
Conversational state 
management in Web Service 

Technologies

Homework for

Seminars in Software Engineering

Author:
Claudio Di Ciccio

(dc.claudio@gmail.com)

mailto:dc.claudio@gmail.com


Conversational state management in Web Service Technologies 2

The service

● “The service is a software artifact characterized by its 
behavior

– the potential evolutions resulting from its interaction with some 
external systems, such as a client service”

● Given this description, we are focusing on the behavioral 
aspect of services, while we use to consider Web Services 
as collections of remote procedures to call, widely spread 
around the network, based on XML communications

● This project focuses on dynamic self-evolving services, 
concentrating the work on
– the execution of processes behind the service

– the interaction with clients developing step after step

– the separation between application logic and process-state logic



Conversational state management in Web Service Technologies 3

Model-driven design

● “A conversation is a sequence of message exchanges that 
can occur between a client and a service as part of the 
invocation of a Web Service”
– Commonly, Web Services are a collection of request-response 

operations
● they do not keep any state information
● they are completely defined by the communication protocol

– WSDL

● With model-driven design, we focus on actions, not 
messages

– for example, only after a login (a web method to call) we can 
access another functionality (another web method to call)



Conversational state management in Web Service Technologies 4

Model-driven design

● Every service, once its schema is defined, can be part of a 
community

– on that community, we can create composite Web Services

● Composition can be done in EXPTIME

– in the size of the available services
● usually, services have not huge defining schemata, then this cost is 

not impossible to afford



Conversational state management in Web Service Technologies 5

Service state and behavior 
management

● Given the service schema, we may need to be supported by 
a state manager

● We may want it to delegate the control over processes' flow

– It has to act like a referee for addressing
● concurrency
● evolution
● correctness

of the transitions

– Thus, the Web Service operations' business logic is separated 
from the control check

– On the other hand, the process manager does not mind neither 
the message exchange, nor the application variables to update



Conversational state management in Web Service Technologies 6

Conversational Web Services

● Web Services are stateless by default
– Based on stateless protocols (SOAP over HTTP, or SMTP...)

– No information about the caller identity, neither about the 
client's interaction history

● “A single web service may communicate with multiple clients 
at the same time, and it may communicate with each client 
multiple times.

● In order for the web service to track data for the client 
during asynchronous communication, it must have a way 
to remember which data belongs to which client and to keep 
track of where each client is in the process of operations.”



Conversational state management in Web Service Technologies 7

Our goal

● Twofold:
– Keep the state-related information (stateful Web Services)

– Integrate the Web Service with an automatic behavioral 
manager, besides the service implementation

● Solutions must

– respect standards (for portability reasons) the most as possible

– use already developed technologies the most as possible
● so that we can use them in real-world applications



Conversational state management in Web Service Technologies 8

Technologies

● We choose Java as the main coding language
● J2EE, EJB 3.0

● and Java-based software infrastructures (JBoss family)
● JBoss AS, JBoss WS

– Application servers, WS-plugin
● jBPM

– “Process containers”



Conversational state management in Web Service Technologies 9

Web Services in J2EE v.5

● Every
– POJO (Plain Old Java Object)

– Stateless Session Bean

– Servlet

● can be a Web Service Endpoint, given that it respects a 
defined interface

– this means that the abstract interface can be independent from 
the concrete service implementation



Conversational state management in Web Service Technologies 10

Web Services in J2EE v.5

● The software architect/programmer can define the protocols
– through classes and interfaces definitions

● The container decides the policy of pooling instances
– the same concept already seen for EJBs

● users are unaware of which instance is actually serving the 
requests

● As told before, no mention about the business protocol

– we call “business protocol” the specification of which messages 
exchange sequences are supported by the service

● for example, expressed in terms of constraints on the order that 
service operations would be invoked in



Conversational state management in Web Service Technologies 11

Stateful Web Services in J2EE v.5

● Almost any kind of Bean can stay behind a WS, so why don't 
we use Stateful Session Beans to implement it?

– The compiler does not warn...

– ... the container does: it's not admitted, as now

● Why don't we associate Stateless Session Beans to Stateful 
Session Beans as inner properties?
– Given you can not decide which instance actually serves you, 

injecting Stateful Beans inside Stateless ones does not work, 
either

● Typically, the container overflows the memory stack after a few 
calls, as new Stateful objects are created at any WS-call



Conversational state management in Web Service Technologies 12

Stateful WSs: WS-Addressing

● Solution: WS-Addressing
– http://www.w3.org/TR/ws-addr-core/

● WS-Addressing is a W3C standard based on SOAP
– it “defines a family of message addressing properties that 

convey end-to-end message characteristics including 
references for source and destination endpoints and 
message identity that allows uniform addressing of messages 
independent of the underlying transport”

● Essentially, it defines some extra headers to put into the 
SOAP envelope, so that clients can have a “pointer” to the 
service endpoint, and identify the caller
– it suits with our goal!



Conversational state management in Web Service Technologies 13

Stateful WSs: WS-Addressing

● “A reference may contain a number of individual parameters 
that are associated with the endpoint to facilitate a particular 
interaction (...) Reference parameters are provided by the 
issuer of the endpoint reference and are assumed to be 
opaque to other users of an endpoint reference.”



Conversational state management in Web Service Technologies 14

Stateful WSs: WS-Addressing

● We can insert the client (conversational) id as a replyTo's 
reference parameter

● Every call will be identified by this unique id
● The client will take care of saving it

– It recalls the SESSION-header for HTTP protocols

– And like the SESSION-header for HTTP protocols, it can support 
the maintenance of client-server conversation state



Conversational state management in Web Service Technologies 15

Resuming the ideas

● Services are processes
– whose defined behavior is hold by a process manager

– application layer related

– whose conversational identity is saved on an identifier
● a kind of piggy-backing on the payload

– transport layer related



Conversational state management in Web Service Technologies 16

Web Services: implementation in 
J2EE v.5

● The interesting point in 
J2EE5 is the use of 
annotations, linking 
interface definitions to 
classes modules



Conversational state management in Web Service Technologies 17

Web Services: implementation in 
J2EE v.5

● Annotations
– separate runtime instructions from a priori definitions

● separate semantics
– e.g. communication protocol and application logic

– can be used instead of external configuration files

– make the code look cleaner

– make the code easier to update
● the amount of cross-references over configuration files decrease



Conversational state management in Web Service Technologies 18

Implementation in JBossAS / 
JBossWS

● JBoss WS does not support natively annotations like 
“@Addressing”

– Sun Glassfish does

● We can use custom SOAP Message Handlers in order to 
support WS-Addressing

– JBoss WS libraries provide WSAddressingServerHandler and 
WSAddressingClientHandler classes

– we can use them in order to properly set up SOAP headers, 
putting the conversational id into them



Conversational state management in Web Service Technologies 19

Message Handlers stack
● The link among Transport 

and Application Layer is 
created by Message 
Handlers

● Client-side and server-
side handlers are organized 
into an ordered list known 
as “Handler Chain”.

● The handlers within a 
handler chain are invoked 
each time a message is sent 
or received.

– Our classes, enriching 
SOAP headers, lay down 
there



Conversational state management in Web Service Technologies 20

Some code: server side



Conversational state management in Web Service Technologies 21

Some code: server side



Conversational state management in Web Service Technologies 22

Some code: client side



Conversational state management in Web Service Technologies 23

Resuming ideas

● In order to implement a conversational Web Service 
framework we have to

– Implement the WS-Addressing framework
● Implement Message Handlers, both for client and server

– able to insert WS-Addressing tags into the SOAP headers
● Put those Message Handlers into the Handlers Stack
● Declare the WS-Addressing standard compliance into the WSDL file

– Insert the conversational id as a parameter of WS-Addressing 
headers

● updating properly the message handling methods into the 
previously defined Message Handler classes



Conversational state management in Web Service Technologies 24

Resuming ideas



Conversational state management in Web Service Technologies 25

Services as Processes: jBPM

● jBPM (JBoss 
Business Process 
Manager) is a 
framework for 
advanced processes 
management

● jBPM is designed to be 
a real workflow-
management tool

– We use a subset of 
its facilities



Conversational state management in Web Service Technologies 26

Services as Processes: jBPM

● jBPM supports native jPDL (jBPM Process Definition 
Language) language

– XML based

– BPEL-extensible, in case we want to integrate it with a pre-
existent orchestrator

– Graph-Oriented



Conversational state management in Web Service Technologies 27

Why jPDL?

● It is XML-based
– XML is widely supported

– XML is structured
● far looser than relational schemata

– Frameworks, languages, technologies for interacting, 
transforming, querying, updating XML data are already defined

● You can make queries over contents and structures

– as we may use HennessyMilner formulas for asserting 
properties about FSMs, we can use XPath for expressing them 
about XML-based jPDL descriptors

● jPDL is very close to WS-TSL



Conversational state management in Web Service Technologies 28

Finite State Machines

● FSMs (Finite State Machines) are the construct that we 
use to describe services' behavior (Roman approach).

● We recall here that a deterministic FSM (TS, standing for 
Transition System) is defined as follows:

● Where

– Σ is the finite alphabet of actions

– S is the finite set of states

– s
0
 is the initial state, in S

– δ is the transition function

– F is the set of finite states
●

TS=〈 ,S , s0 , , F 〉

F⊆S



Conversational state management in Web Service Technologies 29

Non-deterministic FSMs
● It is quite common for Web Services to have transitions that 

do not directly depend from clients' invocations.

– For example, the server, not the client, decides whether user-
names and passwords provided are correct for the user to login

● and then access protected functionalities
– that is, make the service evolve to states that, otherwise, would be not 

accessible

– Thus, we have devilish non-determinism

– Consequently, we have to consider this new formal object

TSN=〈 ,S ,s0 ,N , F 〉

– Where every symbol maintains the previous meaning, except

N ⊆ S××S
● that is a relation, not a function anymore (the same action can 

make the service proceed through different states)



Conversational state management in Web Service Technologies 30

From TSs to jPDL documents

<start-state name="s
0
">

<state name="s">

<end-state name="f"/>

<state name="s">

  <transition to="s'" name="a">

</state>

s0

s∈S

f ∈F

s ,a=s '

● As you can see, mapping deterministic FSMs to jPDL (XML) 
documents is quite straightforward



Conversational state management in Web Service Technologies 31

From TSs to jPDL documents
● Two conditions are imposed by jPDL, regarding det. FSMs:

– start-states and end-states cannot be the coincident

– transitions cannot end to start-states, nor start from end-states

● Thus, a FSM like the following have to be changed...



Conversational state management in Web Service Technologies 32

From TSs to jPDL documents
– ... into the following one

● Final states have to turn into nodes without further transitions 
admitted

● Start states must not have reentrant arcs



Conversational state management in Web Service Technologies 33

Non-deterministic FSMs
● In this example, “Log” is the non-deterministic devilish 

transition

– jPDL does not admit transitions to have multiple reachable 
states

● jPDL documents are used to describe internal processes that are 
going to be automatically managed by the jBPM engine

● it is obvious, then, that jBPM is not designed for managing non-
deterministic processes: non-determinism in services' Transition 
Systems is used to hide some internal details

● every concrete program is deterministic, and there is no behavioral 
information to hide to the process manager

– In these cases, we can use special nodes called decision-
states



Conversational state management in Web Service Technologies 34

Process manager's capabilities 
usage

● We may want to use the process manager engine as

1.a passive flow controller
● It checks that every transition is legally invoked

2.an active flow controller
● It decides the state to evolve to, when the FSM (execution graph) 

has a multi-arc
– decides, in case of devilish (server-dependent) non-determinism, the 

transition to move through

3.an active flow controller, able to call user-defined actions
● When the client asks for a transition to proceed, and it's linked to 

an action, the process manager calls the proper action handler



Conversational state management in Web Service Technologies 35

Process manager's capabilities 
usage

● We choose the third option because:
– it includes the previous ones;

– jBPM can directly manage exceptions thrown during the action;
● the exception recovery policy and rollback is due to it, not to the 

calling method

– it enriches the focus on actions, rather than using the 
framework as a simple flow-control instrument.

● jPDL does not require the programmer to write any code line 
into the definition file

– It delegates the action, or the decisions, to proper Java classes 
defined somewhere else by the programmer

● The definition remains abstract: it's like putting another labeling
– Encoding classes is like giving an interpretation to the schema



Conversational state management in Web Service Technologies 36

From TSs to jPDL: update

● We have to enlarge the algebra representing Transition 
Systems for internal representation, by adding three new 
labeling functions and three new sets

PTS=〈 ,S ,s0 , , F , A, , H , , D ,〉

– As you can see, we are considering δ as a function, and not 
as a relation

● Where

– A is the set of action-handlers (labels)

– D is the set of decision-states
●

– H is the set of decision-handlers (labels)

D⊆S



Conversational state management in Web Service Technologies 37

From TSs to jPDL: update

– α is the partial labeling function that, given a state s and an 
action a, returns an action-handler e (element of A); we 
assume that only if δ is defined on s and a, then α is defined as 
well

– η is the labeling function that, given a decision-state d (in D) 
returns a decision-handler (element of H)

– ω is the transition function that, given a decision-state d (in 
D) and an action a, returns a state s

PTS=〈 ,S ,s0 , , F , A, , H , , D ,〉



Conversational state management in Web Service Technologies 38

jPDL syntax: update
<decision name="d"/>

<state name="s">

  <transition to="δ (s, a)" name="a">

    <action class="e"/>

  </transition>

</state>

<decision name="d"><handler class="h"/></decision>

<decision name="d">

  <handler class="α (d, a)"/>

  <transition to="s" name="a"/>

</decision>

d∈D

s,a=e

d=h

d ,a=s



Conversational state management in Web Service Technologies 39

jBPM process

● Here is the example service behavior, expressed as a jBPM 
process

– The next slide will show the same process, XML-encoded



Conversational state management in Web Service Technologies 40

Some code: jPDL



Conversational state management in Web Service Technologies 41

HennessyMilner / XPath

● Some examples about how to express HM formulas over TSs 
as XPath queries over jPDL descriptors

● HM

● XPath

boolean(

not(//state[@name="Search"])
or (

//transition[
parent::state[@name="Search"]
and @name="Search by Title"
and @to="SearchResult"]

)
)

● TRUE

Search  〈Search⋅by⋅Title〉T ∧ [Search⋅by⋅Title ]SearchResult



Conversational state management in Web Service Technologies 42

HennessyMilner / XPath

● Some examples about how to express HM formulas over TSs 
as XPath queries over jPDL descriptors

● HM

● XPath

boolean(

not(//state[@name="Search"])
or (

//transition[parent::state[@name="Search"]]
and not(

//transition[parent::state[@name="Search"]
and not(@name="Search by Title")
]

)
)

)
● FALSE

Search  〈any 〉T ∧ [any − Search⋅by⋅Title]F



Conversational state management in Web Service Technologies 43

HennessyMilner / XPath

● Some examples about how to express HM formulas over TSs 
as XPath queries over jPDL descriptors

● HM

● XPath

boolean(

not(//start-state[@name="Start"])
or (

//transition[parent::start-state[@name="Start"]]
and not(

//transition[
parent::start-state[@name="Start"]
and not(@name="Log")]

)
)

)
● TRUE

Start  〈any 〉T ∧ [any − Log]F



Conversational state management in Web Service Technologies 44

Web Service / jBPM interaction

● In the framework we are describing now, Web Services act 
like a façade for the real service core

● The service core is spread over

– jBPM
● the process manager

– Action-handlers and decision-handlers
● Java beans implementing the

org.jbpm.graph.def.ActionHandler

org.jbpm.graph.node.DecisionHandler

interfaces

● Programmers must implement ActionHandlers and 
DecisionHandlers

– Thus, they provide the semantics behind process descriptors



Conversational state management in Web Service Technologies 45

Web Service / jBPM interaction



Conversational state management in Web Service Technologies 46

Web Service / jBPM interaction

● Differently from BPEL, there is no information about 
variables to update and parameters to call inside the process 
descriptors
– Information hiding

● Actions and Web Service Endpoints don't share any 
reference, but the so called jBPM Context

– Encapsulation

● They access temporary runtime variables provided by the 
jBPM Context
– jBPM framework guarantees persistence, coherence, 

concurrency over process runtime variables



Conversational state management in Web Service Technologies 47

Web Service / jBPM interaction

● Thus, Web Service operations' implementing code

1. identifies the process related to the conversation

2. invokes the Jbpm Context methods for activating proper 
transitions

3.waits for the Jbpm Context to complete its business
● registering the transition for updating the current state on the 

specified process
● activating eventual decisions and actions

4.returns the computations' results back to the client



Conversational state management in Web Service Technologies 48

Some code: Web Methods impl.



Conversational state management in Web Service Technologies 49

An example: WSter
● A simple application using the framework applied to the 

example showed before

– Divided into three logical units
● physically deployed in three different archives, following the MVC 

architecture
– A WAR with presentation modules (View)

● JSP files, presentation logic, clients of the main Web Service
● Conversational WS-Addressing MessageHandlers

– A WAR with control modules (Control)
● Service definition files

● jPDL descriptor, message handlers stack descriptor, WSDL
● Service implementation classes

● Servlet, ActionHandlers, DecisionHandlers, MessageHandlers
● Conversational WS-Addressing MessageHandlers

– A JAR with persistence modules (Model)
● EJB 3.0 - based Web Service (for remote access)
● JPA-connected Database


