such arm ran
out of paint or not (maybe via a sensor light). Finally, the cen-
tral system is also (partially) knowledgeable about the shared
environment, in which all the components ought to execute.
As with the devices, the system possesses a nondeterminis-
tic model of the real environment and has full observability
on it too. The question then is: can the central system (al-
ways) guarantee a specificdeterministicoverall behavior by
(partially) controlling the available devices or components in
a step-by-step manner, that is, by instructing them on which
action to execute next and observing, afterwards, the outcome
in the device used as well as in the environment?

It is not hard to see that the above setting can be recast
in a variety of forms. In the context of agent-oriented pro-
gramming[6; 4], an intelligent agent may control the exe-
cution of a set of predefined nondeterministic agent plans in
order to realize a desired deterministic plan-intention, which
in turn, may have been obtained via planning[13; 8]. Simi-
larly, when it comes to plan coordination[9], one can think
of coordinating or merging approximate models of multiple
agents’ plans into a global fully deterministic multi-agent
plan. Also, in the context of web-service composition[12; 1;
3],1 existing web services may be composed on the Internet
so as to implement a new complex web service. In all these
cases, the challenge is to automatically synthesize afully con-
trollable module from a set ofpartially controllableexisting
modules executing in apartially predictableenvironment.

Under this setting, the technical contributions of this paper
are threefold. First, we formally define the problem within an
abstract framework. Second, we devise a formal technique to
performautomatic synthesis of the fully controllable module.
We show that the technique proposed is sound, complete, and
terminating. Lastly, we characterize the computational com-
plexity of the problem and show that the proposed technique
is optimal with respect to computational complexity.

2 The setting
Let us start by defining the synthesis problem[15] that is the
subject of our research. To that end, we develop an abstract
framework based on (sort of) finite state transition systems.

1In particular,[3] can be seen as a simpler variant of the setting
studied here, with no environment and deterministic behaviors.

Environment We assume to have a shared observable en-
vironment, which provides an abstract account of the observ-
able effect and preconditions of actions. In giving such an
account, we take into consideration that, in general, we have
incomplete information about the actual effects and precondi-
tions of actions. Thus, we allow the observable environment
to benondeterministicin general. In that way, the incomplete
information on the actual world shows up as nondeterminism
in our formalization.

Formally, anenvironmentE = (A, E, e0, δE) is character-
ized by the following five entities:

• A is a finite set of shared actions;
• E is a finite set of possible environment states;
• e0 ∈ E is the initial state of the environment;
• δE ⊆ E ×A×E is the transition relation among states:

δE(e, a, e′) holds when actiona performed in statee may
lead the environment to a successor statee′.

Note that our notion of the environment shares a lot of sim-
ilarities with the so-called “transition system” in actionlan-
guages[5]. Indeed, one can think of using that kind of for-
malism to compactly represent the environment in our setting.

Behavior A behavior is essentially a program for an agent
or the logic of some available device or component. Such a
program however leaves the selection of the action to perform
next to the agent itself. More precisely, at each step the pro-
gram presents to the agent a choice of available actions; the
agent selects one of them; the action is executed; and so on.

Obviously, behaviors are not intended to be executed on
their own, but they are executed in the environment (cf.
above). Hence, we equip them with the ability of testing con-
ditions (i.e., guards) on the environment when needed.

Formally, abehaviorB = (S, s0, G, δB, F) over an envi-
ronmentE , is a characterized by the following entities:

• S is a finite set of behavior states;
• s0 ∈ S is the single initial state of the behavior;
• G is a set of guards, which are boolean functionsg :

E → {true, false}, whereE is the set of the environ-
ment states ofE ;

• δB ⊆ S ×G×A× S is the behavior transition relation,
whereA is the set of actions ofE—we call theG × A
components of such tuples, thelabel of the transition;

• finally, F ⊆ S is the set of final states of the behavior,
that is, the states in which the behavior may stop execut-
ing, but does not necessarily have to.

Observe that, in general, behaviors arenondeterministicin
the sense that they may allow more than one transition with
the same actiona and compatible guards evaluating to the
same truth value.2 As a result, the central system, when mak-
ing its choice of which action to execute next, cannot be cer-
tain of which choices it will have later on, since that depends
on what transition is actually executed. In other words, non-
deterministic behaviors are only partially controllable.

2Note that this kind of nondeterminism is of adevilishnature, so
as to capture the idea that through the choice of actions alone one
cannot fully control the behavior.

We say that a behaviorB = (S, s0, G, δB, F), over the en-
vironmentE , isdeterministicif there is no environment statee
of E for which there exist two distinct transitions(s, g1, a, s1)
and(s, g2, a, s2) in δB such thatg1(e) = g2(e). Notice that
given a state in a deterministic behavior and a legal action
in that state, we always know exactly which isthenext state
of the behavior. In other words, deterministic behaviors are
fully controllable through the selection of the action to per-
form next, while this is not the case for nondeterministic ones.

Runs and traces Given a behaviorB = (S, s0, G, δ, F)
and an environmentE = (A, E, e0, δE), we define the
runs ofB onE as, possibly infinite, alternating sequences
of the following form: (s0, e0)a1(s1, e1)a2 · · · , where
s0 = s0 and e0 = e0, and for everyi we have that
(si, ei)ai+1(si+1, ei+1) is such that:

• there exists a transition(ei, ai+1, ei+1) ∈ δE ; and
• there exists a transition(si, gi+1, ai+1, si+1) ∈ δB, such

thatgi+1(ei) = true.

Moreover if the run is finite, that is, it is of the form
(s0, e0)a1 · · ·aℓ(sℓ, eℓ), thensℓ ∈ F .

Apart from runs, we are also interested in traces gener-
ated by the behavior. Atrace is a sequence of pairs(g, a),
whereg ∈ G is a guard ofB anda ∈ A is an action, of the
form t = (g1, a1) · (g2, a2) · · · such that there exists a run
(s0, e0)a1(s1, e1)a2 · · · , as above, wheregi(ei−1) = true

for all i. If the tracet = (g1, a1) · · · (gℓ, aℓ) is finite, then
there exists a finite run(s0, e0)a1 · · · aℓ(sℓ, eℓ) with sℓ ∈ F .

The traces of the deterministic behaviorsare of particular
interest: any initial fragment of a trace leads to a single state
in the behavior. In a sense, the deterministic behavior itself
can be seen as a specification of a set of traces.

The system A systemS = (B1, . . . ,Bn, E) is formed by
an observable environmentE and n predefined nondeter-
ministic behaviorsBi, called theavailable behaviors. A
system configurationis a tuple (s1, . . . , sn, e) denoting a
snapshot of the system: behaviorBi is in statesi and the
environmentE is in statee. We assume that the system has a
specific component, called thescheduler, that is able to acti-
vate, stop, and resume the behaviors at each point in time.

The problem The problem we are interested in is the fol-
lowing: given a systemS = (B1, . . . , Bn, E) and adetermin-
istic behavior, called thetarget behaviorB0 overE , synthe-
size a program for the scheduler such that the target behavior
is realized by suitably scheduling the available behaviors.

In order to make this precise, we need to clarify which are
the basic capabilities of the scheduler. The scheduler has the
ability of activating-resuming one3 of the many available be-
haviors by instructing it to execute an action among those that
are possible in its current state (taking into account the envi-
ronment). Also, the scheduler has the ability of keeping track
(at runtime) of the current state of each available behavior.

3For simplicity, we assume that the scheduler activates/resumes
only one behavior at each step, though our approach can be extended
to the case where more available services are activated at each step.

Technically, such a capability is calledfull observabilityon
the states of the available behaviors. Although other choices
are possible[1], full observability is the natural choice in this
context, since the available behaviors are already suitable ab-
stractions for theactualbehaviors, and hence there is no rea-
son to make its states partially unobservable: if details have
to be hidden, this can be done directly within the abstract be-
havior exposed, possibly making use of nondeterminism.

We are now ready to formally define our synthesis
problem. Let the system beS = (B1, . . . ,Bn, E),
where E = (A, E, e0, δE) is the environment andBi =
(Si, si0, Gi, δi, Fi) are the available behaviors. Let the tar-
get behavior beB0 = (S0, s00, δ0, F0).

A system historyis an alternating sequence of system con-
figurations and actions of the formh = (s0

1, . . . , s
0
n, e0) · a1 ·

(s1
1, . . . , s

1
n, e1) · · · (sℓ−1

1 , . . . , sℓ−1
n , eℓ) ·aℓ · (sℓ

1, . . . , s
ℓ
n, eℓ)

such that the following constraints hold:

• s0
i = si0 for i ∈ {1, . . . , n}, that is, each behavior starts

in its initial state;
• e0 = e0, that is, the environment starts in its initial state;
• at each step0 ≤ k ≤ ℓ, there exists ani ∈ {1, . . . , n}

such that(sk
i , gk+1

i , ak+1, sk+1
i) ∈ δi and for allj 6= i,

sk+1
j = sk

j , that is, at each step in the history, only one of
the behaviors, namelyBi, has made a (legal) transition
(according to its transition relationδi), while the other
ones have remained still;

• at each step0 ≤ k ≤ ℓ, we have that(ek, ak+1, ek+1) ∈
δE , that is, the environment has also made a legal transi-
tion according to its transition relation.

A scheduler programis a function P : H × A →
{1, . . . , n, u} that, given a historyh ∈ H (whereH is the set
of all system histories as defined above) and an actiona ∈ A
to perform, returns the behavior (actually the behavior index)
that is scheduled to perform the action. Observe that such a
function may also return a special valueu, for “undefined.”
This is a technical convenience to makeP a total function re-
turning values even for histories that are not of interest, or for
actions that no behavior can perform after a given history.

Next, we define when a scheduler program is a composi-
tion that realizes the target behavior—a solution to the prob-
lem. First, we point out that, because the target behavior is
a deterministic transition system, its behavior is completely
characterized by the set of its traces, that is, by the set of in-
finite sequences of actions that are faithful to its transitions,
and of finite sequences that in addition lead to a final state.

So, given a tracet = (g1, a1) · (g2, a2) · · · of the target be-
havior, we say that ascheduler programP realizes the trace
t iff for all ℓ and for all system historiesh ∈ Hℓ

t,P (Hℓ
t,P

is defined below) such thatgℓ+1(eℓ
h) = true in the last en-

vironment stateeℓ
h of h, we have thatP (h, aℓ+1) 6= u and

Hℓ+1
t,P is nonempty, where the set of system historiesHℓ

t,P is
inductively defined as follows:

• H0
t,P = {(s10, . . . , sn0, e0)};

• Hℓ+1
t,P is the set ofℓ + 1-length system histories of the

form h · aℓ+1 · (sℓ+1
1 , . . . , sℓ+1

n , eℓ+1) such that:

• h ∈ Hℓ
t,P , where(sℓ

1, . . . , s
ℓ
n, eℓ) is the last system

configuration inh;
• aℓ+1 is an action such thatP (h, aℓ+1)=i, with i 6=

u, that is, the scheduler states that actionaℓ+1 at
system historyh should be executed in behaviorBi;

• (sℓ
i , g, aℓ+1, s′i) ∈ δi with g(eℓ) = true, that is,

behaviorBi mayevolve from its current statesℓ
i to

states′i w.r.t. the (current) environment stateeℓ;
• (eℓ, aℓ+1, eℓ+1) ∈ δE , that is, the environment may

evolve from its current stateeℓ to stateeℓ+1;
• sℓ+1

i = s′i andsℓ+1
j = sℓ

j , for j 6= i, that is, only
behaviorBi is allowed to perform a step.

Moreover, as before, if a trace is finite and ends after
m actions, and all along all its guards are satisfied, we
have that all histories inHm

t,P end with all behaviors in a
final state. Finally, we say that ascheduler programP
realizes the target behaviorB0 if it realizes all its traces.4

In order to understand the above definitions, let us observe
that, intuitively, the scheduler program realizes a trace if, as
long as the guards in the trace are satisfied, it can choose at
every step an available behavior to perform the requested ac-
tion. If at a certain point a guard in the trace is not satisfiedin
the current environment state, then we may consider the trace
finished (even if it is not in a final state). As before, however,
because the available behaviors nondeterministically choose
what transition to actually perform when executing an action,
the scheduler program must be such that the scheduler will
always be able to continue with the execution of the next ac-
tion no matter how both the activated behavior and the envi-
ronment evolve after each step. Finally, the last requirement
makes sure that all available behaviors are left in a final state
when a finite trace reaches its end with all guards satisfied.

Observe that, in general, a scheduler program could require
infinite states. However, we will show later that if a scheduler
that realizes the target behavior does exist, then there exists
one with afinite number states. Note also that the scheduler
has to observe the states of the available behaviors in order
to decide which behavior to select next (for a given action
requested by the target behavior). This makes these scheduler
programs akin to an advanced form of conditional plans[16].

3 An example
We now come back to our original blocks world example in
order to illustrate the abstract framework developed in the
previous section. The complete scenario is depicted in Figure
1. The aim of the whole system is to paint existing blocks.
Blocks can be processed by cleaning and painting them. Be-
fore processing a block, though, it is necessary to prepare it,
for example, by moving it to a special processing location.
Furthermore, only after a block has been disposed, can an-
other block be prepared for processing. Finally, cleaning and
painting may, sometimes, require resources, namely, water
and paint, respectively: we assume there are two tanks, for
water and paint, respectively, and that both are recharged si-
multaneously by pressing a recharging button.

4Recall that because the target behavior is deterministic, it can
be seen as a specification of a, possibly infinite, set of traces.

prepare

paint clean

paint prepare
b1 b2 b3 b4

Arm B

recharge

clean

t2t1

t5 t3t4
clean
paint

clean
paint

e2 :clean
a1 a2

dispose

recharge

disposeArm A

e2

e3

dispose

dispose
e1

e4

prepare

prepare

recharge clean
recharge

EnvironmentE

clean

prepare

dispose paint

recharge
paint

TargetT

Figure 1: A painting blocks world scenario.

Now, the desired target behaviorT that we want to achieve
is as follows. First, a block is prepared for processing. Then,
the block in question can either be painted right away or
painted after being cleaned—some (dirty) blocks may need
to be washed before being painted. Note that the decision of
whether a block needs to be cleaned lays outside of our frame-
work. After a block has been painted, it is disposed. Finally,
the recharging button is pushed. See that this target behavior
is “conservative,” in that it always recharges the tanks after a
block has been processed.

One can think of the above target behavior asthearm that
one would like to have. However, such arm does not exist
in reality. Instead, there are only two different arms available.
The first armA, a cleaning-disposing arm, is able to clean and
dispose blocks. The second armB is capable of preparing,
cleaning, and painting blocks. Both arms are able to press the
recharge button to refill the tanks.

So, the system is composed of the environmentE and the
two armsA andB shown in Figure 1. Let us now note a few
interesting points. First, the environmentE provides the (gen-
eral) preconditions of actions in the domain (e.g.,dispose
can only be executed after aprepare action). The environ-
ment also includes some information about the water tank:
in e1 ande2, the water tank is not empty; and ine3 ande4,
the water tank is indeed empty. Notice that it is still conceiv-
able to clean a block in statee3, by some method that does
not rely on water. However, because armA does use water
to clean blocks, it can only do it when the environment is in
fact in statee2. Second, we observe that whereas only the
second arm can prepare a block, only the first arm can dis-
pose a block. Lastly, the most interesting remark comes from
armB’s internal logic, for which the system only has partial
information. After painting a block, armB may evolve non-
deterministically to two different states:b1 or b3. Intuitively,
the arm evolves to stateb3 as soon as the paint tank becomes
empty; otherwise the arm evolves to stateb1. Once the arm
runs out of paint, it can only clean blocks until the tanks are
eventually recharged. Notice also that, unlike armA, armB
does not require the environment to be in statee2 to clean a
block, as its cleaning mechanism does not rely on water.

We aim to automatically synthesize a scheduler program
so as to realize the target behavior (T) by making use of the
available behaviors (armsA andB) and considering the en-
vironment (E). See the next section.

4 The synthesis technique
We are now ready to investigate how to check for the exis-
tence of a scheduler program that realizes the target behavior,
and even more, how to actually compute it. We start with
some preliminary considerations on the computational com-
plexity that we should expect. The result by Muscholl and
Walukiewicz in [14], which can be easily rephrased in our
framework, gives us an EXPTIME lowerbound.

More precisely, let us callempty environmentany envi-
ronment of the formE = (A, E, eo, δE), whereE = {eo}
(i.e., the (observable) environment has a single state), and
δE = {(e0, a, e0) | a ∈ A}, (i.e., there are no preconditions
on actions, nor actions have any effect on the environment).
Also, let us calldeterministic guardless behaviorany behav-
ior of the formB = (S, s0, {gtrue}, δB, F), wheregtrue is
the constant function returning alwaystrue, andδB is func-
tional, i.e., for each states ∈ S and actiona ∈ A, there is at
most one states′ such that(s, a, s′) ∈ δB. Then, Muscholl
and Walukiewicz’s result can be stated as follows.

Theorem 4.1 (Muscholl & Walukiewicz 2005) Checking
the existence of a scheduler program that realizes a target
deterministic guardless behavior in a system consisting of
an empty environment and a set of available deterministic
guardless behaviors is EXPTIME-hard.5

Hence, checking the existence of a scheduler program in
our general framework is at least exponential time. Next, we
show that the problem is actually EXPTIME-complete, by
resorting to a reduction to satisfiability in PropositionalDy-
namic Logic (PDL). Moreover, such a reduction can be ex-
ploited to generate the actual scheduler program which will
be finite. In doing this, we extend the approach in[3], origi-
nally developed in the context of service composition to deal
with empty environments and deterministic guardless behav-
iors. Dealing with a non-trivial environment, and especially
dealing with the nondeterminism of the available behaviors,
requires solving same subtle points that reflects the sophisti-
cated notion of scheduler program that is needed for that.

4.1 Propositional Dynamic Logic
Propositional Dynamic Logic (PDL) is a modal logic specif-
ically developed for reasoning about computer programs[7].
Syntactically, PDL formulas are built from a setP of atomic
propositions and a setΣ of atomic actions:

φ −→ P | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ → φ′ |
〈r〉φ | [r]φ | true | false,

r −→ a | r1 ∪ r2 | r1; r2 | r∗ | φ?,

whereP is an atomic proposition inP , r is a regular ex-
pression over the set of actions inΣ, anda is an atomic ac-
tion in Σ. That is, PDL formulas are composed from atomic
propositions by applying arbitrary propositional connectives,
and modal operators〈r〉φ and[r]φ. Formula〈r〉φ means that
there exists an execution ofr (i.e., a sequence of actions con-
forming to the regular expressionr) reaching a state whereφ

5In fact, Muscholl and Walukiewicz show EXPTIME-hardness
in the setting of service composition studied in[2; 3], where all
available services are deterministic[14].

holds; and formula[r]φ is intended to mean that all terminat-
ing executions ofr reach a state whereφ holds.

A PDL formulaφ is satisfiable if there exists a model for
φ—an interpretation whereφ is true. Checking satisfiability
of a PDL formula is EXPTIME-complete[7].

PDL enjoys two properties that are of particular interest
for us [7]. The first is thetree model property, which says
that every model of a formula can be unwound to a, possi-
bly infinite, tree-shaped model (considering domain elements
as nodes and partial functions interpreting actions as edges).
The second is thesmall model property, which says that every
satisfiable formula admits a finite model whose size (in par-
ticular the number of domain elements) is at most exponential
in the size of the formula itself.

4.2 Reduction to PDL
LetS=(B1, . . . ,Bn, E) be a system, whereE=(A, E, e0, δE)
is the environment andBi = (Si, si0, Gi, δi, Fi) are the avail-
able behaviors overE , and letB0 = (S0, s00, δ0, F0) be the
target behavior (overE as well). Then, we build a PDL for-
mulaΦ to check for satisfiability as follows.

As actions inΦ, we have the actionsA in E . As atomic
propositions, we have:6

• one atomic propositione for each statee of E , which
intuitively denotes thatE is in statee;

• one atomic propositions for each states of Bi, for i ∈
{0, 1, . . . , n}, denoting thatBi is in states;

• atomic propositionsFi, for i ∈ {0, 1, . . . n}, denoting
thatBi is in a final state;

• atomic propositionsexecia, for i ∈ {1, . . . n} anda ∈
A, denoting thata will be executed next by behaviorBi;

• one atomic propositionundef denoting that we reached
a situation where the scheduler can be left undefined.

Let us now build the formulaΦ. For representing the tran-
sitions of the target behaviorB0, we construct a formulaφ0

as the conjunction of (for eachs of B0 ande of E):

• s∧e → 〈a〉true∧[a]s′, for each transition(s, g, a, s′) ∈
δ0 such thatg(e) = true, encoding that the target be-
havior can do ana-transition, whose guardg is satisfied,
by going from states to states′;

• s ∧ e → [a]undef , for eacha such that for nog ands′

we have(s, g, a, s′) ∈ δ0 with g(e) = true. This takes
into account that the target behavior cannot perform an
a-transition.

For representing the transitions of each available behavior
Bi, we construct a formulaφi as the conjunction of:

• the formula

s∧e∧execia→
∧

(s′,e′)∈∆

(〈a〉(s′∧e′))∧[a](
∨

(s′,e′)∈∆

(s′∧e′)),

where ∆ = {(s′, e′) | (s, g, a, s′) ∈ δi, g(e) =
true, (e, a, e′) ∈ δE}, for each environment statee,

6In this paper, we are not concerned with compact representa-
tions of the states of the environmentE and the behaviorsBi. How-
ever, we observe that if states are succinctly represented (e.g., in
binary format) then, in general, we can exploit such a representation
in Φ to get a corresponding compact formula as well.

eachs of Bi, and eacha ∈ A. These assertions encode
that if the current environment state ise and the available
behaviorBi is in states and is selected for the execution
of an actiona (i.e.,execia is true), then for each possible
a-transition ofBi with its guard true ine and ofE , we
have a possiblea-successor in the models ofΦ;

• s ∧ e ∧ execia → [a]false, for each environment state
e of E , and each states of Bi such that for nog, s′, and
e′, we have that(s, g, a, s′) ∈ δi with g(e) = true and
(e, a, e′)∈ δE . This states that if the current environment
state ise andBi, whose current state iss, is selected for
the execution ofa, buta cannot be executed byBi in e,
then there is noa-successor in the models ofΦ;

• s ∧ ¬execia → [a]s, for each states of Bi and each
actiona. This assertion encodes that if behaviorBi is
in states and is not selected for the execution ofa, then
if a is performed (by some other available behavior),Bi

does not change state.

In addition, we have the formulaφadd, of general con-
straints, obtained as the conjunction of:

• s → ¬s′, for all pairs of statess, s′ of Bi, and for
i ∈ {0, 1, , . . . , n}, stating that propositions represent-
ing different states ofBi are disjoint;

• Fi ↔
∨

s∈Fi
s, for i ∈ {0, 1, , . . . , n}, highlighting the

final states ofBi;
• undef → [a]undef , for each actiona ∈ Σ, stating

that once a situation is reached whereundef holds, then
undef holds also in all successor situations;

• ¬undef ∧ 〈a〉true →
∨

i∈{1,...,n} execia, for eacha ∈

A, denoting that, unlessundef is true, ifa is performed,
then at least one of the available behaviors must be se-
lected for the execution ofa;

• execia → ¬execja for eachi, j ∈ {1, . . . , n}, i 6= j,
and eacha ∈ A, stating that only one available behavior
is selected for the execution ofa;

• F0 →
∧

i∈{1,...,n} Fi, stating that when the target behav-
ior is in a final state, so are all the available behaviors.

Finally, we defineΦ as

Init ∧ [u](φ0 ∧
∧

i∈{1,...,n}

φi ∧ φadd),

whereInit stands fore0∧s00∧s01∧· · ·∧s0n, and represents
the initial state of the environmentE and of all behaviorsBi

(including the target), andu = (
⋃

a∈Σ a)∗, which acts as the
master modality[7], is used to forceφ0∧

∧
i∈{1,...,n} φi∧φadd

to be true in every point of the model. Note thatu is the only
complex program that appears in the PDL formulaΦ. We can
now state our main result.

Theorem 4.2 The PDL formulaΦ, constructed as above, is
satisfiable iff there exists a scheduler program for the system
S = (B1, . . . ,Bn, E) that realizes the target behaviorB0.

Proof (sketch). “ If ”: PDL has the tree-model property.
Hence, if Φ is satisfiable then it has a model that is tree
shaped. Each node in this tree can be put in correspondence
with a history, and from the truth value assignment of the

(B, paint)

(A, clean)

(A, dispose)

Scheduler
(B, prepare)

s1

s5

s2 s3

s4

b3 : (B, recharge)

(B, paint)b1 : (A, recharge)

Figure 2: The painting blocks scheduler program.b1 :
(A, recharge) means that armB is in stateb1 and action
recharged is performed by armA.

propositionsexecia in the node one can reconstruct the sched-
uler program. “Only if”: if a scheduler program that realizes
B0 exists, one can use it to build a tree model ofΦ.

Observe that the size ofΦ is polynomially with respect
to E , B1, . . . ,Bn and B0. Hence, from the EXPTIME-
completeness of satisfiability in PDL and Theorem 4.1, we
get the following result:

Theorem 4.3 Checking the existence of a scheduler program
that realizes a target behaviorB0 relative to a systemS =
(B1, . . . ,Bn, E) is EXPTIME-complete.

Finally, by the finite-model property of PDL (i.e., if a for-
mula is satisfiable, it is satisfiable in a model that is at most
exponential in the size of the formula), we get a systematic
procedure for synthesizing the composition:

Theorem 4.4 If there exists a scheduler program that real-
izes a target behaviorB0 relative to a system(B1, . . . ,Bn, E),
then there exists one that requires a finite number of states.
Moreover such a finite state program can be extracted from a
finite model ofΦ.

To end, let us return to our example of Section 3. The
corresponding PDDL formulaΦblocks, obtained as explained
above, has a a finite model from which we can extract the
scheduler program depicted in Figure 2 (after having pro-
jected out irrelevant propositions and applied minimization
techniques to reduce the number of states). Such scheduler
realizes the target behaviorT by appealing to the two avail-
able armsA andB. As one can observe, even in this simplis-
tic scenario, the existence of a scheduler and its correspond-
ing program is far from trivial. For instance, it is criticalto
make the correct decision on which machine must recharge
the tanks at every step—such a choice would depend on how
arm B evolves after painting a block. Also, the scheduler
must be able to terminate both arms in their corresponding
final states whenever the target behavior is its final statet1.

5 Conclusion
In this paper, we have looked at automatic synthesis of a fully
controllable module from a set of partially controllable exist-
ing modules that execute in a partially predictable environ-
ment. The kind of problem that we dealt with is clearly a
form of reactive process synthesis[15; 10]. Standard tech-
niques for such problems are based on automata on infinite
trees, which however relay on critical steps, such as Safra’s
construction for complementation, that have resisted efficient
implementation for a long time[11]. Instead, we based our

synthesis on a reduction to satisfiability in PDL[7] with a
limited use of the reflexive-transitive-closure operator.Such
kind of PDL satisfiability shares the same algorithms that are
behind the success of the description logic-based reasoning
systems used for OWL,7 such as FaCT, Racer, and Pellet.8

Hence, its applicability in our context appears to be quite
promising from a practical point of view.

Acknowledgments The authors would like to thank Daniela Be-
rardi, Diego Calvanese, Rick Hull, Massimo Mecella, and Maur-
izio Lenzerini for discussion and insights on the issues treated in
this paper. The first author was partially supported by the the Eu-
ropean FET basic research project FP6-7603 Thinking Ontologies
(TONES). The second author was supported by the Australian Re-
search Council and Agent Oriented Software (grant LP0560702).

References
[1] D. Berardi, D. Calvanese, G. De Giacomo, R. Hull, and

M. Mecella. Automatic composition of transition-based se-
mantic web services with messaging. InProc. of VLDB, 2005.

[2] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and
M. Mecella. Automatic composition of e-Services that export
their behavior. InProc. of ICSOC, pages 43–58, 2003.

[3] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and
M. Mecella. Automatic service composition based on be-
havioural descriptions.International Journal of Cooperative
Information Systems, 14(4):333–376, 2005.

[4] J. R. Firby.Adaptive Execution in Complex Dynamic Domains.
PhD thesis, Yale University, 1989.

[5] M. Gelfond and V. Lifschitz. Action languages.Electronic
Transactions of AI (ETAI), 2:193–210, 1998.

[6] M. P. Georgeff and A. L. Lansky. Reactive reasoning and plan-
ning. InProc. of AAAI, pages 677–682, 1987.

[7] D. Harel, D. Kozen, and J. Tiuryn.Dynamic Logic. The MIT
Press, 2000.

[8] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning
and acting in partially observable stochastic domains.Artificial
Intelligence Journal, 101:99–134, 1998.

[9] M. J. Katz and J. S. Rosenschein. The generation and exe-
cution of plans for multiple agents.Computers and Artificial
Intelligence, 12(1):5–35, 1993.

[10] O. Kupferman and M. Y. Vardi. Synthesis with incomplete
information. InProc. of ICTL, 1997.

[11] O. Kupferman and M. Y. Vardi. Safraless decision procedures.
In Proc. of FOCS, pages 531–542, 2005.

[12] S. McIlraith and T. C. Son. Adapting Golog for programming
the semantic web. InProc. of KR, pages 482–493, 2002.

[13] N. Meuleau, L. Peshkin, K.-E. Kim, and L. P. Kaelbling.
Learning finite-state controllers for partially observable envi-
ronments. InProc. of UAI, pages 427–436, 1999.

[14] A. Muscholl and I. Walukiewicz. A lower bound on web ser-
vices composition. Submitted, 2005.

[15] A. Pnueli and R. Rosner. On the synthesis of a reactive module.
In Proc. of POPL, pages 179–190, 1989.

[16] J. Rintanen. Complexity of planning with partial observability.
In Proc. of ICAPS, pages 345–354, 2004.

7www.omg.org/uml/
8www.cs.man.ac.uk/∼sattler/reasoners.html

