1

Giuseppe De Giacomo

Dipartimento di Informatica e Sistemistica

Universita di Roma “La Sapienza”
Roma, Italy
degi acono@li s. unironal. it

Abstract

We consider the problem of synthesizing a fully
controllable target behavior from a set of available
partially controllable behaviors that are to execute
within a shared partially predictable, but fully ob-
servable, environment. Behaviors are represented
with a sort of nondeterministic transition systems,
whose transitions are conditioned on the current
state of the environment, also represented as a non-
deterministic finite transition system. On the other
hand, the target behavior is assumed to be fully
deterministic and stands for the behavior that the
system as a whole needs to guarantee. We for-
mally define the problem within an abstract frame-
work, characterize its computational complexity,
and propose a solution by appealing to satisfiability
in Propositional Dynamic Logic, which is indeed
optimal with respect to computational complexity.
We claim that this problem, while novel to the
best of our knowledge, can be instantiated to mul-
tiple specific settings in different contexts and can
thus be linked to different research areas of Al, in-
cluding agent-oriented programming and cognitive
robotics, control, multi-agent coordination, plan in-
tegration, and automatic web-service composition.

I ntroduction

Imagine an intelligent system built from a variety of ditéeit
components or devices operating (that is, performing asjio

on the same shared environment. For example, consider t
case of a blocks world scenario in which different kind orver
sions of robotic arms can move, paint, clean, dispose bjock er
and so on. Next, imagine that the central system possess
some information about the logic of these components o
devices—e.g., a particular arm type can paint or clean &bloc
after picking it up, but another type of arm is only capable of

Automatic Synthesis of New Behaviorsfrom a Library of Available Behaviors

Sebastian Sardina
Department of Computer Science
RMIT University
Melbourne, Australia
ssardi na@s.rmt. edu. au

the devices in question: after the arm is used to paint a block
the central system will come to know whether such arm ran
out of paint or not (maybe via a sensor light). Finally, the-ce
tral system is also (partially) knowledgeable about theestha
environment, in which all the components ought to execute.
As with the devices, the system possesses a nondeterminis-
tic model of the real environment and has full observability
on it too. The question then is: can the central system (al-
ways) guarantee a specifieterministicoverall behavior by
(partially) controlling the available devices or compotssin

a step-by-step manner, that is, by instructing them on which
action to execute next and observing, afterwards, the outco

in the device used as well as in the environment?

It is not hard to see that the above setting can be recast
in a variety of forms. In the context of agent-oriented pro-
gramming[6; 4], an intelligent agent may control the exe-
cution of a set of predefined nondeterministic agent plans in
order to realize a desired deterministic plan-intentiohjolu
in turn, may have been obtained via plann[ig; . Simi-
larly, when it comes to plan coordinati¢g], one can think
of coordinating or merging approximate models of multiple
agents’ plans into a global fully deterministic multi-agen
plan. Also, in the context of web-service compositja2; 1;

3],! existing web services may be composed on the Internet
so as to implement a new complex web service. In all these
cases, the challenge is to automatically synthesiayacon-
trollable module from a set opartially controllableexisting
modules executing in partially predictableenvironment.

Under this setting, the technical contributions of thisgrap

e threefold. First, we formally define the problem within a
abstract framework. Second, we devise a formal technique to
formautomatic synthesis of the fully controllable module
show that the technique proposed is sound, complete, and
Ferminating. Lastly, we characterize the computationahco
plexity of the problem and show that the proposed technique

is optimal with respect to computational complexity.

painting blocks. However, the knowledge about these device .
is partial in that their internal logic may potentially expose 2 The setting

nondeterministic features. For instance, the system mag ha | et ys start by defining the synthesis problEt] that is the
no information regarding the use of paint in a painting arm,sypject of our research. To that end, we develop an abstract

and thus, it is always unable to predict whether the arm willgamework based on (sort of) finite state transition systems
run out of paint after a painting action. If it does, then thma

cannot be used to paint again until it is recharged. Nonethe- !in particular,[3] can be seen as a simpler variant of the setting
less, the central system hasdl observabilityon the state of

studied here, with no environment and deterministic bedravi

Environment We assume to have a shared observable en- We say that a behavi@& = (S, so, G, 05, F), over the en-
vironment, which provides an abstract account of the obserwironment¢, is deterministidf there is no environment state
able effect and preconditions of actions. In giving such arof £ for which there exist two distinct transitiois, g1, a, s1)
account, we take into consideration that, in general, wehavand (s, g2, a, s2) in d5 such thaty; (¢) = g2(e). Notice that
incomplete information about the actual effects and prdeon given a state in a deterministic behavior and a legal action
tions of actions. Thus, we allow the observable environmenin that state, we always know exactly whichtle next state

to benondeterministiin general. In that way, the incomplete of the behavior. In other words, deterministic behavioes ar
information on the actual world shows up as nondeterminisnfully controllable through the selection of the action ta-pe

in our formalization. form next, while this is not the case for nondeterministie®n
Formally, anenvironment = (A, E, eg, d¢) is character-
ized by the following five entities: Runs and traces Given a behavio3 = (S, so, G, 0, F)
e Ais afinite set of shared actions; and an environmenf = (A, E, eg,ds), we define the
e Eis afinite set of possible environment states; runsofBoné as, possibly infinite, alternating sequences
e ¢y € Eis the initial state of the environment; 0(‘; the followm% form: (5%, e%)a’(s',e')a® -, where
o 5¢ C E x A x Eis the transition relation among states: # , = % and ¢ = o, and for every; we have that
3¢ (e, a, ¢') holds when action performedin statemay ~ (8"»¢')a’™ (s"", ¢""") is such that:
lead the environmentto a successor state e there exists a transitiofe’, a’ ™!, e’ ') € d¢; and
Note that our notion of the environment shares a lot of sim- ® there ,e>§'5t5 atransitiof’, g'**, o, s'*1) € 9, such
ilarities with the so-called “transition system” in actitam- thatg""' (e;) = true.

guaged5]. Indeed, one can think of using that kind of for- Moreover if the run is finite, that is, it is of the form
malism to compactly represent the environmentin our sgttin (s°,e%)a' - - - a’(s*, e), thens’ € F.
Apart from runs, we are also interested in traces gener-

Behavior A behavior is essentially a program for an agent&ted by the behavior. Araceis a sequence of pairg, a),

or the logic of some available device or component. Such E¥vhereg € Gisaguard o3 anda € Als an action, of the
program however leaves the selection of the action to perfor 10'™M ! = (91 a)2' (9%, a)- - such that there exists a run
next to the agent itself. More precisely, at each step the prd® »¢’)a’ (s ,e')a” -, as above, wherg'(e;;) = true
gram presents to the agent a choice of available actions; tﬁgr alli. If the tracet = (g',a%)- (g’ a) IS finite, then
agent selects one of them; the action is executed; and so ontl1€Te €xists a finite rugs®, e%)a’ - --a’(s", ¢’) with s € F.
Obviously, behaviors are not intended to be executed on | € traces of the deterministic behaviaase of particular

their own, but they are executed in the environment (Cf'!nterest: any initial fragment of a trace leads to a singitest

above). Hence, we equip them with the ability of testing conJn the behavior. In a sense, the deterministic behavioffitse
ditions (i.e., guards) on the environment when needed. can be seen as a specification of a set of traces.

Formally, abehaviorB = (5, so, G, 05, F') over an envi- .
ronmentE, is a characterized by the following entities: The system A systemS = (Bi,...,85,,€&) is formed by

e Sis afinite set of behavior states: an observable environmewt and n predefined nondeter-

e 5o € Sis the single initial state of the behavior: ministic behaviors3;, called theavailable behaviors A

.)) system configurations a tuple (s1,...,s,,e) denoting a
e G is a set of guards, which aré boolean functlcgns snapshot of the system: behaviy is in states; and the
E — {true, false}, whereF is the set of the environ-

: environment is in statee. We assume that the system has a
ment states of;; specific component, called tisehedulerthat is able to acti-

e 05 C 5 x G x Ax Sisthe behavior transition relation, yate, stop, and resume the behaviors at each point in time.
where A is the set of actions of—we call theG x A

;:i(;;r;lpor}ergss?fiss?ﬁg ;l:er:lgf;‘i:?g;tfe?f)l:trt?wgsgg)hnavior The problem The problem we are interested in is the fol-
° Yoo = ' lowing: given a systen$ = (By, ..., By, £) and adetermin-

thatis, the states in which the behavior may stop executigy; henavior, called thearget behaviorB, over &, synthe-
ing, but does not necessarily have to.

size a program for the scheduler such that the target bemavio
Observe that, in general, behaviors a@ndeterministidan s realized by suitably scheduling the available behaviors
the sense that they may allow more than one transition with In order to make this precise, we need to clarify which are
the same actiom and compatible guards evaluating to the the basic capabilities of the scheduler. The schedulertes t
same truth valué.As a result, the central system, when mak- ability of activating-resuming orfeof the many available be-
ing its choice of which action to execute next, cannot be cerhaviors by instructing it to execute an action among thoae th
tain of which choices it will have later on, since that dep@nd are possible in its current state (taking into account thé-en
on what transition is actually executed. In other words,-nonronment). Also, the scheduler has the ability of keepingkra
deterministic behaviors are only partially controllable. (at runtime) of the current state of each available behavior

2Note that this kind of nondeterminism is oflavilishnature, so 3For simplicity, we assume that the scheduler activatesines
as to capture the idea that through the choice of actionseadoe only one behavior at each step, though our approach can beded
cannot fully control the behavior. to the case where more available services are activatedlatséep.

Technically, such a capability is calldédll observabilityon o h € Hj p, where(s, ..., s, e") is the last system

the states of the available behaviors. Although other @wic configuration inh;
are possibl¢1], full observability is the natural choice in this e a'T!is an action such tha®(h, a’*!)=i, with i+
context, since the available behaviors are already stz u, that is, the scheduler states that actidrn' at
stractions for thectualbehaviors, and hence there is no rea- system history: should be executed in behavisy;
son to make its states partially unobservable: if detaileha o (sf,g,a"t1 sl) € §; with g(ef) = true, that is,
to be hidden, this can be done directly within the abstract be behavior3; mayevolve from its current state/ to
havior exposed, possibly making use of nondeterminism. states’ w.r.t. the (current) environment staté
We are now ready to formally define our synthesis o (! gl+1 et+1) € §¢, that is, the environment may
problem. Let the system b& = (Bi,...,B,&), evolve from its current state’ to statec’*:
where£ = (A, E,eq,0¢) is the environment an®; = o s/ — ¢ ands’t! = s, forj # i, thatis, only
(S;, si0, Gi, 0;, F;) are the available behaviors. Let the tar- blehaviorlzﬁi is allowed to berform a’step. ’

get behavior bé8, = (So, s00, 80, Fo).

A system historjs an alternating sequence of system con- Moreover, as before, if a trace is finite and ends after

figurations and actions of the form= (s?,...,s%,e0) - a! - m actions, anq aII_ alqng all its ggards are sqtisfigd, we
(s! shel). .. (Se—l i1 el) ql - (s st et have that all histories ir{]", end with all behaviors in a
L AL T, Lo final state. Finally, we say that scheduler programP

such that the following constraints hold: realizes the target behavids, if it realizes all its trace$.

o sV =5, fori e {1,...,n}, thatis, each behavior starts In order to understand the above definitions, let us observe
in its initial state; that, intuitively, the scheduler program realizes a trdcas
o ¥ = ¢, that is, the environment starts in its initial state; long as the guards in the trace are satisfied, it can choose at
at each step < k < ¢, there exists am € {1,...,n} €verystepan available behavior to perform the requested ac
such that(sf,gf“,a’““,sf“) € 6, and forallj # 4, tion. Ifatacert_am point a guard in the trace is not satisiied
ki1 P . . . the current environment state, then we may consider the trac
55 =5 thatis, at each step in the history, only one Offinished (even ifitis notin a final state). As before, however
the behaviors, namelg;, has made a (legal) transition)05 ;56 the available behaviors nondeterministicallpséo
(according to its transition relatioft), while the other 4t transition to actually perform when executing an attio
ones have remained stil}; the scheduler program must be such that the scheduler will
o ateachstep < k < ¢, we have thate*, a* ™, e**') € gjways be able to continue with the execution of the next ac-
de, thatis, the environment has also made a legal transiion no matter how both the activated behavior and the envi-

tion according to its transition relation. ronment evolve after each step. Finally, the last requirgme

A scheduler programis a functonP : H x A — Makes sure that all available behaviors are left in a finaésta

{1,..-,n,u} that, given a history» € H (where™ is the set when a finite trace reaches its end with all guards satisfied.
of all system histories as defined above) and an actian4 Observe that, in general, a scheduler program could require

to perform, returns the behavior (actua”y the behavioe'w)d infinite states. HOWeVer, we will show later that if a schexalul

that is scheduled to perform the action. Observe that such #at realizes the target behavior does exist, then thestsexi
function may also return a Specia' Va|uefor “undefined.” one with afinite number states. Note also that the scheduler

This is a technical convenience to make total function re- has to observe the states of the available behaviors in order

turning values even for histories that are not of interestpp ~ to decide which behavior to select next (for a given action

actions that no behavior can perform after a given history. ~equested by the target behavior). This makes these savedul
Next, we define when a scheduler program is a composiPrograms akin to an advanced form of conditional plEi€.

tion that realizes the target behavior—a solution to thépro

lem. First, we point out that, because the target behavior i8 An example

a deterministic transition system, its behavior is comget \ve now come back to our original blocks world example in

characterized by the set of its traces, that is, by the set-of i ,ryer 1g jllustrate the abstract framework developed in the

finite sequences of actions that are faithful to its traes&i ,-eyious section. The complete scenario is depicted inrBigu

and of f!n|te sequences }ha’i in a(gd|t|20n lead to a final state. 1 The aim of the whole system is to paint existing blocks.
So, givenatrace= (g°,a")-(g°,a”) - -- of thetargetbe- gjocks can be processed by cleaning and painting them. Be-

havior, we say that acheduler progrant” realizes the trace fore processing a block, though, it is necessary to prepare i

¢ iff for all ¢ and for all system histories € H{ » (H; » for example, by moving it to a special processing location.

is defined below) such thaf*1(e}) = true in the last en- Furthermore, only after a block has been disposed, can an-

vironment state:; of h, we have thatP(h,a‘*') # u and other block be prepared for processing. Finally, cleaning a

1'%} is nonempty, where the set of system histofigs,, is painting may, sometimes, require resources, namely, water
in(tilljctively definec;l as follows: ’ and paint, respectively: we assume there are two tanks, for

water and paint, respectively, and that both are recharnged s
o H)p={(s10,--,5n0,€0)}; multaneously by pressing a recharging button.

041) st -
* H;p is the set off + 1-length system histories of the ™ "ap. o1 that because the target behavior is determinigtizari
formh - a‘*'- (8471, sl 1) such that: be seen as a specification of a, possibly infinite, set of stace

%Arm B cean 4 The synthesistechnique
b2 i i is-
Upaint We are now ready to investigate how to check for the exis

tence of a scheduler program that realizes the target behavi
and even more, how to actually compute it. We start with
argetT’ some preliminary considerations on the computational com-
@ prepare plexity that we should expect. The result by Muscholl and
paint Walukiewicz in[14], which can be easily rephrased in our
recharge dean framework, gives us an EXPTIME lowerbound.
dispose paint More precisely, let us calempty environmenany envi-
ts @ @ ronment of the form€ = (A, E, e,,), whereE = {e,}
(i.e., the (observable) environment has a single state), an
) o _ 0¢ = {(eo,a,ep) | a € A}, (i.e., there are no preconditions
Figure 1: A painting blocks world scenario. on actions, nor actions have any effect on the environment).
Also, let us calldeterministic guardless behaviany behav-

. . ior of the formB = (S, s0, {gtrue }> 08, F'), Wheregerye IS
Now, the desired target behavibrthat we want to achieve the constant function returning alwaysue, andd is func-

is as follows. First, a block is prepared for processing.mhe tional. i.e.. for each state € S and actiors € A, there is at

the block in question can either be painted right away Olmost one state’ such that(s, a, s') € 6. Then, Muscholl

painted after being cleaned—some (dirty) blocks may nee o
to be washed before being painted. Note that the decision (%fnd Walukiewicz's result can be stated as follows.

whether a block needs to be cleaned lays outside of our framg-heorem 4.1 (Muscholl & Walukiewicz 2005) Checking

work. After a block has been painted, it is disposed. Finallythe existence of a scheduler program that realizes a target
the recharging button is pushed. See that this target behavideterministic guardless behavior in a system consisting of
is “conservative,” in that it always recharges the tankeradt ~an empty environment and a set of available deterministic
block has been processed. guardless behaviors is EXPTIME-hatd.

One can think of the above target behaviotlasarm that ~ Hence, checking the existence of a scheduler program in
one would like to have. However, such arm does not exishyr general framework is at least exponential time. Next, we
in reality. Instead, there are only two differentarms aali¢. show that the problem is actually EXPTIME-complete, by
The firstarmA, a cleaning-disposing arm, is able to clean andresorting to a reduction to satisfiability in Propositiomal-
dispose blocks. The second arhis capable of preparing, namic Logic (PDL). Moreover, such a reduction can be ex-
cleaning, and painting blocks. Both arms are able to press thy|ojted to generate the actual scheduler program which will
recharge button to refill the tanks. be finite. In doing this, we extend the approacti3h origi-

So, the system is composed of the environngand the nally developed in the context of service composition td dea
two armsA and B shown in Figure 1. Let us now note a few with empty environments and deterministic guardless behav
interesting points. First, the environmehprovides the (gen- iors. Dealing with a non-trivial environment, and espédgial
eral) preconditions of actions in the domain (edispose dealing with the nondeterminism of the available behayiors
can only be executed afterpepare action). The environ- requires solving same subtle points that reflects the stphis
ment also includes some information about the water tankgated notion of scheduler program that is needed for that.
in e; andes, the water tank is not empty; and i andey,
the water tank is indeed empty. Notice that it is still comeei 4.1 Propositional Dynamic Logic

able to clean a block in statg, by some method that does propositional Dynamic Logic (PDL) is a modal logic specif-

to clean blocks, it can only do it when the environment is ingyntactically, PDL formulas are built from a sBtof atomic
fact in statee;. Second, we observe that whereas only theyrgpositions and a sét of atomic actions:

second arm can prepare a block, only the first arm can dis-

pose a block. Lastly, the most interesting remark comes from ¢ — P | =¢ | ¢1Ad2 | p1Vp2 | ¢ — ¢ |
arm B's internal logic, for which the system only has partial (r)¢ | [r]l¢ | true | false,
information. After painting a block, arn® may evolve non- ro— a | rUry [rizre | 77| #7,
deterministically to two different states; or bs. Intuitively,

the arm evolves to statg as soon as the paint tank becomes V€€ I is an atomic proposition iP, r is a regular ex-
pression over the set of actionsih anda is an atomic ac-

empty; otherwise the arm evolves to stafe Once the arm tion in X. That is, PDL formulas are composed from atomic
runs out of paint, it can only clean blocks until the tanks are o ' : : P X
eventually recharged. Notice also that, unlike atmarm B propositions by applying arbitrary propositional conriees,

does not require the environment to be in stat¢o clean a and modal operatorg)¢ and[r]¢. Formula(r)¢ means that

block, as its cleaning mechanism does not rer on water. there exists an execution GKI.G., a sequence of actions con-

We aim to automatically synthesize a scheduler prograrrﬁormIng o the regular expression reaching a state where

so as to realize the target behavi@i) by making use of the ®In fact, Muscholl and Walukiewicz show EXPTIME-hardness
available behaviors (armd and B) and considering the en- in the setting of service composition studied[® 3], where all
vironment €). See the next section. available services are determinisfic.

holds; and formuldr]¢ is intended to mean that all terminat-
ing executions of reach a state whergholds.

A PDL formula¢ is satisfiable if there exists a model for
¢—an interpretation wheré is true. Checking satisfiability
of a PDL formula is EXPTIME-complete].

PDL enjoys two properties that are of particular interest
for us[7]. The first is thetree model propertywhich says
that every model of a formula can be unwound to a, possi-
bly infinite, tree-shaped model (considering domain elesen
as nodes and partial functions interpreting actions assdge
The second is themall model propertywhich says that every
satisfiable formula admits a finite model whose size (in par-
ticular the number of domain elements) is at most exponlentia
in the size of the formula itself.

4.2 Reductionto PDL
LetS=(B,...,B,, &) be asystem, whe@= (A, E, ey, i¢)
is the environmentan8l; = (.5, s.0, Gi, d;, F;) are the avail-
able behaviors ovef, and letBy = (So, soo, d0, Fo) be the
target behavior (ovef as well). Then, we build a PDL for-
mula® to check for satisfiability as follows.

As actions in®, we have the actiongl in £. As atomic
propositions, we havé:

e one atomic propositiom for each state of £, which
intuitively denotes thaf is in statee;

e one atomic proposition for each states of 5;, for i €
{0,1,...,n}, denoting thas; is in states;

e atomic propositiond’;, fori € {0,1,...n}, denoting
thatB3; is in a final state;

e atomic propositiongzec;,, fori € {1,...n} anda €
A, denoting that: will be executed next by behavid;;

e One atomic propositiomndef denoting that we reached
a situation where the scheduler can be left undefined.

Let us now build the formul&. For representing the tran-
sitions of the target behavid,, we construct a formulag
as the conjunction of (for eachof 5, ande of £):

e sAe — (a)trueAla]s’, for each transitiofs, g, a, s') €
do such thaty(e) = true, encoding that the target be-
havior can do am-transition, whose guargis satisfied,
by going from state to states’;

e s A e — [aJundef, for eacha such that for ngy ands’
we have(s, g, a, s’) € dp with g(e) = true. This takes
into account that the target behavior cannot perform an

eachs of B;, and eachi € A. These assertions encode
that if the current environment stateciand the available
behavior; is in states and is selected for the execution
of an actioru (i.e., exec;, is true), then for each possible
a-transition of 5; with its guard true ire and of&, we
have a possible-successor in the models ©f

e s AeA erec;, — [a]false, for each environment state
e of £, and each state of BB; such that for ngy, s, and
¢’, we have thats, g, a, s’) € 6; with g(e) = true and
(e,a,e’) € d¢. This states that if the current environment
state isc and3;, whose current state is is selected for
the execution ofi, buta cannot be executed ly; in e,
then there is na-successor in the models &f

e s A —exec;,, — |als, for each states of B; and each
actiona. This assertion encodes that if behaviris
in states and is not selected for the executiongfthen
if a is performed (by some other available behavi®),
does not change state.

In addition, we have the formula,,4, of general con-

straints, obtained as the conjunction of:

e s — —g, for all pairs of statess,s’ of B;, and for
i € {0,1,,...,n}, stating that propositions represent-
ing different states oB; are disjoint;

o Iy = \/ cp s fori € {0,1,,...,n}, highlighting the
final states of3;;

e undef — [a]undef, for each actiorn € ¥, stating
that once a situation is reached wherelef holds, then
undef holds also in all successor situations;

o —undef A (a)true — oy, ezecia, foreacha €
A, denoting that, unlessndef is true, ifa is performed,
then at least one of the available behaviors must be se-
lected for the execution af;

o exec;, — —execj, foreachi,j € {1,...,n}, i # j,
and eachu € A, stating that only one available behavior
is selected for the execution of

® Fo — N,cqu,.. 0y Fis stating that when the target behav-
ior is in a final state, so are all the available behaviors.

Finally, we defined as

Init A [u](po A /\ bi N Padd),

a-transition.

For representing the transitions of each available behav
B,, we construct a formula; as the conjunction of:

e the formula
sAeAexeci,— /\ ({a)(s'Ae"))Ala)(\/ (s'Ae")),
(s',e")eA (s',e")eA

where A = {(5/56/) | (Svgvaas/) S 5’i7 g(e)
true, (e,a,e’) € dg}, for each environment statg

®In this paper, we are not concerned with compact representa-

tions of the states of the environmehtand the behaviors;. How-
ever, we observe that if states are succinctly represermteq, (n
binary format) then, in general, we can exploit such a reprgtion
in ® to get a corresponding compact formula as well.

wherelnit stands foeg A sgg Asgr A- - - ASon, and represents
. the initial state of the environme#tand of all behaviorg3;
IO(including the target), and = (U, .y, @)*, which acts as the
master modality7], is used to forc%/\/\ie{l7...7n} D Nbadd
to be true in every point of the model. Note thats the only
complex program that appears in the PDL form@ilae can
now state our main result.

Theorem 4.2 The PDL formula®, constructed as above, is
satisfiable iff there exists a scheduler program for theesyst
S = (By,...,B,,E) that realizes the target behavid;.

Proof (sketch). “If": PDL has the tree-model property.
Hence, if ® is satisfiable then it has a model that is tree
shaped. Each node in this tree can be put in correspondence
with a history, and from the truth value assignment of the

Scheduler synthesis on a reduction to satisfiability in PIT] with a

limited use of the reflexive-transitive-closure operatduch
kind of PDL satisfiability shares the same algorithms that ar
behind the success of the description logic-based reagonin
systems used for OWL such as FaCT, Racer, and Peflet.
Hence, its applicability in our context appears to be quite
promising from a practical point of view.

o (B, prepare) @ (A, clean)

bz : (B, recharge) (B, paint)

b1: (A, recharge) (B, paint

(A, dispose)

Figure 2: The painting blocks scheduler program;
(A, recharge) means that arnB is in stateb; and action
recharged is performed by armi.

Acknowledgments The authors would like to thank Daniela Be-
rardi, Diego Calvanese, Rick Hull, Massimo Mecella, and Mau
izio Lenzerini for discussion and insights on the issueaté@ in

. . this paper. The first author was partially supported by tleeEi-
propositionsezec;, in the node one can reconstruct the schedyopean FET basic research project FP6-7603 Thinking Ogitso
uler program. Only if”: if a scheduler program that realizes (TONES). The second author was supported by the Australen R
By exists, one can use it to build a tree modetbof [0 search Council and Agent Oriented Software (grant LPO58)70

Observe that the size @b is polynomially with respect
to &, By,...,B, and By. Hence, from the EXPTIME-
completeness of satisfiability in PDL and Theorem 4.1, well
get the following result:

Theorem 4.3 Checking the existence of a scheduler programyy]
that realizes a target behavids, relative to a systen$ =
(By,...,By,) is EXPTIME-complete.

Finally, by the finite-model property of PDL (i.e., if a for- [3]
mula is satisfiable, it is satisfiable in a model that is at most
exponential in the size of the formula), we get a systematic
procedure for synthesizing the composition:

Theorem 4.4 If there exists a scheduler program that real- 4
izes a target behavids, relative to a syster(i3y, . .., B,,, &), (5]
then there exists one that requires a finite number of states.

Moreover such a finite state program can be extracted from ?6]

finite model ofb.

To end, let us return to our example of Section 3. The[7]
corresponding PDDL formul@®°* obtained as explained
above, has a a finite model from which we can extract thgg)
scheduler program depicted in Figure 2 (after having pro-
jected out irrelevant propositions and applied minimizati
techniques to reduce the number of states). Such schedul
realizes the target behavi@r by appealing to the two avail-
able arms4 andB. As one can observe, even in this simplis-
tic scenario, the existence of a scheduler and its correbpony; g
ing program is far from trivial. For instance, it is critictd
make the correct decision on which machine must rechargﬁl]
the tanks at every step—such a choice would depend on how
arm B evolves after painting a block. Also, the scheduler 17]
must be able to terminate both arms in their correspondin
final states whenever the target behavior is its final state (19
5 Conclusion

In this paper, we have looked at automatic synthesis of g full [14]
controllable module from a set of partially controllablasdx

ing modules that execute in a partially predictable environ[1g]
ment. The kind of problem that we dealt with is clearly a
form of reactive process synthedits; 10. Standard tech- |14
niques for such problems are based on automata on infinite
trees, which however relay on critical steps, such as Safra’
construction for complementation, that have resistedieffic
implementation for a long tim&l1]. Instead, we based our

References

D. Berardi, D. Calvanese, G. De Giacomo, R. Hull, and
M. Mecella. Automatic composition of transition-based se-
mantic web services with messaging.Rroc. of VLDB 2005.

D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and
M. Mecella. Automatic composition of e-Services that expor
their behavior. IrProc. of ICSOCpages 43-58, 2003.

D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and
M. Mecella. Automatic service composition based on be-
havioural descriptionsInternational Journal of Cooperative
Information Systemd4(4):333—-376, 2005.

J. R. Firby.Adaptive Execution in Complex Dynamic Domains
PhD thesis, Yale University, 1989.

M. Gelfond and V. Lifschitz. Action languagesElectronic
Transactions of Al (ETAJ2:193-210, 1998.

M. P. Georgeff and A. L. Lansky. Reactive reasoning and plan-
ning. InProc. of AAA] pages 677—682, 1987.

D. Harel, D. Kozen, and J. TiuryrDynamic Logic The MIT
Press, 2000.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning
and acting in partially observable stochastic domaksficial
Intelligence Journgl101:99-134, 1998.

M. J. Katz and J. S. Rosenschein. The generation and exe-
cution of plans for multiple agentsComputers and Atrtificial
Intelligence 12(1):5-35, 1993.

O. Kupferman and M. Y. Vardi. Synthesis with incomplete
information. InProc. of ICTL, 1997.

O. Kupferman and M. Y. Vardi. Safraless decision procedures
In Proc. of FOC$pages 531-542, 2005.

S. Mcllraith and T. C. Son. Adapting Golog for programming
the semantic web. IRroc. of KR pages 482—-493, 2002.

N. Meuleau, L. Peshkin, K.-E. Kim, and L. P. Kaelbling.
Learning finite-state controllers for partially obsenalanvi-
ronments. IrProc. of UAL pages 427-436, 1999.

A. Muscholl and I. Walukiewicz. A lower bound on web ser-
vices composition. Submitted, 2005.

A. Pnueliand R. Rosner. On the synthesis of a reactive module
In Proc. of POPL, pages 179-190, 1989.

] J. Rintanen. Complexity of planning with partial obserViapi

In Proc. of ICAPSpages 345-354, 2004.

“waw. ong. or g/ uni /
Swww. cs. man. ac. uk/ ~sattl er/reasoners. htm

