
Behavior Composition in the Presence of Failure

Sebastian Sardina
Department of Computer Science

RMIT University
Melbourne, Australia

sebastian.sardina@rmit.edu.au

Fabio Patrizi and Giuseppe De Giacomo
Dipartimento di Informatica e Sistemistica

Sapienza Universita’ di Roma
Roma, Italy

{fabio.patrizi,degiacomo}@dis.uniroma1.it

Abstract

In this paper we articulate theoretical bases for robust behav-
ior composition of multiple modules (e.g. agents, devices,
etc.) by relying on the formal notion of simulation. Specifi-
cally, we consider the problem of synthesizing a fully control-
lable target behavior from a library of available partially con-
trollable behaviors that are to execute within a shared, fully
observable, but partially predictable environment. Both be-
haviors and environment are represented as finite state tran-
sition systems. While previous solutions to this problem as-
sumed full reliability, here we consider unforeseen potential
failures, such as a module, or the environment, unexpect-
edly changing it state, or a module becoming temporarily un-
available or dropping out permanently. Based on the notion
of simulation, we propose an alternative synthesis approach
and show how to refine the solution at hand, either on-the-
fly or parsimoniously, so as to cope with failures. Interest-
ingly, it turns out that the proposed simulation-based tech-
nique is computationally an improvement over previously
known methods that assumed full-reliability.

Introduction
In this paper we articulate theoretical bases for robust be-
havior composition of multiple modules (e.g. agents, de-
vices, etc.). Specifically, we consider the problem of syn-
thesizing a fully controllable target behavior from a li-
brary of available partially controllable behaviors that are
to execute within a shared, fully observable, but partially
predictable environment (De Giacomo & Sardina 2007;
Sardina, Patrizi, & De Giacomo 2007). A behavior stands
for the logic of any artifact that is able to operate in the en-
vironment. For example, consider a painting blocks-world
scenario in which blocks are painted and processed by dif-
ferent robotic arms; different behaviors stand for different
type of arms, all acting in the same environment. The aim
is to realize a desired (intelligent) virtual painting system by
suitably “combining” the available arms.

Technically, we abstract the actual behaviors and envi-
ronment as finite state transition systems. More precisely,
each available module is represented as a nondeterminis-
tic (to model partial controllability) transition system; the
target behavior is represented as a deterministic (to model

Copyright c© 2008, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

full controllability) transition system; and the environment
is represented as a finite nondeterministic (to model partial
predictability) transition system, whose states are fully ac-
cessible by the other transition systems. Working with finite
state transition systems allows us to leverage on research in
the area of Verification (Piterman, Pnueli, & Sa’ar 2006;
Tan & Cleaveland 2001; Kupferman & Vardi 1996; Alura,
Henzinger, & Kupferman 2002; Clarke, Grumberg, & Peled
1999).

Solving the composition problem consists in automati-
cally synthesizing —(Pnueli & Rosner 1989)— a controller
that coordinates the (partially controllable) available behav-
iors to obtain the target behavior (De Giacomo & Sardina
2007). This synthesis problem can be recast in a variety of
forms within several sub-areas of AI, including web-service
composition (McIlraith & Son 2002; Berardi et al. 2005;
Muscholl & Walukiewicz 2007), agent-oriented program-
ming (Georgeff & Lansky 1987), robotics (Pettersson 2005),
planning (Ghallab, Nau, & Traverso 2004), and plan coordi-
nation and monitoring (Katz & Rosenschein 1993; Grosz &
Kraus 1996; Tripathi & Miller 2001).

In the literature, the above behavior composition setting
has so far always been studied under the full reliability as-
sumption for all available modules and, as a result, the (de-
fault) approach for dealing with behavior failures is to “re-
plan” for a new solution, if any, from scratch. It is obvious
that full reliability is an unrealistic assumption in many dy-
namic settings, where modules may become unexpectedly
unavailable for various reasons. For instance, an agent (e.g.,
a RoboCup robot player) may, at some point, break down
or opt not to participate in the composition anymore, possi-
bly because it has agreed to join another behavior composi-
tion. It could also be the case that, while still cooperating,
the agents may move too far apart losing the communica-
tion. The unavailability of a behavior may be temporary,
i.e., the behavior will eventually resume operation, or per-
manent, i.e., the behavior will not participate any more in
the overall system.

In this paper, we propose a solution for the composition
problem that is able to cope with unexpected behavior fail-
ures in an incremental, and often fully reactive, way. Specif-
ically, we propose a novel technique to synthesize the con-
troller that is based on the formal notion of simulation (Mil-
ner 1971; Henzinger, Henzinger, & Kopke 1995). We ar-

gue that, when it comes to behavior failures, the composi-
tion solution obtained is robust in two ways. First, it can
handle temporary behavior unavailability as well as unex-
pected behavior/environment evolution in a totally reactive
and on-the-fly manner, that is, without any extra effort or “re-
planning” required to continue the realization of the target
behavior, if at all possible. Second, the composition solution
can be parsimoniously refined when a module becomes per-
manently unavailable, or unexpectedly resumes operation.

Interestingly, the results here show that the computational
complexity of synthesizing such robust solutions remains
the same as in the case of full-reliability. In fact, the tech-
nique we propose improves the known results by better char-
acterizing the sources of complexity (cf. Theorem 2).

We remark that it is not the objective of this work to guar-
antee up-front to stand (any) potential failures. That could
possibly be achieved by extending each behavior with a dis-
tinguished “failure” state and adding corresponding transi-
tions from where failure may occur. Instead, if we think
of each available module’s transition system as a “contract,”
what we want is to address unforeseen breaches of such con-
tract. The failures we investigate here can therefore be seen
as the “core” ways of breaking the contract represented by
the transition systems.

The rest of the paper is organized as follows. We firstCHECK!
describe the general setting and problem we are concerned
on. After that, we explain the role of potential failures within
such framework. Then, we propose a new approach to the
problem at hand by appealing to the notion of simulation. In
the next two sections, we show how the new approach can be
used to cope with the discussed failures. We end the paper
by drawing some conclusions.

The Framework
The setting we are concerned with is that in (De Giacomo &
Sardina 2007), summarized below. For the sake of brevity
we make some minor and non-substantial simplifications
with respect to the original one. In particular, we drop “final
states” in transition systems—every state may be considered
“final.”

Environment and behaviors We assume to have a shared
fully observable environment, which provides an abstract
account of actions’ preconditions and effects, and a mean
of communication among modules. In doing so, we take
into consideration that, in general, we have incomplete infor-
mation about the actual preconditions and effects of actions
(akin to an action theory). Therefore, we allow the envi-
ronment to be nondeterministic in general. In other words,
the incomplete information on the actual world, and hence
its partial predictability, shows up as nondeterminism in our
setting. Formally, an environment is a tuple E=〈A, E, e0, ρ〉
where:

• A is a finite set of shared actions;

• (ii) E is a finite set of possible environment states;

• e0 ∈ E is the initial state of E ; and

• ρ ⊆ E × A × E is the transition relation among states:
〈e, a, e′〉 ∈ ρ, or e

a−→ e′ in E , denotes that action a per-
formed in state e may lead the environment to a successor
state e′.
A behavior is essentially a program for an agent –or the

logic of some available device– which provides, step by step,
the agent with a set of actions that can be performed. Pre-
cisely, at each step, the agent selects one action among those
provided and executes it. Then, a new set of actions is pro-
vided, the agent selects one, executes it, and so on. Ob-
viously, behaviors are not intended to be executed on their
own but, rather, to interact with the environment (cf. above).
Hence, they are equipped with the ability to test conditions
(i.e., guards) on the environment, when needed. Formally, a
behavior over an environment E = 〈A, E, e0, ρ〉 is a tuple
B = 〈B, b0, G, %〉, where:
• B is the finite set of behavior’s states;
• b0 ∈ B is the single initial state of B;
• G is a set of guards, i.e., boolean functions g : E →
{true,false}; and

• δ ⊆ B × G × A × B is the behavior’s transition rela-
tion, where 〈b, g, a, b′〉 ∈ %, or b

g,a−→ b′ in B, denotes that
action a executed in behavior state b, when the environ-
ment is in a state e such that g(e) = true, may lead the
behavior to a successor state b′.
Observe that behaviors are, in general, nondeterministic,

that is, given a state and an action, there may be several tran-
sitions whose guards evaluate to true. Consequently, when
choosing the action to execute next, one cannot be certain of
the resulting state, and hence of which actions will be avail-
able later on, since this depends on what particular transition
happens to take place. In other words, nondeterministic be-
haviors are only partially controllable.

We say that a behavior B = 〈B, b0, G, %〉 over an envi-
ronment E = 〈A, E, e0, ρ〉 is deterministic if there are no
behavior state b ∈ B and no environment state e ∈ E for
which there exist two (distinct) b

g1,a−→ b′ and b
g2,a−→ b′′ in B

such that b′ 6= b′′ and g1(e) = g2(e) = true. Notice that,
given a state in a deterministic behavior and a legal action in
that state, we always know exactly the next behavior’s state.
In other words, deterministic behaviors are indeed fully con-
trollable through the selection of the next action to perform.

A system S = 〈B1, . . . ,Bn, E〉 is built from an environ-
ment E and n predefined, possibly nondeterministic, avail-
able behaviors Bi over E . A target behavior is a determin-
istic behavior over E that represents the fully controllable
desired behavior to be obtained through the available behav-
iors.
Example 1. Figure 1 depicts an extended version of the
painting arms scenario described in (De Giacomo & Sardina
2007). The overall aim of the system is to process existing
blocks, which can be cleaned and painted. Before process-
ing, a block needs to be prepared; only one block at a time
can be processed. Finally, cleaning and painting require re-
sources, namely, water and paint, respectively: we assume
there are two tanks, for water and paint, and that both are
recharged simultaneously by pressing a recharging button.

e1 e2

e3e4

prepare

recharge

clean

dispose

paint
clean
recharge

recharge

dispose paint
clean

recharge

prepare

ENVIRONMENT E

a1 a2
e1 ∨ e2 : clean

dispose
recharge

recharge

dispose

ARM BA

b1 b2 b3 b4prepare

paint clean

paint

recharge

prepare

clean

ARM BB

c1 c2
recharge

paint
prepare

ARM BC

t1

t4

t2

t3t5

prepare

clea
n

pa
in

t

paint
dis

pos
e

recharge

TARGET ARM BT

Figure 1: The painting arms system S = 〈BA,BB ,BC , E〉 and the target arm BT .

The (nondeterministic) environment E provides the gen-
eral rules of the domain. For instance, blocks can be painted
or cleaned only after they have been prepared. It also in-
cludes some information about a water tank used to clean
blocks: in states e1 and e2, the water tank is not empty;
whereas in states e3 and e4, it is.

The desired behavior of an arm-agent module that one
would like to have is given by the (deterministic) target be-
havior BT . Notice that it is optional to clean blocks when
using BT —only some dirty blocks may need to be washed
before being painted. Observe also that BT is “conserva-
tive,” in that it always recharges the tanks after processing a
block.

The desires arm BT does not exist in reality. Nonetheless,
there are three different arms available. The first arm BA, a
cleaning-disposing arm, is able to clean and dispose blocks.
The second arm BB is capable of preparing, cleaning, and
painting blocks. Finally, the third arm BC is a paint arm,
which can also prepare blocks for processing. All three arms
are able to press the recharge button to refill tanks. Notice
that arm BB behaves nondeterministically when it comes to
painting a block. This nondeterminism shows the incom-
plete information we have of BB’s internal logic. Observe
also the requirement of arm BA to be in an (environment)
state (e1 or e2) where water is available to perform a clean
action. It is still physically conceivable, though, to clean a
block in environment state e3, by some method that does not
rely on water (cf. E). �

System and target enacted behaviors Given a behavior
B = 〈B, b0, G, %〉 over an environment E = 〈A, E, e0, ρ〉,
we define the enacted behavior of B over E as a tuple TB =
〈S,A, s0, δ〉, where:

• S = B × E is the (finite) set of TB’s states –given a state
s = 〈b, e〉, we denote b by beh(s) and e by env(s);

• A is the (finite) set of shared actions, those in E ;

• s0 ∈ S, with beh(s0) = b0 and env(s0) = e0, is the
initial state of TB;

• δ ⊆ S × A × S is the enacted transition relation, where
〈s, a, s′〉 ∈ δ, or s

a−→ s′ in TB, iff: (i) env(s) a−→
env(s′) in E ; and (ii) beh(s)

g,a−→ beh(s′) in B, with
g(env(s)) = true for some g ∈ G.

Enacted behavior TB is technically the synchronous prod-
uct of the behavior and the environment, and represents all
possible executions obtained from those of behavior B once
guards are evaluated and actions are performed in the en-
vironment E . In general, the sources of nondeterminism in
enacted behaviors are twofold: the environment (effects of
actions on the environment are nondeterministic); and the
behavior itself (which may be nondeterministic).

All available behaviors in a system are to act concur- better
cut?rently, in an interleaved fashion, in the same environment.

To refer to the behavior that emerges from their joint execu-
tion, we define the notion of enacted system behavior.

Let S = 〈B1, . . . ,Bn, E〉 be a system, where E =
〈A, E, e0, ρ〉 and Bi = 〈Bi, bi0, Gi, %i〉, for i ∈ {1, . . . , n}.
The enacted system behavior of S is the tuple TS =
〈SS ,A, {1, . . . , n}, sS0, δS〉, where:

• SS = B1 × · · · × Bn × E is the finite set of TS ’s states;
when sS = 〈b1, . . . , bn, e〉, we denote bi by behi(sS), for
i ∈ {1, . . . , n}, and e by env(sS);

• sS0 ∈ SS with behi(sS0) = bi0, for i ∈ {1, . . . , n}, and
env(sS0) = e0, is TS ’s initial state;

• δS ⊆ SS×A×{1, . . . , n}×SS is TS ’s transition relation,

where 〈sS , a, k, s′S〉 ∈ δS , or sS
a,k−→ s′S in TS , iff:

– env(sS) a−→ env(s′S) in E ;

– behk(sS)
g,a−→ behk(s′S) in Bk, with g(env(sS)) =

true, for some g ∈ Gk; and
– behi(sS) = behi(s′S), for i ∈ {1, . . . , n} \ {k}.

Note that the enacted system behavior TS is technically the
asynchronous product of the available behaviors plus the
synchronous product with the environment. It is analogous
to an enacted behavior except for the presence of index k in
transitions. The presence of such index makes explicit which

behavior in the system is the one performing the action in the
corresponding transition—all other behaviors remain still.
Example 2. The enacted behavior TBC

describes the evolu-
tion of arm BC if it were to act alone in the environment.

c1
e1

c1
e2

c1
e3

c1
e4

c2
e1

c2
e2

c2
e3

c2
e4

recharge

prepare

paint

recharge

rech
arge paint

prepare

ENACTED ARM TBC

Observe that some joint states may in fact be reached (only)
when other behaviors are also acting: state 〈c1, e4〉 would
be reached after actions prepare, clean, and dispose are
executed. �

Controller and composition The controller is a system
component able to activate, stop, and resume any of the
available behaviors, by instructing them to execute an action
among those allowed in their current state (of course, taking
also the environment into account). The controller has full
observability on the available behaviors, that is, it can keep
track (at runtime) of the current state each available behavior
is in. Although other choices are possible, full observability
is the natural one in this context, since available behaviors
are already suitable abstractions for actual modules: if de-
tails have to be hidden, this can be done directly within the
abstract behavior exposed, by means of nondeterminism.

To formally define controllers, we first need the follow-do we
need
the 2

no-
tions?

ing technical notions. A trace for a given enacted behavior
TB = 〈S,A, s0, δ〉 is a, possibly infinite, sequence of the

form s0 a1

−→ s1 a2

−→ · · · , such that (i) s0 = s0; and (ii)

sj aj+1

−→ sj+1 in TB, for all j > 0. A history is just a finite

prefix h = s0 a1

−→ · · · a`

−→ s` of a trace. We denote s` by
last(h), and ` by length(h). The notions of trace and his-
tory extend immediately to enacted system behaviors: sys-

tem traces have the form s0 a1,k1

−→ s1 a2,k2

−→ · · · , and system

histories have the form s0 a1,k1

−→ · · · a`,k`

−→ s`.
Let S = 〈B1, . . . ,Bn, E〉 be a system and H be the set of

its system histories (i.e., histories of TS). A controller for
system S is a function P : H × A → {1, . . . , n, u} which,
given a system history h ∈ H and an action a ∈ A to per-
form, selects a behavior –actually, returns its index– to dele-
gate a to for execution. For technical convenience, a special
value u (“undefined”) may be returned, thus making P a
total function which returns a value even for irrelevant his-
tories or actions that no behavior can perform after a given
history.

The problem we are interested in is the following: given
a system S = 〈B1, . . . ,Bn, E〉 and a deterministic target
behavior Bt over E , synthesize a controller P which realizes
the target behavior Bt by suitably delegating each action
requested by Bt to one of the available behaviors Bi in S. A
solution to such problem is called a composition.

Intuitively, the controller realizes a target if for every trace
of the enacted target, at every step, it returns the index of
an available behavior that can perform the requested action.
Note that these controllers are somewhat akin to an advanced
form of conditional plans and, in fact, the problem itself is
related to planning (Ghallab, Nau, & Traverso 2004), being
both synthesis tasks. Here, though, we are not planning for
choosing the next action, but for who shall execute the next
action, whatever such action happens to be at runtime.

One can formally define when a controller realizes the
target behavior —a solution to the problem— as done in
(De Giacomo & Sardina 2007). In particular, one first de-
fines when a controller P realizes a trace of the target Bt.
Then, since the target behavior is a deterministic transi-
tion system, and thus its behavior is completely character-
ized by its set of traces, one defines that a controller P
realizes the target behavior Bt iff it realizes all its traces.

Example 3. Let P1 and P2 be the two finite controllers de-
picted below. Their main difference has to do with the arm
used to paint blocks: while P1 uses arm BB , the latter uses
arm BC . Also, P1 recharges the tanks with either BA or BB ,
depending on BB’s state: if arm BB is in state b1, then arm
BA is used to recharge; and if arm BB is in state b3, then arm
BB is used instead. On the other hand, controller P2 always
uses arm BC to recharge the tanks.

s1

s4

s2

s3s5

prepare,B

clea
n
,A

paint,B

paint,B

di
sp

os
e,

A

b 1
:r

ec
h
a
rg

e,
A

b 3
:r

ec
h
a
rg

e,
B

CONTROLLER P1

s1

s4

s2

s3s5

prepare, C

clea
n
,A

paint, C

paint, C

di
sp

os
e,

A

re
ch

a
rg

e,
C

CONTROLLER P2

The controller P1 is indeed a composition of BT on E , that
is, P1 realizes all the traces of TBT

. This is not the case for
controller P2, which does not even realize the simple one-
action trace 〈t1, e1〉

prepare−→ 〈t2, e2〉 of TBT
. CHECK!

true?Finally, take P ′
1 to be like P1 but with the link from s5 to

s1 re-labeled “recharge, A” (i.e., action recharge is to be
always delegated to arm BA). Then, P ′

1 would only realize
those traces where behavior BB always happens to evolve
to state b1 after doing a paint action. Because of that, P ′

1
would not count as a solution either. �

We close this section by pointing out that techniques for
checking the existence of (and indeed synthesizing) a con-
troller are known (De Giacomo & Sardina 2007; Sardina,
Patrizi, & De Giacomo 2007). Such techniques are based
on a reduction to PDL satisfiability (Harel, Kozen, & Tiuryn
2000), and provide an EXPTIME upper-bound to the com-
putational complexity, being at most exponential in the num-

ber of states of the available behaviors, of the environment,
and of the target behavior. Note that this bound is actually
tight since EXPTIME-hardness was shown in (Muscholl &
Walukiewicz 2007).

On Behavior Failures
In discussing the above behavior composition problem, we
have implicitly assumed that the available component mod-
ules are fully reliable—they are always available and behave
“correctly” relative to the behavior/environment specifica-
tion provided to the system.

Nonetheless, there are many situations and domains in
which assuming full-reliability of components is not ade-
quate. For example, in multi-agent complex and highly dy-
namic domains, one cannot rely on the total availability nor
on the reliability of all the existing modules. There are a
variety of reasons why modules may stop being available
at some point or another. Devices may break down, agents
may decide to stop cooperating, communication with agents
may drop, exogenous events may change the state of the en-
vironment, and so on. Similarly, behaviors may possibly
re-appear into the system at a later stage, thus creating new
“opportunities” for the overall system.

As mentioned before, behaviors’ and environment’s spec-
ifications can be seen as contracts, and failures as the ones
above, as breaches of such contracts. We identify five core
ways of breaking contracts, namely:1

(a) A behavior temporarily freezes, that is, it stops respond-
ing and remains still, then eventually resumes in the same
state it was in. As a result, while frozen, the controller
cannot delegate actions to it.

(b) A behavior unexpectedly and arbitrarily (i.e., without
respecting its transition relation) changes its current state.
The controller can in principle keep delegating actions to
it, but it ought to take into account the behavior’s new
state.

(c) The environment unexpectedly and arbitrarily changes
its current state. The controller has to take into account
that this affects both the target and the available behaviors.

(d) A behavior dies, that is, it becomes permanently un-
available. The controller has to completely stop delegat-
ing actions to it.

(e) A behavior that was assumed dead unexpectedly comes
alive again in a certain state. The controller can ex-
ploit such an opportunity and start delegating actions to
it again.

The composition techniques in (De Giacomo & Sardina
2007; Sardina, Patrizi, & De Giacomo 2007) do not address
the above cases, since they assume that controllers always
deal with fully reliable modules. As a consequence, upon
any of the above failures, we are left only with the option of
“re-planning” from scratch for a whole new controller.

What we shall propose in the remainder of this paper, is
an alternative way of solving the composition problem (i.e.,
synthesizing controllers) that is intrinsically more robust.

1Obviously, we assume an infrastructure that is able to distin-
guish between these failures.

Roughly speaking, this alternative approach deals with un-
expected failures by suitably refining the solution at hand, ei-
ther on-the-fly (for cases (a), (b), and (c)), or parsimoniously
(for cases (d) and (e)), thus avoiding full re-planning.

Composition via Simulation
Let us next present our approach for synthesizing composi-
tion solutions that are suitable for dealing with faults. Such
an approach is inspired by that presented in (Berardi et al.
2008), developed in the context of service composition and
based on the standard notion of simulation (Milner 1971;
Henzinger, Henzinger, & Kopke 1995). Intuitively, a (transi-
tion) system S1 “simulates” another system S2 if it (i.e., S1)
is able to match all of S2’s moves. Due to (devilish) non-
determinism of the environment and available behaviors, we
cannot use the off-the-shelf notion of simulation, but a vari-
ant which we call ND-simulation.

Let S = 〈B1, . . . ,Bn, E〉 be a system, Bt be the target
behavior over E , and let TS = 〈SS ,A, {1, . . . , n}, sS0, δS〉
and Tt = 〈St,A, st0, δt〉 be the enacted system and enacted
target behaviors corresponding to S and Bt, respectively.

An ND-simulation relation of Tt by TS is a relation R ⊆
St × SS , such that 〈st, sS〉 ∈ R implies:

1. env(st) = env(sS);
2. for all a ∈ A, there exists a k ∈ {1, . . . , n} such that

for all transitions st
a−→ s′t in Tt:

• there exists a transition sS
a,k−→ s′S in TS with

env(s′S) = env(s′t); and

• for all transitions sS
a,k−→ s′S in TS with env(s′S) =

env(s′t), we have 〈s′t, s′S〉 ∈ R.

In words, if a pair is in the ND-simulation, then (i) they
share the same environment; and (ii) for all moves of the tar-
get (with respect to the environment), there exists an avail-
able behavior k, which regardless of its nondeterminism, al-
ways evolves to a successor state which is still in the ND-
simulation relation with the target.

We say that a state st ∈ St is ND-simulated by a state
sS ∈ SS (or sS ND-simulates st), denoted st � sS , iff there
exists an ND-simulation R of Tt by TS such that 〈st, sS〉 ∈
R. Observe that this is a coinductive definition. As a result,
the relation � is itself an ND-simulation, and it is in fact
the largest ND-simulation relation, i.e., all ND-simulation
relations are contained in �. The largest ND-simulation can
be computed by the following NDS algorithm.

Roughly speaking, the algorithm works by iteratively re-
moving those tuples for which the conditions of the ND-
simulation definition do not apply.

Example 4. Figure 2 shows a fragment of the largest ND-
simulation relation for our painting blocks-world example.
For instance, state 〈〈a1, b3, c2〉, e2〉 in TS ND-simulates state
〈t2, e2〉 in TBT

, shown in the picture by the same fillling
pattern. Every conceivable action taken in 〈t2, e2〉 can be
replicated in 〈〈a1, b3, c2〉, e2〉, and moreover, this property
propagates to the new resulting states. Observe that state
〈〈a1, b1, c1〉, e1〉 in TS ND-simulates two states in TBT

:
〈t1, e1〉 and 〈t5, e1〉.

t1
e1

t4
e2

t2
e2

t3
e2

t5
e1

t5
e4

t3
e3

t4
e3

prepare

cl
ea

n

pa
in

t

paint

dispose

rech
a
rg

e

cl
ea

n
paintdispose

re
ch

a
rg

e

ENACTED TARGET ARM TBT

111
e1

121
e2

111
e3

131
e1

211
e2

221
e2

111
e2 131

e2

231
e2

prepare,B

recharge, A

paint,B

pa
in

t,
B

clean, A

clean, B

dispose,A

paint,B
paint,B

recharge,B

dispose,A
dispose,Adi

sp
os

e,
A

221
e3

231
e3

211
e4

211
e3

131
e4clean, A

paint,B

pa
in

t,
Bdispose,A

recharge, A

dispose,A

recharge,B

132
e1

232
e3

132
e2

232
e2

recharge, C

prepare, C

paint, C

clean, A

paint, C

recharge, C

clean, A

paint, C

ENACTED SYSTEM BEHAVIOR TS

Figure 2: The largest ND-simulation relation between the enacted target behavior TBT
and (a part of) the enacted system

behavior TS is shown using patterns. A state in TS ND-simulates the states in TBT
that shares its pattern, e.g., 〈〈a1, b3, c1〉, e2〉

in TS ND-simulates state 〈t4, e2〉 in TBT
. Dashed states in TS ND-simulate no state in TBT

(e.g., state 〈〈a1, b1, c1〉, e3〉).

Algorithm 1 NDS(Tt, TS) – Largest ND-Simulation
1: R := St × SS \ {〈st, sS〉 | env(st) 6= env(sS)}
2: repeat
3: R := (R\C), where C is the set of 〈st, sS〉 ∈ R such

that there exists a ∈ A for which for each k there is a
transition st

a−→ s′t in Tt such that either:

(a) there is no transition sS
a,k−→ s′S in TS such that

env(s′t) = env(s′S); or

(b) there exists a transition sS
a,k−→ s′S in TS such that

env(s′t) = env(s′S) but 〈s′t, s′S〉 6∈ R.
4: until (C = ∅)
5: return R

The controller generator (CG), with the largest ND-
simulation at hand, can decide how to delegate actions as
the target agent’s requests come in. For instance, if a clean
action is requested after a block has been prepared, the CG
knows it ought to delegate such request to arm BA so as to
stay within the ND-simulation. While physically possible,
delegating the cleaning action to arm BA would bring the
enacted system into state 〈〈a1, b1, c1〉, e3〉 which is known
not to be in ND-simulation with the target. �

The next result shows that checking for the existence of
a composition can be reduced to checking whether there ex-
ists an ND-simulation between the enacted target and the
enacted system that includes their respective initial states.

Theorem 1. Let S = 〈B1, . . . ,Bn, E〉 be a system and Bt

a target behavior over E . Let Tt = 〈St,A, st0 , δt〉 and
TS = 〈SS ,A, {1, . . . , n}, sS0 , δS〉 be the enacted target be-
havior and enacted system behavior for Bt and S, respec-
tively. A controller P for a system S that is a composition of
the target behavior Bt over E exists iff st0 � sS0 .

Proof (sketch). We prove the two directions separately.
If. Given st0 � sS0 we show how to build a controller P

that is a composition. We proceed as follows. We observe
that given a history h, we can extract the resulting state of
the enacted system sS as last(h). Moreover, we can extract
the sequence of actions performed in h and the resulting en-
vironment states, and hence the state of the enacted target
behavior, say st. Now, if tuple 〈st, sS〉 is in the largest ND-
simulation, that is st � sS , then for every action a ∈ A that
the target may execute in st, there is some index ka which
mantains the ND-simulation. We then define P (h, a) = ka.
If, instead st0 6� sS0 , then function P (h, a) can assume any
value, in particular, P (h, a) = undef . It can be shown that
such controller P is indeed a composition.

Only-if. We assume there exists a controller P that is a
composition. Let us define relation R as the set of tuples
〈st, sS〉 for which there exists a history h obtained by run-
ning a controller P from the initial state sS0 such that the
resulting states of the enacted target and the enacted sys-
tem after history h are st and sS , respectivley. It can be
shown that such relation R is indeed an ND-simulation of
Tt by TS and therefore R ⊆�. As a result, considering
that 〈st0 , sS0〉 ∈ R (by just taking h to be the initial his-
tory where no action has yet been performed), it follows that
st0 � sS0 , hence the thesis holds.

Theorem 1 gives us a straightforward method to check for
the existence of a composition. Namely: (i) compute the
largest ND-simulation relation of Tt by TS ; and (ii) check
whether 〈st0, sS0〉 is in this relation.

From the computational point of view, the algorithm NDS
above computes the largest ND-simulation relation � be-
tween Tt and TS in polynomial time in the size of Tt and
TS . Since in our case the number of states of TS is exponen-
tial in the number of available behaviors B1, . . . ,Bn, we get

that we can compute the largest ND-simulation relation� in
exponential time in the number of available behaviors. As a
result, the new technique is a notable improvement with re-
spect to the ones based on reduction to PDL (De Giacomo &
Sardina 2007; Sardina, Patrizi, & De Giacomo 2007), which
are exponential in the number of states of the behaviors and
of the environment.

Theorem 2. Checking for the existence of compositions by
computing the largest ND-simulation relation� can be done
in polynomial time in the number of states of the available
behaviors, of the environment, and of the target behavior,
and in exponential time in the number of available behav-
iors.

Considering that the composition problem itself is
EXPTIME-hard (Muscholl & Walukiewicz 2007), this is the
best we can hope for.

Once we have computed the ND-simulation, synthesizing
a controller becomes an easy task. In fact, there is a well-
defined procedure that, given an ND-simulation, builds a fi-
nite state program that returns, at each point, the set of avail-
able behaviors capable of performing a target-conformant
action. We call such a program controller generator.

Formally, let S = 〈B1, . . . ,Bn, E〉 be a system, Bt a target
behavior over E , and let TS = 〈SS ,A, {1, . . . , n}, sS0, δS〉
and Tt = 〈St,A, st0, δt〉 be the enacted system behavior and
the enacted target behavior corresponding, respectively, to S
and Bt. The controller generator (CG) of S for Bt is a tuple
CG = 〈Σ,A, {1, . . . , n}, ∂, ω〉, where:

1. Σ = {〈st, sS〉∈St × SS | st � sS} is the set of states of
CG, formed by those pairs of Tt’s and TS ’s states that are
in the largest ND-simulation relation; given a state σ =
〈st, sS〉 we denote st by comt(σ) and sS by comS(σ).

2. A is the finite set of shared actions.

3. {1, . . . , n} is the finite set of available behavior indexes.

4. ∂ ⊆ Σ × A × {1, . . . , n} × Σ is the transition relation,

where 〈σ, a, k, σ′〉 ∈ ∂, or σ
a,k−→ σ′ in CG, iff

• comt(σ) a−→ comt(σ′) in Tt;

• comS(σ)
a,k−→ comS(σ′) in TS ;

• for all comS(σ)
a,k−→ s′S in TS , 〈comt(σ′), s′S〉 ∈ Σ.

5. ω : Σ × A 7→ 2{1,...,n} is the output function, where

ω(σ, a) = {k | ∃ σ′ s.t. σ
a,k−→ σ′ in CG}.

Thus, CG is a finite state transducer that, given an action a
(compliant with the target behavior), outputs, through func-
tion ω, the set of all available behaviors that can perform a
next according to the largest ND-simulation�. Observe that
computing CG from the relation � is easy, since it involves
checking local conditions only.

If there exists a composition of Bt by S, then st0 � sS0

and CG does include state σ0 = 〈st0, sS0〉. In such cases,
we get actual controllers, called generated controllers, that
are compositions of Bt by S by picking up, at each step, one
service among those returned by ω in CG.

Formally we proceed as follows. A trace for CG start-
ing from σ0 is a finite or infinite sequence of the form

σ0 a1,k1

−→ σ1 a2,k2

−→ · · · , such that σj
aj+1,kj+1

−→ σj+1 in CG,
for all j. A history for CG starting from state σ0 is a prefix
of a trace starting from state σ0. By using histories, one can
introduce CG-controllers, which are functions CGP CHOOSE :
HCG × A → {1, . . . , n, u}, where HCG is the set of CG
histories starting from any state in Σ, and defined as fol-
lows: CGP CHOOSE(hCG, a) = CHOOSE(ω(last(hCG), a)),
for all hCG ∈ HCG, where CHOOSE stands for a choice
function that chooses one element among those returned by
ω(last(hCG), a)). Let us assume that the controller genera-
tor CG of S for Bt includes state σ0 = 〈st0, sS0〉. Then, for

each CG’s history hCG = σ0 a1,k1

−→ · · · a`,k`

−→ σ` starting from
σ0 = σ0, we can obtain its corresponding system history
projS(hCG), called the projected system history, as follows:

projS(hCG) = comS(σ0)
a1,k1

−→ · · · a`,k`

−→ comS(σ`), i.e.,
we take the “system” component of each CG state σi in the
history. Moreover, from a CG-controller CGP CHOOSE, we
obtain the corresponding generated controller as the func-
tion PCHOOSE : H × A → {1, . . . , n, u}, where H is the
set of system histories starting from sS0, defined as fol-
lows. For each system history h and action a: (i) if h =
projS(hCG) for some CG history hCG, then PCHOOSE(h, a) =
CGP CHOOSE(hCG, a); else (ii) PCHOOSE(h, a) = u.

Through generated controllers, we can relate CGs to
compositions and show that, one gets all controllers that
are compositions by considering all choice functions for
CHOOSE. Notably, while each specific composition may be
an infinite state program, the controller generator CG, which
in fact includes them all, is always finite.

Theorem 3. If CG includes the state σ0 = 〈st0, sS0〉, then
every controller generated by CG is a composition of the
target behavior Bt by system S.

Theorem 4. Every controller that is a composition of the
target behavior Bt by system S can be generated by CG.

In other words CG is analogous to a sort of “meta-plan”
or a stateful nondeterministic “complete universal plan,”
which keeps all the existing plans at its disposal and decides
which one to follow for the next action, possibly with con-
tingent decisions.

Reactive Adaptability
Next we show that Theorems 3 and 4 give us a sound and
complete technique for dealing with failure cases (a), (b),
and (c) without any re-planning. As a matter of fact, once
we have the controller generator CG, actual compositions
can be generated “just-in-time,” as (target compliant) ac-
tions are requested. What is particularly interesting about
CG-controllers is that one can delay the choice performed
by CHOOSE until run-time, where one can take into account
contingent information, e.g., about availability of behaviors.
This gives a great flexibility to the controller, which, in a
sense, can “switch” compositions on the go as needed. We
call such CG-controller, just-in-time CG-controller, and de-
note it by CGP jit.

Freezing of behaviors CGP jit already addresses tempo-
rary freezing of behaviors, i.e., failure case (a). In particu-
lar, if a behavior is temporarily frozen, then CGP jit simply
avoids choosing it, and continues with one of the other pos-
sible choices.2 Obviously, if no other choices are possible,
then CGP jit shall wait for the behavior to come back.

State change of behaviors and environment CGP jit

also addresses unexpected changes in the internal state of
behaviors and/or of the environment, that is, failure cases
(b) and (c).3 To understand this, let us denote by TS(zS) the
variant of the enacted system behavior whose initial state
is zS instead of sS0. Similarly, let us denote by Tt(zt) the
enacted target behavior whose initial state is zt instead of
st0. Now suppose that the state of the enacted system be-
havior changes, unexpectedly, to state ŝS , due to a change
of the state of a behavior (or a set of behaviors) and/or of
the environment. Then, if st is the state of the target when
the failure happened, one should recompute the composi-
tion with the system starting from ŝS and the target starting
from ŝt, where ŝt is just st with its environment state re-
placed by the one in ŝS (note ŝt = st for failures of type
(b)). Observe, though, that the ND-simulation is indepen-
dent from the initial states of both the target and the system.
Therefore, the ND-simulation between Tt(ŝt) and TS(ŝS) is
the ND-simulation � we already have. This implies that we
can still use the very same controller generator CG (and the
same just-in-time CG-controller CGP jit as well), with the
guarantee that all compositions of the system variant for the
target variant, if any, are still captured by CG (and CGP jit

too). Put it all together, we only need to check whether
ŝt � ŝS , and, if so, continue to use CGP jit (now from the
CG history of length 0: 〈ŝt, ŝS〉).

Computing reactive compositions on-the-fly We close
the section with a notable observation: CGP jit, that is
CGP CHOOSE with CHOOSE resolved at run-time, (and CG for
the matter) can be computed on-the-fly by storing only the
ND-simulation �. In fact, at each point, the only informa-
tion required for the next choice is ω(σ, a), where σ ∈ Σ (re-
call Σ=�) is formed by the current state of the enacted tar-
get behavior and that of the enacted system behavior. Now,
in order to compute ω(σ, a) we only need to know �.

Example 5. Upon an unexpected change in the system, in
the environment or any available behavior, the CG can re-
act/adapt to the change immediately. For instance, suppose
the target is in state t3, the environment in state e3 and the
available behaviors BA, BB , and BC are in their states a2,
b2, and c2, respectively. That is, TBT

is in state 〈t3, e3〉
whereas TS is in state 〈〈a2, b2, c1〉, e3〉. Suppose that, in
an unexpected way, the environment happens to change to
state e2—someone has re-charged the water tank. All that is
needed in such case is to check that the new states of TBT

2If more information is at hand, CGPjit may use it to choose
in an informed way, though this is out of the scope of this paper.

3Although hardly as meaningful as the ones above, unforeseen
changes in the target’s state can be accounted for in a similar way.

and TS , namely 〈t3, e2〉 and 〈〈a2, b2, c1〉, e2〉, are still in the
ND-simulation. Since they are, the CG continues the real-
ization of the target from such (new) enacted states. �

Parsimonious Refinement
When considering failure cases (d) and (e), a simple re-
active approach is not sufficient and more complex refine-
ment techniques are required. We show then how to do
the composition refinement in an intelligent manner. Let
us start by defining a parametric version of the algorithm
for computing the ND-simulation. Such a version, called
NDSP(Tt, TS ,Rinit,Rsure), takes two extra parameters:
Rinit, the starting relation from which the largest ND-
simulation is extracted; and Rsure, a relation containing tu-
ples already known to be in the ND-simulation to be com-
puted.

Algorithm 2 NDSP(Tt, TS ,Rinit,Rsure)
1: R := Rinit \ Rsure

2: R := R \ {〈st, sS〉 | env(st) 6= env(sS)}
3: repeat
4: R := (R\C), where C is the set of 〈st, sS〉 ∈ R such

that there exists a ∈ A for which for each k there is a
transition st

a−→ s′t in Tt such that either:

(a) there is no transition sS
a,k−→ s′S in TS such that

env(s′t) = env(s′S); or

(b) there exists a transition sS
a,k−→ s′S in TS such that

env(s′t) = env(s′S) but 〈s′t, s′S〉 6∈ R ∪Rsure.
5: until (C = ∅)
6: return R∪Rsure

Algorithm NDSP is correct (that is, it coincides with
NDS), provided its two new parameters are used adequately.

Theorem 5. Let S be a system and Bt a target be-
havior. If Rsure ⊆ NDS(Tt, TS) ⊆ Rinit, then
NDSP(Tt, TS ,Rinit,Rsure) = NDS(Tt, TS).

Proof (sketch). Let Ri
1 and Ri

2 be the sets representing R
in algorithms NDS and NDSP, respectively, after i repeat-
loop iteration. It can be shown, by induction on i, that
Ri

2 ∪Rsure ⊆ Ri
1 ⊆ NDS(Tt, TS) and that NDS(Tt, TS) ⊆

Ri
2 ∪ Rsure. Hence, since at the limit Ri ∪ Rsure =

NDS(Tt, TS ,Rinit,Rsure), the thesis follows.

Next, we introduce convenient notations to shrink and
expand systems and ND-simulation relations. Consider a
system S = 〈B1, . . . ,Bn, E〉 and a set of behavior indexes
W ⊆ {1, . . . , n}. The set S(W) denotes the system derived
from S by considering only (i.e., projecting on) all behaviors
Bi such that i ∈ W (note S = S([1 . . . n])). Let Tt be an en-
acted target behavior over E . We denote by �W the largest
ND-simulation relation of Tt by TS(W). Let U ⊆ {1, . . . , n}
such that W ∩ U = ∅. We denote by �W ⊗ U , the relation
obtained from �W by (trivially) putting all behaviors Bi,
with i ∈ U , back into the system. Formally, we can define
such operation as follows (without loss of generality, assume

W = {1, . . . , `} and U = {` + 1, . . . ,m}):

�W ⊗ U =
{〈st, s

′〉 | s′ = 〈b1, . . . , b`, b`+1, . . . , bm, e〉
such that 〈st, 〈b1, . . . , b`, e〉〉 ∈�W and
bi is a state of Bi, for i ∈ {` + 1, . . . ,m} }.

When “putting back” a set of behaviors into the system
in this way, we are guaranteed to (already) get an ND-
simulation for the (expanded) system S(W ∪ U). Observe,
however, that it may not necessarily be the largest one.

Lemma 6. Let W,U ⊆ {1, . . . , n} such that W ∩ U = ∅.
Then,

• �W ⊗ U ⊆�W∪U ;
• �W ⊗ U is an ND-simulation of Tt by TS(W∪U).

Proof. Without loss of generality, take W = {1, . . . , `},
and U = {` + 1, . . . ,m}. Suppose that
〈〈t, e〉, 〈b1, . . . , b`, b`+1, . . . , bm, e′〉〉 ∈ �W ⊗ {r}.
Due to the definition of ⊗, it is the case that
〈t, e〉�W 〈b1, . . . , b`, e′, e′〉. This means that e′ = e
and that for each a ∈ A, there exists index
ka ∈ W satisfying the requirements of the ND-
simulation definition for system S(W). Clearly then
〈t, e〉 �W∪U 〈b1, . . . , b`, b`+1, . . . , bm, e′〉. Indeed, e = e′,
and for every a ∈ A, the same index ka would also satisfy
the requirements of the ND-simulation definition for system
S(W ∪U)—the new behaviors are not used and they cannot
remove capabilities of the other behaviors. This shows that
�W ⊗U is an ND-simulation of Tt by TS(W∪U), and hence,
�W ⊗ U ⊆�W∪U , as �W∪U is the largest ND-simulation
of Tt by TS(W∪U).

Finally, when F ⊆ W , we denote by �W|F the relation
obtained from �W by projecting out all (failed) behaviors
Bi such that i ∈ F—F stands for the indexes of the behav-
iors that happen to fail. Surprisingly, the new largest ND-
simulation after failure is in fact contained in the relation ob-
tained by merely projecting out the failed components from
the ND-simulation at hand right before the failure.

Lemma 7. Let W,F ⊆ {1, . . . , n} such that F ⊆ W . Then,

• �W\F⊆ �W|F ;
• �W|F may not be an ND-simulation of Tt by TS(W\F).

Proof. By Lemma 6, �(W\F) ⊗F ⊆ �(W\F)∪F , that is,
�(W\F)⊗F ⊆ �W . By projecting out F on both relations,
we get �(W\F)⊗F |F ⊆ �W|F . Then, since �⊗X|X =�
for any � and X , �(W\F)⊆ �W|F follows.

It is immediate to find cases where the containment is
proper, and hence the second part follows.

Notice that despite �W being the largest ND-simulation
when the behaviors in W are active, the projected relation
�W |F is not necessarily even an ND-simulation relation for
(contracted) system S(W \ F).

Permanent unavailability When a behavior becomes per-
manently unavailable (cf. case (d)), one cannot rely on wait-
ing for it to resume when the composition really needs it.
Instead, one can either continue the composition and just
“hope for the best,” that is, hope that the failed behavior will
not be required, or one can “refine” the current composition
to continue guaranteeing the full realization of the target.

The following theorem guides such a refinement. Due to
Lemma 7, it is enough just to start the NDSP algorithm from
the relation obtained by merely projecting out the failed be-
haviors, generally resulting in substantially less algorithm it-
erations. Indeed, as behaviors become unavailable, the effort
to obtain the new largest ND-simulation relation is system-
atic and incremental in that no tuples that were previously
discarded will be considered.

Theorem 8. Let S = 〈B1, . . . ,Bn, E〉 be a system and Bt

a target behavior over E . Let W ⊆ {1, . . . , n} be the
(indexes of the) behaviors currently working in S, and let
F ⊆ {1, . . . , n}, with F ⊆ W , be the (indexes of the) be-
haviors that become permanently unavailable. Then,

�(W\F)= NDSP(Tt, TS(W\F),�W |F , β),

for every β such that β ⊆�(W\F) .

Proof. It follows from Lemma 7 and Theorem 5.

Example 6. Suppose that arm BT is being successfully re-
alized by means of controller P1. At some point, however,
arm BB suddenly breaks down in state b3, just after painting
a block. With BB out, controller P1 cannot guarantee the
target anymore. Interestingly, though, controller P2 can now
(keep) realizing BT from the new (unexpected) sub-system.
To handle such failure case, first behavior BB is projected
out from the ND-simulation relation �{A,B,C}, thus getting
�{A,B,C} |{B}. Then, starting relation �{A,B,C} |{B}, the
new ND-simulation relation is computed using NDSP, get-
ting �{A,C}, see picture below.

1 1
e1

1 1
e2

2 1
e2

dispose,Adi
sp

os
e,
A

2 1
e3

1 1
e4

dispose,A

1 2
e1

2 2
e3

1 2
e2

2 2
e2

recharge, C

prepare, C

paint, C

clean, A

paint, C

recharge, C

clean, A

paint, C

SOLUTION
WITHOUT BB

Observe that tuple 〈〈t3, e3〉, 〈〈a2, c1〉, e3〉〉 would indeed
be in relation �{A,B,C} |{B}, but it would later be fil-
tered out by the NDSP algorithm. Indeed, the original tu-
ple 〈〈t3, e3〉, 〈〈a2, b2, c1〉, e3〉〉 ∈�{A,B,C} relied on BB for
mantaining the ND-simulation. Finally, if arm BB happens
to resume, the CG comes back to the ND-simulation of Fig-
ure 2. �

Resumed behaviors Consider now the case in which
while behaviors with indexes in W are currently operating,
a set of behaviors surprisingly comes back again into the
system, cf. case (e). Let the indexes of such behaviors be
U , with U ∩ W = ∅. Obviously this would never reduce
the capabilities of the whole system, but it could enhance
it with more choices. To exploit them, one needs to com-
pute the new largest ND-simulation �(W∪U). In doing so,
one can leverage on the fact that �(W∪U) contains the ND-
simulation �W ⊗ U (cf. Lemma 6) by completely avoid-
ing consideration (for potential filtering) of those tuples in
�W ⊗ U , i.e., we pass those tuples as the “sure set” to the
NDSP algorithm.
Theorem 9. Let S = 〈B1, . . . ,Bn, E〉 be a system and
Bt a target behavior over E . Let W ⊆ {1, . . . , n} be
the (indexes of the) behaviors currently working in S, and
U ⊆ {1, . . . , n}, with W ∩ U = ∅, be the (indexes of the)
resumed behaviors. Then,

�(W∪U) = NDSP(Tt, TS(W∪U), α,�W ⊗ U),

for every α such that �(W∪U)⊆ α.

Proof. It follows from Theorem 5 and Lemma 6.

Observe that U could even include new behaviors not in-
cluded in {1, . . . , n}—the thesis of Lemma 6 would still
hold.

Reusing previous computed ND-simulations Suppose
that we have already computed and stored the ND-
simulations for the sets of indexes in W (obviously
{1, . . . , n} ∈ W), and suppose we are to compute the ND-
simulation �W for W 6∈ W . Let us then define:

ᾱ =
⋂
{W ′∈cW

W }�W ′ |(W ′\W);

β̄ =
⋃
{W ′∈bW

W }�W ′ ⊗ (W \W ′);

where cW
W , resp. bW

W , stands for for set of tightest supersets,
resp. subsets, of W in W , namely:

cW
W = {W ′ ∈ W | W ⊆ W ′ ∧ ∀V ∈ W.W ⊆ V → V 6⊂ W ′};

bW
W = {W ′ ∈ W | W ′ ⊆ W ∧ ∀V ∈ W.V ⊆ W → W ′ 6⊂ V ′}.

Then, by using the above Theorems 8 and 9 we get that:

�W = NDSP(Tt, TS , ᾱ, β̄).

Notice that by using NDSP(Tt, TS , ᾱ, β̄) to compute �W ,
we maximally reuse the computations already done to de-
vise other ND-simulations. Obviously, once we have com-
puted �W , we can immediately compute CGP jit on-the-fly
as before.

Conclusions
In this paper, we presented a simulation-based technique for
the behavior composition (De Giacomo & Sardina 2007),
radically departing from previous approaches. Such a tech-
nique is a substantial improvement over the previous ones
from the complexity-theoretic perspective (it is exponential
in the number, and not the size, of the available behav-
iors). More importantly, it produces flexible solutions that
are ready to handle exceptional circumstances unforeseen at
specification time, avoiding re-planning altogether in signif-
icant cases and bounding it in others.

We remark that the proposed technique is quite suitable
for optimized implementations. First, optimized techniques
exist for computing simulation, such as those in (Hen-
zinger, Henzinger, & Kopke 1995; Tan & Cleaveland 2001;
Gentilini, Piazza, & Policriti 2003), and implemented in sys-
tems such as CWB-NC (http://www.cs.sunysb.edu/∼cwb/).
Second, it is known that a relationships exists between simu-
lation and checking invariance properties in temporal-logic-
based model checkers and synthesis systems, see e.g., (Vardi
& Fisler 1999; Asarin et al. 1998). In fact, we are currently
implementing the technique proposed in this paper using the
synthesis system TLV (http://www.cs.nyu.edu/acsys/tlv/),
see e.g., (Piterman, Pnueli, & Sa’ar 2006). Another
option would be to exploit ATL-based verifiers, such
as Mocha (http://www.cis.upenn.edu/∼mocha/), which can
check game-structures for properties such as invariants, and
extract winning strategies for them, see e.g., (Alura, Hen-
zinger, & Kupferman 2002).

The kind of failures we have considered here can be seen
as core forms of breach-of-contract with respect to the spec-
ification. Of course other forms of failures are possible (Tri-
pathi & Miller 2001; Pettersson 2005; Marin, Bertier, &
Sens 2003), but they essentially assume more information at
hand upon a failure, e.g., a module may state unavailability
duration and/or the state, or possible states, it will join back.
Moreover, such additional information may be of statistical
or probabilistic nature. Exploiting such information for fail-
ure reaction opens interesting directions for future work.

Acknowledgments
The authors would also like to thank the anonymous review-
ers for their interesting comments. The first author was sup-
ported by the Australian Research Council and Agent Ori-
ented Software (grant LP0560702), and the National Sci-
ence and Engineering Research Council of Canada under a
PDF fellowship. The other authors were partially supported
by the the European FET basic research project FP6-7603
Thinking Ontologies (TONES).

References
Alura, R.; Henzinger, T. A.; and Kupferman, O. 2002.
Alternating-time temporal logic. Journal of the ACM
49(5):672–713.
Asarin, E.; Maler, O.; Pnueli, A.; and Sifakis, J. 1998.
Controller synthesis for timed automata. In Proceedings
of the IFAC Conference on System Structure and Control,
469–474.

Berardi, D.; Calvanese, D.; De Giacomo, G.; Hull, R.; and
Mecella, M. 2005. Automatic composition of transition-
based semantic web services with messaging. In Proceed-
ings of the International Conference on Very Large Data
Bases (VLDB), 613–624.
Berardi, D.; Cheikh, F.; De Giacomo, G.; and Patrizi, F.
2008. Automatic service composition via simulation. In-
ternational Journal of Foundations of Computer Science
19(2):429–452.
Clarke, E. M.; Grumberg, O.; and Peled, D. A. 1999.
Model checking. Cambridge, MA, USA: The MIT Press.
De Giacomo, G., and Sardina, S. 2007. Automatic syn-
thesis of new behaviors from a library of available behav-
iors. In Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), 1866–1871.
Gentilini, R.; Piazza, C.; and Policriti, A. 2003. From
bisimulation to simulation: Coarsest partition problems.
Journal of Automed Reasoning 31(1):73–103.
Georgeff, M. P., and Lansky, A. L. 1987. Reactive reason-
ing and planning. In Proceedings of the National Confer-
ence on Artificial Intelligence (AAAI), 677–682.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.
Grosz, B. J., and Kraus, S. 1996. Collaborative plans
for complex group action. Artificial Intelligence Journal
86(2):269–357.
Harel, D.; Kozen, D.; and Tiuryn, J. 2000. Dynamic Logic.
The MIT Press.
Henzinger, M. R.; Henzinger, T. A.; and Kopke, P. W.
1995. Computing simulations on finite and infinite graphs.
In Procedings of the 36th Annual Symposium on Founda-
tions of Computer Science (FOCS), 453–462.
Katz, M. J., and Rosenschein, J. S. 1993. The generation
and execution of plans for multiple agents. Computers and
Artificial Intelligence 12(1):5–35.
Kupferman, O., and Vardi, M. Y. 1996. Module check-
ing. In Proceedings of the 8th International Conference on
Computer Aided Verification (CAV), 75–86. London, UK:
Springer-Verlag.
Marin, O.; Bertier, M.; and Sens, P. 2003. Darx - A frame-
work for the fault tolerant support of agent software. In
Proceedings of the 14th IEEE International Symposium on
Software Reliability Engineering (ISSRE).
McIlraith, S., and Son, T. C. 2002. Adapting Golog for pro-
gramming the semantic web. In Principles of Knowledge
Representation and Reasoning (KR), 482–493.
Milner, R. 1971. An algebraic definition of simulation be-
tween programs. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), 481–489.
Muscholl, A., and Walukiewicz, I. 2007. A lower bound on
web services composition. In Proceedings of the 10th Int.
Conf. on Foundations of Software Science and Computa-
tion Structures (FoSSaCS), volume 4423 of Lecture Notes
in Computer Science (LNCS). Springer.

Pettersson, O. 2005. Execution monitoring in robotics: A
survey. Robotics and Autonomous Systems 53(2):73–88.
Piterman, N.; Pnueli, A.; and Sa’ar, Y. 2006. Synthesis
of reactive(1) designs. In Emerson, E. A., and Namjoshi,
K. S., eds., Proceedings of the International Conference on
Verification, Model Checking, and Abstract Interpretation
(VMCAI), volume 3855 of Lecture Notes in Computer Sci-
ence (LNCS), 364–380. Charleston, SC, USA: Springer.
Pnueli, A., and Rosner, R. 1989. On the synthesis of a
reactive module. In Proceedings of the ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, 179–190.
Sardina, S.; Patrizi, F.; and De Giacomo, G. 2007. Au-
tomatic synthesis of a global behavior from multiple dis-
tributed behaviors. In Proceedings of the National Confer-
ence on Artificial Intelligence (AAAI), 1063–1069.
Tan, L., and Cleaveland, R. 2001. Simulation revisited.
In In Proceedings of Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS), volume 2031
of LNCS, 480–495.
Tripathi, A., and Miller, R. 2001. Exception handling in
agent-oriented systems. In Exception Handling, volume
2022 of Lecture Notes in Computer Science (LNCS), 128–
146. Springer-Verlag.
Vardi, M., and Fisler, K. 1999. Bisimulation and model
checking. In Proceedings of the Conference on Correct
Hardware Design and Verification Methods (CHARME),
338–341.

