
Sapienza universita’ di Roma

Dipartimento di Informatica e Sistemistica

User guide
WSCE-Lite

Web Service Composition Engine

v 0.1

Valerio Colaianni

Contents

1 Installation 5
1.1 Installing TLV . 5
1.2 Installing WSCE-Lite . 6

2 Usage 7
2.1 Using the tool . 7
2.2 WS-TSL . 8

2.2.1 Syntax . 8
2.2.2 Mapping TS in WSTSL 10

2.3 Running the tool . 12

3

4 CONTENTS

Chapter 1

Installation

In order to run and use Wsce-lite you will need to setup the following envi-
roment:

1. install the latest version of Java2 Standard Edition (version 6.0 or
higher)

2. install TLV

3. Install the tool

1.1 Installing TLV

In order to install TLV on your system

1. Copy the directory TLV-4.14 in your local file system;

2. Copy library cygwin1.dll in your local file system;

3. Set enviroment variable TLV PATH with the absolute path of direc-
tory rules of TLV;

4. Append to the enviroment variable PATH with

• The absolute path of bin directory (in which is present the exe-
cutable code of TLV);

• The absolute path of the directory in which is present cygwin1.dll;

5. Check the correctness of the installation let running the example pro-
vided. To run TLV use this command: tlv comp-inv.pf < path smv file >
(example file can be found in the sub directory example)

5

6 CHAPTER 1. INSTALLATION

1.2 Installing WSCE-Lite

To install Wsce-lite all you have to do is copy the directory WSCE in your
local file system.

In WSCE directory you will find two directory:

1. lib directory, that contains libries Wsce-lite needed to properly work.
Never edit the content of this directory;

2. composizioni directory, that is the working directory. Here you will
put your input file for the composition problem you want to solve.

Once you correctly setup your enviroment you are ready to use the tool
for automatic service composition. Before using it we suggest you to run an
example provided in the composizioni directory.

Chapter 2

Usage

To use the tool just run the jar file of the tool with the following sintax:

java -jar wsce.jar < working dir name >

You can run an example provided with the distribution of the tool (e.g.
test1), if everything work you have correctly installed the tool. If an error
occurs please check the steps of chapter 1, before you continue using the
tool.

2.1 Using the tool

Wsce-lite is a tool for automatic service composition. To use the tool follow
these steps:

1. Create a sub directory into composizioni directory, for example let’s
call this directory my-comp;

2. Into my-comp directory create wstsl sub directory, into this directory
you will put the description of the transition systems of the available
services;

3. into wstsl directory create target sub directory, into this directory you
will put the description of the transition system of the target service
you intend to synthesize. Please notice that the name of the target
must be the name of your working directory (in our example my-
comp.wstsl);

All your input file must be written in WS-TSL language (more later in the
next section)

7

8 CHAPTER 2. USAGE

2.2 WS-TSL

WSTSL is an XML based language. It describes the Transition System that
models the Web Service, that is its behavior, without provide its implemen-
tation. It allows to represent what is observable from the point of view of
the user (the change of state of the Web Service after performing an action).

2.2.1 Syntax

The syntax of a WSTSL document is described with an XML Schema Def-
inition Language (XSD) document. XML Schema can be used to express a
schema: a set of rules to which an XML document must conform in order
to be considered ’valid’ according to that schema. An XSD defines a type of
XML document in terms of constraints upon what elements and attributes
may appear, their relationship to each other, what types of data may be in
them, and other things.

Figure 2.1: example of a syntactic WSTSL tree

Tag TS A WSTSL document is composed by a root tag TS which is
structured as a sequence of STATE tag, minimum one, which are the states
of the given Transition System, and with a mandatory attribute ”service”,
which its use is required according to XSD grammar, that is the name of
the Web Service we are describing as shown into the XSD fragment below.

<xsd : complexType name=”TSType”>
<xsd : sequence>

<xsd : element name=”STATE” type=”ns : StateType”
minOccurs=”1” maxOccurs=”unbounded”>

2.2. WS-TSL 9

</xsd : element>
</xsd : sequence>
<xsd : a t t r i b u t e name=”s e r v i c e ” type=”xsd : s t r i n g ”

use=”requ i r ed”/>
</xsd : complexType>

Tag STATE The STATE tag is composed as a sequence of TRANSITION
tag, that represents a transition, of the Transition System that have as source
state the given state; More over, the STATE tag has two attributes: name,
that is the name of the state, and tipology which is the description of the
state.

Each tipology of state can be in this set: {initial−final, final, transient}
according with the conceptual schema. We used a XSD enumeration to
represents it.
<xsd : complexType name=”StateType”>

<xsd : sequence>
<xsd : element name=”TRANSITION” type=”ns : Transit ionType ”

maxOccurs=”unbounded”>
</xsd : element>

</xsd : sequence>
<xsd : a t t r i b u t e name=”name” type=”xsd : s t r i n g ”/>

<xsd : a t t r i b u t e name=”t i po l o gy ” type=”ns : StateTipo logy ”
use=”requ i r ed”/>

</xsd : complexType>

<xsd : simpleType name=”StateTipo logy”>
<xsd : r e s t r i c t i o n base=”xsd : s t r i n g”>

<xsd : enumeration value=” i n i t i a l − f i n a l ”/>
<xsd : enumeration value=” f i n a l ”/>
<xsd : enumeration value=”t r an s i e n t ”/>

</xsd : r e s t r i c t i o n >
</xsd : simpleType>

Tag TRANSITION The TRANSITION tag is composed as a sequence
of TARGET tag, that are the target state of this transition. The cardinality
are minimum one maximum unbounded. Minimum cardinality must be one
’cause we need at least an endpoint for the transition. Maximum cardinality
is unbounded ’cause in non deterministic transition system we have multiple
endpoint for an action originating from one state. We decide to not repeat
transition tag with the same action for every transition, we prefer to write
in once, and for every state reached after performing that action to write
a target tag. This ease the compactness of the document, the readable
and, from the author point of view, the elegance. Transition tag has a
mandatory attribute named action, that is the name of the action that
cause this transition.

The TARGET tag, we have already introduced, has only the attribute
(mandatory) state, and as said before, it is the name of the target state of
the transition.

10 CHAPTER 2. USAGE

<xsd : complexType name=”Transit ionType”>
<xsd : sequence>

<xsd : element name=”TARGET” type=”ns : Target ”
minOccurs=”1” maxOccurs=”unbounded”>

</xsd : element>
</xsd : sequence>
<xsd : a t t r i b u t e name=”ac t i on ” type=”xsd : s t r i n g ”

use=”requ i r ed”/>
</xsd : complexType>

<xsd : complexType name=”Target”>
<xsd : a t t r i b u t e name=”s t a t e ” type=”xsd : s t r i n g ”

use=”requ i r ed”/>
</xsd : complexType>

CONSTRAINTS Now that we have build the syntactical rules to write
a WSTSL document, we have to ensure integrity references. To do this we
used two XSD constraints: uniqueness of the name of the state (there cannot
exist two different states with the same name), and a foreign key between
the target state of the transition and the name of the state, to ensure that
don’t exists transitions with ghost states, remember that TARGET elements
must be a subset of STATE elements.

<xsd : element name=”TS” type=”ns : TSType”>

<xsd : unique name=”uniqueState”>
<xsd : s e l e c t o r xpath=”./STATE” />
<xsd : f i e l d xpath=”@name”></xsd : f i e l d >

</xsd : unique>

<xsd : key name=”stateKey”>
<xsd : s e l e c t o r xpath=”./STATE” />
<xsd : f i e l d xpath=”@name”></xsd : f i e l d >

</xsd : key>

<xsd : k ey r e f name=”t r an s i t i onTa rg e t ” r e f e r=”ns : stateKey”>
<xsd : s e l e c t o r xpath=”./STATE/TRANSITION/TARGET”/>
<xsd : f i e l d xpath=”@state”></xsd : f i e l d >

</xsd : keyre f>

</xsd : element>

2.2.2 Mapping TS in WSTSL

Now that we have defined how to write a WSTSL document, let’s see how
to map a Transition System of a Web Service into WSTSL.

We map the Web Service in a TS tag, with the name of the service in the
community. In our example the name is ”Service1”. The mapping of states
and transitions is made up using this general procedure:

• For each state of the service, declare a tag STATE, in which write the
name of the state, and the type of the state.

2.2. WS-TSL 11

Figure 2.2: Mapping the TS

Figure 2.3: Mapping a state and outgoing transitions

• For each outgoing transition of this state, declare a tag TRANSITION
with the name of the action that cause that transition.

• For each state reached by that transition, declare a tag TARGET in
which write the name of the state.

As we can see the mapping is very simple, and this was one of the require-
ment of WSTSL specification. Below we present an example of the mapping
of web service shown in figure 2.5

<TS
xmlns=’http ://www. d i s . uniroma1 . i t /WS−TSL’
xmlns : x s i =’http ://www.w3 . org /2001/XMLSchema−in s tance ’
x s i : schemaLocation=’http ://www. d i s . uniroma1 . i t /WS−TSL’
s e r v i c e=”Se rv i c e1”>

<STATE name=”S0” t i po l o gy=” i n i t i a l −f i n a l ”>
<TRANSITION act i on=”search”>

12 CHAPTER 2. USAGE

Figure 2.4: Mapping of a (non deterministic) transition

<TARGET s t a t e=”S1”/>
<TARGET s t a t e=”S0”/>

</TRANSITION>
</STATE>

<STATE name=”S1” t i po l o gy=”t r an s i e n t”>
<TRANSITION act i on=”back”>

<TARGET s t a t e=”S0”/>
</TRANSITION>

<TRANSITION act i on=”d i sp l ay”>
<TARGET s t a t e=”S0”/>

</TRANSITION>
</STATE>

</TS>

Figure 2.5: transition system of service1

2.3 Running the tool

Once you’ve created the xml file of the problem you want to solve you can
run the tool to calculate the composition. After calculate the composition
in your working directory (my-comp in the example) you will find

2.3. RUNNING THE TOOL 13

• the SMV file of the problem, this is the input for TLV (.smv file);

• the TLV output of the problem (.txt and .nor file);

• an xml representation of the transition system (Mealy automata) rep-
resenting the composition, obtain by the TLV’s output (composition.xml);

• Sql script to store the composition into a relation database (composi-
tion.sql);

