
MCMAS v0.9.6.2: User Manual



Contents

1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 For the impatient . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 For the very impatient . . . . . . . . . . . . . . . . . . . . 3

2 Tutorial 4
2.1 Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 How to describe a system of agents? . . . . . . . . . . . . 4
2.1.2 A concrete example: the bit transmission problem and its

encoding in ISPL . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Verification and simulation . . . . . . . . . . . . . . . . . 10
2.1.4 A more complex example: the protocol of the dining cryp-

tographers . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Reference 16
3.1 Command line options . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 ISPL syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 ISPL overview . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Reserved keywords . . . . . . . . . . . . . . . . . . . . . . 23
3.2.3 The grammar . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 The graphical interface . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Theoretical background: the semantics of interpreted systems . . 33

i



Chapter 1

Introduction

1.1 Introduction

MCMAS is a Model Checker for Multi-Agent Systems (MAS). MCMAS takes in
input a MAS specification and a set of formulae to be verified, and it evaluates
the truth value of these formulae using algorithms based on Ordered Binary
Decision Diagrams (OBDDs [1]). Whenever possible, MCMAS produces coun-
terexamples for false formulae and witnesses for true formulae. MCMAS allows
the verification of a number of modalities, including CTL operators, epistemic
operators, operators to reason about correct behaviour and strategies, with or
without fairness conditions.

MCMAS can also be used to run interactive, step-by-step simulations. Addi-
tionally, a graphical interface is provided as an Eclipse plug-in which includes a
graphical editor with syntax recognition, a graphical simulator, and a graphical
analyser for counterexamples.

Multi-Agent Systems are described in MCMAS using a dedicated program-
ming language derived from the formalism of interpreted systems [4]. This
language, called ISPL (Interpreted Systems Programming Language), resem-
bles the SMV language in that it characterises agents by means of variables and
represents their evolution using Boolean expressions.

IMPORTANT NOTICE: MCMAS is being actively developed and it has
to be considered as an academic prototype. Bugs are likely to be present and
we welcome all bug reports, which we try to address in the shortest possible
time.

The remainder of this document is organised as follows:

• Section 2.1 is a simple tutorial providing a short introduction to the for-
malism of interpreted systems, a flavour of ISPL and basic MCMAS com-
mands.

• Section 3.1 describes the command line options for the MCMAS exe-
cutable.
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• Section 3.2 contains the complete ISPL syntax.

• Section 3.3 describes the graphical interface.

• Section 3.4 presents a detailed description of the theoretical background
of MCMAS.

1.2 For the impatient

System requirements:

• Tested platforms: x86 compatible 32 bit or 64 bit processor; ppc and
MacIntel.

• Operating system: Linux, Mac OSX 10.3 and 10.4, Windows using Cyg-
win;

• Compiler: flex 2.5.4 or higher, GNU bison 2.3 or higher, GNU g++ 4.0.1
or higher;

• Eclipse 3.2 or higher with Java 1.6 (optional, for the graphical interface).

Please feel free to contact us at f.raimondi@cs.ucl.ac.uk and/or hongyang@
doc.ic.ac.uk if you want to run MCMAS on different architectures / configu-
rations.

Installation steps

1. (Windows platform only) Install cygwin and the packages g++, flex and
bison on Windows XP/Vista. Detailed instructions can be found from
http://www.cygwin.com/.

2. Install the CUDD library. This library can be obtained from http://
vlsi.colorado.edu/~fabio/CUDD/:

• tar -xzvf cudd-2.4.1.tar.gz

• cd cudd-2.4.1

• Edit Makefile for your architecture (default: Linux x86), then make

• Build the support for C++: cd obj then make testobj

3. Extract MCMAS sources with tar. Modify Makefile and change the
location of the CUDD library to the correct location on your machine, i.e.
change the line CUDD = /usr/local/cudd-2.4.1/ as appropriate. Then
type make and you should obtain the executable mcmas.

4. (Optional) Install Eclipse plug-in for the graphical editor by copying the
file org.mcmas.ui_1.0.0.jar files to the plugin/ directory of your Eclipse
installation. Run Eclipse with the option “-clean” for the first time and
specify the path to MCMAS in the MCMAS preference.
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Running mcmas

• ./mcmas -h from the command line. See the examples in the examples
directory.

• Graphical interface: start Eclipse; if the plugin has been recognised, you
should be able to create a new ISPL project and create a new ISPL file.

1.2.1 For the very impatient

We might be able to provide a pre-compile binary version for your system, please
contact us at f.raimondi@cs.ucl.ac.uk and/or hongyang@doc.ic.ac.uk.
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Chapter 2

Tutorial

2.1 Tutorial

2.1.1 How to describe a system of agents?

Various techniques and languages exists to describe a system of agents. MCMAS
adopts and extends the formalism of interpreted systems [4] using the dedicated
ISPL language. We distinguish between two kinds of agents: “standard” agents,
and the environment agent. The environment is used to describe boundary
conditions and infrastructures shared by “standard” agents and it is modelled
similarly to standard agents (see below).

In brief, in MCMAS each agent (including the environment) is characterized
by:

1. A set of local states (for instance the states “ready” or “busy” for a re-
ceiver).

2. A set of actions (for instance “sendmessage” or “open channel”).

3. A rule describing which action can be performed by an agent in a given
local state. We call this rule a protocol1.

4. An evolution function, describing how the local states of the agents evolve
based on their current local state and on other agents’ actions.

Local states. Local states are defined in terms of local variables: as an
example, consider a printer with two sensors, one sensor for toner (which could
be high or low), and one sensor for paper (which could be full or empty). In
this case, the agent printer has four possible local states corresponding to all the
possible combinations of values of toner and paper. Local states are private, i.e.,
each agent can observe only its own local states, and all the other parameters
discussed below (protocol and evolution function) cannot refer to other agents’

1Not to be confused with the notion of protocol in networking.
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local variables. The only exception is the environment agent: for this agent two
kind of variables can be defined: “standard” variables and observable variables.
“Standard” agents can “peek” at the observable variables of the environment
and their evolution function can refer to these variables. Additionally, the epis-
temic accessibility relation of an agent (see Section 3.4) is based on the agent’s
local states and on the environment local states. Intuitively, an agent “knows”
something in a state of the system if this something is true in all the states of the
system in which its local states and the observable variables of the environment
remain the same.

Actions. Each agent (including the environment) is allowed to perform
some actions, for instance send a message. It is assumed that all actions per-
formed are visible by all the other agents.

Protocols. Protocols describe which actions can be performed in a given
local state. As local states are defined in terms of variables, the protocol for an
agent is expressed as a function from variable assignments to actions. In ISPL
protocols are not required to be exhaustive: it is sufficient to specify only the
variables assignments relevant to the execution of certain actions, and introduce
a catch-all assignment by means of the keyword Others (see below). Protocols
are not required to be deterministic: it is possible to associate a set of actions to
a given variable assignment. In this case the action to be performed is selected
non-deterministically in this set.

Evolution functions. The evolution function for an agent describes how
variable assignments change as a results of the actions performed by all the other
agents. For instance, the evolution function for a printer could prescribe that,
if the current local state (or a variable composing the local state) is “ready”
and an agent performs the action “send print job”, then the next local state of
the printer is “busy”. Formally, the evolution function is a function returning
a “next” assignment to the local variables of an agent as a function of the
“current” set of assignments to local variables, the observable variables of the
environment, and the actions performed by the agents. A global evolution
function is computed by taking the conjunction of all the agents’ evolution
functions.

The description of a MAS using ISPL is completed by the declaration of a
set of initial states expressed as assignments to local variables. If more than one
state satisfies the assignments, then the initial state is selected randomly. The
system evolves from this set of initial states in accordance to the protocols and
the evolutions functions, and this process is used to compute the truth value
of formulae specified by the user. Fairness conditions can also be specified in
ISPL, to rule out unwanted behaviour (e.g. a communication channel being
continuously noisy or a printer being locked forever by a single agent)

In the next sections we will provide two concrete examples and their encoding
in ISPL. We refer to Section 3.4 for a more formal definition of ISPL and its
semantics.
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Communication channel
Sender Receiver(Environment)

Figure 2.1: The bit transmission problem.

2.1.2 A concrete example: the bit transmission problem
and its encoding in ISPL

In the bit-transmission problem [4] a sender S wants to communicate the value
of a bit to a receiver R, by using an unreliable communication channel (see
Figure 2.1). In this example, the channel may drop messages, but cannot tamper
messages; also, at any given time, the channel may transmit messages in one
direction but not in the other.

One mechanism to achieve communication is as follows: S immediately starts
sending the bit to R, and continues to do so until it receives an acknowledgement
from R. R does nothing until it receives the bit; from then on, it sends messages
acknowledging the receipt to S. S stops sending the bit to R when it receives
the first acknowledgement from R, and the protocol terminates here.

To encode this example in the formalism of interpreted systems we first
introduce an Environment agent (notice: this agent is required is every ISPL
file), whose ISPL code is as follows:

Agent Environment
Obsvars:
end Obsvars
Vars:
state : {S,R,SR,none};

end Vars
RedStates:
end RedStates
Actions = {S,SR,R,none};
Protocol:
state=S: {S,SR,R,none};
state=R: {S,SR,R,none};
state=SR: {S,SR,R,none};
state=none: {S,SR,R,none};

end Protocol
Evolution:
state=S if (Environment.Action=S);
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state=R if (Environment.Action=R);
state=SR if (Environment.Action=SR);
state=none if (Environment.Action=none);

end Evolution
end Agent

In this case, the Environment does not have observable variables (this section
is empty), and it only has one variable state representing the availability of
the communication channel (e.g. SR represents the fact that both directions are
open for communication). Thus, the Environment agent has 4 possible local
states. The Environment can perform four actions (in this case we use the
same names for local states and actions): transmit the message from Sender
only, from both Sender and Receiver, from Receiver only, or don’t transmit any
message. The protocol in this case simply prescribes that in every state any
action can be chosen (non-deterministically) by the agent Environment. The
Evolution function is defined as follows: take the first line below Evolution:,
this is read as “the next state will be S if the (current) Action of the Environment
is SR”. Essentially, the evolution function simply records in the local state of
the Environment the last action performed. In general, a line in the evolution
function is triggered when the Boolean condition to the right of the if keyword
becomes true.

We encode the agent Sender by means of the following ISPL code:

Agent Sender
Vars:
bit : { b0, b1}; -- The bit can be either zero or one
ack : boolean; -- This is true when the ack has been received

end Vars
RedStates:
end RedStates
Actions = { sb0,sb1,nothing };
Protocol:
bit=b0 and ack=false : {sb0};
bit=b1 and ack=false : {sb1};
ack=true : {nothing};

end Protocol
Evolution:
(ack=true) if (ack=false) and

( ( (Receiver.Action=sendack) and (Environment.Action=SR) )
or
( (Receiver.Action=sendack) and (Environment.Action=R) )
);

end Evolution
end Agent

Notice that this is a “standard” agent and no observable variables are present.
Two variables are declared in the Vars section: an enumeration type bit en-
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coding the value of the bit the Sender wants to send, and a Boolean variable
ack encoding whether or not an acknowledgement has been received (comments
can be added by escaping the commented text with the prefix --). Therefore,
the Sender has four possible local states corresponding to all the possible com-
bination of values of bit and ack. Three actions are declared for the sender:
send bit 0, send bit 1, and do nothing. The Protocol section for the Sender
defines how these actions are performed. In general, each line of the protocol
starts with a Boolean condition on the values of the variables, followed by a
colon, followed by a list of actions that are allowed when the Boolean condition
is true. The lines of the protocol do not need to be exhaustive: if they are not,
the special keyword Other needs to be used to specify what to do when none of
the Boolean condition is true (for instance by introducing a “nothing” action as
in this case). The evolution function function in this case is straightforward: the
Sender changes the value of the variable ack only if it is false and an acknowl-
edgement is received from the Receiver (and the variable bit does not change
its value); notice how other agents’ actions are scoped with the syntax construct
AgentName.Action. If no scoping prefix is added, the value is intended to refer
to the agent in which the condition is declared. As in the case of protocols, the
list of Boolean conditions does not need to cover all possible cases: MCMAS
assumes that, if none of the Boolean conditions is true, then the local state of
the agent does not change.

We encode the agent Receiver by means of the following ISPL code:

Agent Receiver
Vars:
state : { empty, r0, r1 };

end Vars
RedStates:
end RedStates
Actions = {nothing,sendack};
Protocol:
state=empty : {nothing};
(state=r0 or state=r1): {sendack};

end Protocol
Evolution:
state=r0 if ( ( (Sender.Action=sb0) and (state=empty) and

(Environment.Action=SR) ) or
( (Sender.Action=sb0) and (state=empty) and
(Environment.Action=S) ) );

state=r1 if ( ( (Sender.Action=sb1) and (state=empty) and
(Environment.Action=SR) ) or

( (Sender.Action=sb1) and (state=empty) and
(Environment.Action=S) ) );

end Evolution
end Agent

Only one enumeration variable is declared for this agent, representing whether
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or not the bit has been received, and its value. Agent Receiver can perform two
actions: either do nothing (if state is empty), or send an acknowledgement if
a bit has been received. Receiver evolves to state r0 if it was in state empty
and the sender is performing the action of sending bit 0, and the Environment
is enabling transmission either in both direction (Environment.Action=SR), or
at least from the sender (Environment.Action=S). The evolution to state r1 is
similar.

After the declaration of Environment and agents, five more sections are
required to complete the ISPL input to MCMAS: Evaluation, InitStates,
Groups, Fairness, and the list of formulae to be verified:

Evaluation
recbit if ( (Receiver.state=r0) or (Receiver.state=r1) );
recack if ( ( Sender.ack = true ) );
bit0 if ( (Sender.bit=b0));
bit1 if ( (Sender.bit=b1) );
envworks if ( Environment.state=SR );

end Evaluation

InitStates
( (Sender.bit=b0) or (Sender.bit=b1) )
( Receiver.state=empty ) and ( Sender.ack=false) and
( Environment.state=none );

end InitStates

Groups
g1 = {Sender,Receiver};

end Groups

Fairness
envworks;

end Fairness

Formulae
AF(K(Sender,K(Receiver,bit0) or K(Receiver,bit1)));
AG(recack -> K(Sender,(K(Receiver,bit0) or K(Receiver,bit1))));

end Formulae

The Evaluation section introduces the Boolean variable that are used in
Fairness conditions and in the formulae to be verified. These Boolean formulae
are defined by Boolean expressions over the local states of the agents. For
instance, the proposition recbit is true if the local state of the Receiver is r0
or r1.

The section InitStates declares the set of initial states by using a Boolean
expression over local states. In this case, there are two possible initial states, one
where the bit value is b0 and one where the bit value is b1, and with ack=false
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and all the other local states for Receiver and Environment set to their empty
value.

The section Groups allows for the definition of groups of agents, that can be
used in the verification of group modalities in the Formulae section.

The section Fairness contains a list of Boolean expressions: intuitively, it is
required that all the formulae listed in this section must be true infinitely often
along all executions. For instance, in the example above it is required that
the proposition envworks is true infinitely often, meaning that the environment
cannot avoid the state SR forever.

The section Formulae contains the list of formulae to be verified. Formulae
are built using CTL temporal operator, epistemic operators, operators to rea-
son about correct behaviour and strategies. In the example listed above, the
first formula is read as “along all paths, at some point in the future the sender
will know that the receiver knows that the bit value is either 0 o 1”. This for-
mula is true in this particular case (see below) because of the fairness condition
envworks. If this fairness condition is commented, then the formula becomes
false (because the Environment could forbid communication indefinitely). The
second formula claims that “it is always true that, if an acknowledgement had
been received, then the sender knows that the receiver knows the value of the
bit”. This formula is true even if the fairness condition is removed.

The example presented in this section and additional formulae can be found
in the text file examples/btp.ispl in the source distribution of MCMAS.

2.1.3 Verification and simulation

In this section we present how to run MCMAS from the command line to perform
verification and simulation of the example presented in the previous section.

The minimal MCMAS execution consists in the invocation of the executable
followed by the name of the ispl file to be verified:

$ ./mcmas examples/btp.ispl
********************************************************************************

MCMAS v0.9.5

This software comes with ABSOLUTELY NO WARRANTY, to the extent
permited by applicable law.

Please check
http://www.cs.ucl.ac.uk/staff/f.raimondi/MCMAS/
for the latest release.
Report bugs to <hongyang.qu@imperial.ac.uk> or <f.raimondi@cs.ucl.ac.uk>

********************************************************************************

examples/btp.ispl has been parsed successfully.
Gloabl syntax checking...
Done
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Encoding BDD parameters...
Done.
Checking formulae...
Building set of fair states...
Formula number 0: (AF K(Sender, (K(Receiver, bit0) ||

K(Receiver, bit1)))),
is TRUE in the model

Formula number 1: (AG (recack -> K(Sender, (K(Receiver, bit0) ||
K(Receiver, bit1))))),

is TRUE in the model
done, 2 formulae successfully read and checked
execution time = 0
number of reachable states = 18
BDD memory in use = 4306216

In this case, if the syntax is correct, MCMAS simply outputs the result of
the evaluation of the formulae found in the Formulae section of the ISPL file.
MCMAS performs a detailed syntax check of the input file and the verification
process is not invoked if a syntax error is present. In case of errors, MCMAS
terminates with a warning and details of the error. As an example, if the section
ObsVars is not declared in the agent Environment, MCMAS terminates with
the following error:

$ ./mcmas examples/btp.ispl
********************************************************************************

MCMAS v0.9.5

This software comes with ABSOLUTELY NO WARRANTY, to the extent
permited by applicable law.

Please check
http://www.cs.ucl.ac.uk/staff/f.raimondi/MCMAS/
for the latest release.
Report bugs to <hongyang.qu@imperial.ac.uk> or <f.raimondi@cs.ucl.ac.uk>

********************************************************************************

examples/btp.ispl:10.1-4: syntax error, unexpected VARS, expecting OBSVARS
examples/btp.ispl has syntax error(s).

A number of options are available to compute counterexamples, to increase
the verbosity level, etc. These options are explained in detail in Section 3.1.

One important feature of MCMAS is the possibility of running simulations.
The simulation environment is started with the option -s from the command
line:

$ ./mcmas -s examples/btp.ispl
********************************************************************************
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MCMAS v0.9.5

This software comes with ABSOLUTELY NO WARRANTY, to the extent
permited by applicable law.

Please check
http://www.cs.ucl.ac.uk/staff/f.raimondi/MCMAS/
for the latest release.
Report bugs to <hongyang.qu@imperial.ac.uk> or <f.raimondi@cs.ucl.ac.uk>

********************************************************************************

examples/btp.ispl has been parsed successfully.
Gloabl syntax checking...
Done
Encoding BDD parameters...

--------- Initial state ---------
Agent Environment
state = none

Agent Sender
ack = false
bit = b0

Agent Receiver
state = empty

----------------------------
Is this the initial state? [Y(es), N(ext), E(xit)]:

MCMAS stops at this point waiting for input from the user. It is possible to
go through all the possible initial states with the keys N (Next) and P (Previous).
User Y to select an initial state:

--------- Initial state ---------
Agent Environment
state = none

Agent Sender
ack = false
bit = b0

Agent Receiver
state = empty

----------------------------
Is this the initial state? [Y(es), N(ext), E(xit)]: Y
Enabled transtions:
1 : Environment : none; Sender : sb0; Receiver : nothing
2 : Environment : SR; Sender : sb0; Receiver : nothing
3 : Environment : S; Sender : sb0; Receiver : nothing
4 : Environment : R; Sender : sb0; Receiver : nothing
Please choose one, or type 0 to backtrack or -1 to quit:
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When a state is chosen, MCMAS outputs the possible transition from that state.
Transitions can be chosen by typing the corresponding number (in the example
below transition number two is chosen):

Please choose one, or type 0 to backtrack or -1 to quit:
2

--------- Current state ---------
Agent Environment
state = SR

Agent Sender
ack = false
bit = b0

Agent Receiver
state = r0

----------------------------
Enabled transtions:
1 : Environment : S; Sender : sb0; Receiver : sendack
2 : Environment : R; Sender : sb0; Receiver : sendack
3 : Environment : none; Sender : sb0; Receiver : sendack
4 : Environment : SR; Sender : sb0; Receiver : sendack
Please choose one, or type 0 to backtrack or -1 to quit:

When a transition is chosen, MCMAS displays the new state and the tran-
sitions available in the new state. Notice that it is always possible to backtrack
using 0, or to exit using -1.

2.1.4 A more complex example: the protocol of the dining
cryptographers

The protocol of the dining cryptographers was introduced in [2]. The original
wording from [2] is as follows:

“Three cryptographers are sitting down to dinner at their favourite three-star
restaurant. Their waiter informs them that arrangements have been made with
the maitre d’hotel for the bill to be paid anonymously. One of the cryptogra-
phers might be paying for the dinner, or it might have been NSA (U.S. National
Security Agency). The three cryptographers respect each other’s right to make
an anonymous payment, but they wonder if NSA is paying. They resolve their
uncertainty fairly by carrying out the following protocol:

Each cryptographer flips an unbiased coin behind his menu, between him
and the cryptographer on his right, so that only the two of them can see the
outcome. Each cryptographer then states aloud whether the two coins he can
see – the one he flipped and the one his left-hand neighbour flipped – fell on
the same side or on different sides. If one of the cryptographers is the payer,
he states the opposite of what he sees. An odd number of differences uttered
at the table indicates that a cryptographer is paying; an even number indicates
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that NSA is paying (assuming that the dinner was paid for only once). Yet
if a cryptographer is paying, neither of the other two learns anything from the
utterances about which cryptographer it is.”[2]

Notice that similar versions of the protocol can be defined for any number
of cryptographers greater than three.

We model an instance of this example with three cryptographers by intro-
ducing three agents Ci (i = {1, 2, 3}) to model the three cryptographers, in
addition to the environment agent.

The environment is used to select non-deterministically the identity of the
payer and the results of the coin tosses. We introduce three variables for the
environment, one for each coin. Also, we introduce an observable variable to
record the result of the utterances (even or odd):

Agent Environment
Obsvars:
numberofodd : { none, even, odd };

end Obsvars

Vars:
coin1 : {head,tail};
coin2 : {head,tail};
coin3 : {head,tail};

end Vars
[...]

It is assumed that the environment can perform only one action, the null
action. Therefore, the protocol PE is simply mapping every local state to the
null action by means of the Other keyword. The evolution function of the
environment determines the evolution of the observable variable only to record
the result of the utterances.

The local states of a cryptographer are composed by four variables repre-
senting, respectively, whether the cryptographer is the payer, the value of the
coins, and whether the coins are equal or different. Each cryptographer can
perform one of three actions: say “equal”, say “different”, or do nothing. These
actions are performed in accordance with the protocol derived from the infor-
mal description above. The evolution function for the cryptographers simply
updates the variable recording whether or not the coins that can be seen are
equal.

There are 32 possible initial states, corresponding to the possible combina-
tions of coin tosses and payers. In this example no fairness condition is required
and MCMAS can be used to check the characteristic properties of this example:
if there is an odd number of utterances, then someone at the table paid the
bill. In this case, it is also true that a cryptographer did not pay for the dinner,
the this cryptographer knows that a cryptographer paid for it, but he does not
know who is the actual payer. This is captured by the following formula:

( (odd and !c1paid) -> (K(DinCrypt1,(c2paid or c3paid) ) ) and
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!K(DinCrypt1,c2paid) and !K(DinCrypt1,c3paid) );

where c1paid is an atomic proposition which is true if the first cryptographer
paid the dinner (and similarly for 2 and 3), and odd is an atomic proposition
true when there is an odd number of utterances.

Conversely, an even number of utterances implies that all the cryptographers
know that the company paid for the dinner. The following formula captures that
the first cryptographer knows this fact:

( (even) -> (K(DinCrypt1,!c2paid) and K(DinCrypt1,!c3paid) ) );

The ISPL code for this example can be found in the source distribution
under the directory examples/din-crypt.
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Chapter 3

Reference

3.1 Command line options

The available command line options are displayed by running MCMAS with the
-h option:

$ ./mcmas -h
*********************************************************************

MCMAS v0.9.5

This software comes with ABSOLUTELY NO WARRANTY, to the extent
permited by applicable law.

Please check
http://www.cs.ucl.ac.uk/staff/f.raimondi/MCMAS/
for the latest release.
Report bugs to <hongyang.qu@imperial.ac.uk> or <f.raimondi@cs.ucl.ac.uk>

*********************************************************************

Usage: mcmas [OPTIONS] FILE
Example: mcmas -v 3 -bdd_stats myfile.ispl

Options:
-s Interactive execution
-v Number verbosity level ( 0 -- 5, default 0 )
-e Number Choose the approach to do model checking (0 -- 2, default 1)
-bc Store some BDDs to speed up verification
-if Encode initial states first
-bdd_stats Print BDD statistics
-src Print parsed ISPL source code and exit
-gsc Check the syntax and exit
-c Print counterexamples or witness executions
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-cex_prefix Destination directory for counterexample files
-g Check formulas globally (i.e., not only on initial states)
-d Run in debug mode
-h This screen

More in detail:

• -s: this option invokes the interactive mode execution (see previous sec-
tion).

• -v number: this option is used to modify the verbosity level. It is particu-
larly useful to detect the bottlenecks in large examples and to investigate
unexpected behaviours of MCMAS or bugs.

• -e number: this option is used to switch between different strategies for
the computation of the transition relation and reachable states. The value
0 pre-computes a monolithic transition relation. Option 1 and 2 postpone
this computation and they differ on how reachable states are computed
internally.

• -bc: this option stores some BDDs in memory to speed up verification at
the expenses of more memory consumption.

• -if: this option is used to decide when to compute the set of initial
states. In a normal execution, initial states are computed at the beginning;
however, in some cases (e.g., simulation) it is not necessary to compute
this set.

• -bdd_stats: this option is used to print statistics on OBDDs at the end
of the execution. Using this option it is possible to estimate memory
consumption and the compression level.

• -src: this option prints a parsed and cleaned version of the input file.

• -gsc: this option verifies the correct syntax of the input file and exits
without performing verification.

• -c: this option is used to compute counterexamples (for false universal
formulae) and witnesses (for true existential formulae). For each formula
for which such computation is possible, MCMAS emits two files: a .dot
file encoding the graphical representation of the counterexample/witness
path, and a .info file containing a detailed description of the states in the
path. These files are named cexN(.dot/.info), where N is the number of
the formula. These files are used by the graphical interface to display a
graphical representation of the traces. A textual representation is also
printed on screen.

• -cex_prefix dirname: this option allows to specify a path where the
.dot/.info file are written (the default is to write this file in the directory
where MCMAS is launched from).
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• -g: this option performs verification on the set of all reachable states. The
default behaviour is to check formulae in the set of initial states only (if a
global check is required, then AG(formula) should be used).

• -d: this option is used to run MCMAS in debug mode. This is particularly
useful to trace the cause of unexpected behaviour or bugs. Notice: this
option produces a lot of output to the screen.

3.2 ISPL syntax

In this section we present the formal syntax of ISPL. Section 3.2.1 provides an
overview of the language. Section 3.2.2 lists the reserver keywords which cannot
be used as identifiers. Section 3.2.3 reports the formal grammar of ISPL using
a bison-like syntax. See Section 2.1.2 for an informal description of the various
components of an ISPL file.

3.2.1 ISPL overview

A multi-agent system specified in ISPL is composed of an Environment agent
and a set of normal agents. Each agent has a set of local variables and the
Environment also has a set of observable variables, which can be “observed” by
other agents. The local states of an agent, each of which contains a valuation
of its local variables (and observable variables if the agent is the Environment),
are partitioned into two sets: the set of green states and the set of red states.
The two sets are used to check correct behaviour properties. Every agent also
has a set of actions, a protocol function and an evolution function.

The ISPL specification also contains the definition of initial states, proposi-
tions, groups, fairness formulae and formulae to be checked.

Below is the general structure of a model.

Agent Environment
Obsvars:
...
end Obsvars
Vars:
...
end Vars
RedStates:
...
end RedStates
Actions = {...};
Protocol:
...
end Protocol
Evolution:
...
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end Evolution
end Agent

Agent TestAgent
Vars:
...
end Vars
RedStates:
...
end RedStates
Actions = {...};
Protocol:
...
end Protocol
Evolution:
...
end Evolution

end Agent

Evaluation
...
end Evaluation

InitStates
...
end InitStates

Groups
...
end Groups

Fairness
...
end Fairness

Formulae
...
end Formulae

Note that all the strings in the structure above (except TestAgent, which
is the name of a normal agent) are reserved keywords. More agents could be
defined similarly to TestAgent. The following sections explain the details of
each section of an ISPL file.
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Definition of variables

Currently, ISPL allows three types of variables: Boolean, enumeration and
bounded integer. Suppose x, y and y are variables of Boolean, enumeration
and bounded integer respectively. They are be defined as follows:

x : boolean;
y : {a, b, c};
z : 1 .. 4;

Note that the value of x can be true or false, the value of y is one of a, b
and c, and the value of z can be 1, 2, 3, or 4. The lower bound and the upper
bound of z are 1 and 4 respectively. The definition of a local variable and the
definition of an observable variable are the same. A comparison over Boolean
variables or enumeration variables can only be an equality test, e.g., x = true,
y = a, x != false or y != b. Arithmetic operations “=”, “!=”, “<”, “<=”,
“>”, “>=” are allowed for bounded integers, e.g., z < 2 or z >= z * 2 - 3.

Definition of red states

The red states of an agent are represented by a Boolean formula over its local
variables (and observable variables if the agent is the Environment). That is,
all the local states that satisfy the formula are red, while the other local states
are green. Allowed Boolean operators are and, or and ! (for not). For example,
x = true and (!(y = a) or z > 3) is an acceptable Boolean formula for

red states.

Definition of actions

All actions of an agent are defined in the section Actions:

Actions = { a1, b2, c3};

Definition of protocol function

A line in a protocol function is composed of a condition, which is a Boolean
formula over local states, and a list of actions. The condition represents all local
states that satisfy the condition and the list of actions allowed to be performed
in local states specified by the condition. In this example:

x = true and z < 2 : { a1, a3};

x = true and z < 2 is the condition and {a1, a3} is the list of actions. The
conditions appearing in different lines do not need to be mutually exclusive,
i.e., the conjunction of these two conditions needs not to be false. If this is the
case, the agent has nondeterministic behaviour and all behaviours are considered
possible by MCMAS.

For an agent that has many local states, it might be unrealistic or even
impossible to specify actions for every state. MCMAS includes the reserved
keyword Other:
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Other : { action-list };

This item is optional, but it must be the last one in a protocol function if it is
used. The keyword Other encodes all states except those specified in any line
appearing before it. This keyword is also useful if the same set of actions is
allowed in all local states. In this case, simply let the Other item be the only
one in the protocol function.

Definition of evolution function

A line in an evolution function consists of a set of assignments of local vari-
ables (and observable variables for the Environment) and an enabling condition,
which is a Boolean formula over local variables, observable variables of the En-
vironment, and actions of all agents.

The left hand side (LHS) of an assignment is a local/observable variable
being assigned to a new value and the right hand side (RHS) is a truth value or
a Boolean local/observable variable if LHS is a Boolean variable, an enumera-
tion value or an enumeration local/observable variable if LHS is an enumerate
variable, or an arithmetic expression if LHS is a bounded integer variable. An
arithmetic expression can contain local variables and observable variables of
bounded integer type. An observable variable must have a prefix “Environ-
ment”, such as Environment.x. Multiple assignments can be connected by the
keyword and.

In an enabling condition, all observable variable must have the prefix “Envi-
ronment”. A proposition over actions is of the form XXX.Action = xxx, where
XXX is the name of an agent and xxx is one of its actions.

This is a possible line of an evolution function:

(x = true and z = Environment.z + 1) if (y = b and TestAgent.Action = a1);

This is read as: “in the next step, the value of x is true and the value of z is
equal to the (current) value of z for the Environment /emphif the current value
of y is b and TestAgent is performing action a1”

Definition of evaluation function

An evaluation function consists of a group of atomic propositions, which are de-
fined over global states. Each atomic proposition is associated with a Boolean
formula over local variables of all agents and observable variables in the En-
vironment. The proposition is evaluated to true in all the global states that
satisfy the Boolean formula. Every variable involved in the formula has a prefix
indicating the agent the variable belongs to. An example of defining an atomic
proposition is shown below:

happy if Environment.x = true and TestAgent.z < Environment.z;

where happy is an atomic proposition and if is a keyword.
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Definition of initial states

Initial states are defined by a Boolean formula over variables, exactly like a
Boolean formula for an atomic proposition. However, each proposition in the
Boolean formula has only the following form:

XXX.x = xxx

where XXX is a normal agent or the Environment, x is a variable of XXX and xxx
is a truth value, an enumeration value or an integer, depending on the type of
the variable. For simplicity, arithmetic expressions are not allowed. Below is an
example:

Environment.x = false and Environment.y = a and
TestAgent.x = true and TestAgent.z = 1;

Definition of groups

Groups are used in formulae involving group modalities. A group includes one
or more agents, including the Environment, such as

g1 = { TestAgent, Environment };

Definition of fairness formulae

A fairness formula is a Boolean formula over atomic propositions defined in
Section 3.2.1. Besides Boolean operators and, or and !, operator − > is also
allowed in fairness formulae and in formulae defined in Section 3.2.1. Below is
an example:

happy and ! dead;

where happy and dead are atomic propositions. Notice that this section can
contain a list of formulae.

Definition of formulae to be checked

A formula to be verified is defined over atomic proposition. It can have one of
the following forms:
formula ::= ( formula )
| formula and formula
| formula or formula
| ! formula
| formula −> formula
| AG formula
| EG formula
| AX formula
| EX formula
| AF formula
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| EF formula
| A ( formula U formula )
| E ( formula U formula )
| K ( AgentName , formula )
| GK ( GroupName , formula )
| GCK ( GroupName , formula )
| O ( AgentName , formula )
| KH ( AgentName , AgentNameOrGroupName , formula )
| DKH ( GroupName , AgentNameOrGroupName , formula )
| DK ( GroupName , formula )
| < GroupName > X formula
| < GroupName > F formula
| < GroupName > G formula
| < GroupName > ( formula U formula )
| AtomicProposition

In the above definition, AgentName is the name of a normal agent or the Environ-
ment, GroupName is the name of a group defined in Section 3.2.1, AgentNameOrGroupName
can be the name of a normal, the Environment, or the name of a group,
AtomicProposition is an atomic proposition defined in Section 3.2.1.

Notes

1. All sections in the Environment can be left blank if they are not needed;

2. Section RedStates in any normal agent can be left blank if all local states
are green;

3. Section Groups can be left blank if no group is used by any formula being
checked;

4. Section Fairness can be left blank if fairness conditions are not required.

3.2.2 Reserved keywords

"--".*
"Agent"
"RedStates"
"Actions"
"Action"
"Protocol"
"Evolution"
"Evaluation"
"InitStates"
"Groups"
"Fairness"
"Formulae"
"end"
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"Environment"
"Obsvars"
"Vars"
"boolean"
"true"
"false"
"Other"
"("
")"
"{"
"}"
"<"
">"
"<="
">="
"<>"
"if"
"="
"and"
"or"
"->"
"AG"
"EG"
"AX"
"EX"
"X"
"F"
"G"
"AF"
"EF"
"A"
"E"
"U"
"K"
"GK"
"GCK"
"O"
"KH"
"DKH"
"DK"
"!"
":"
","
"."
";"
".."
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"-"
"+"
"*"
"/"

3.2.3 The grammar

/* Interpreter System */
is ::= environment agents evaluation istates groups fairformulae formulae

/* AGENT ENVIRONMENT */
environment ::= Agent Environment obsvardef envvardef reddef envactiondef
envprotdef envevdef end Agent

/* Observable variables */
obsvardef ::= Obsvars : varidlist end Obsvars
| Obsvars : end Obsvars

varidlist ::= onevardef ; | varlist onevardef ;
onevardef ::= ID : boolean
| ID : integer .. integer
| ID : { enumlist }

enumlist ::= ID | enumlist, ID
integer ::= NUMBER | - NUMBER

/* Non-observable variables in Environment */
envvardef ::= Vars : varidlist end Vars
| Vars : end Vars

/* Definition of red states */
reddef ::= RedStates : lboolcond ; end RedStates
| RedStates : end RedStates

/* ACTIONS in Environment */
envactiondef ::= Actions = { actionidlist } ;
| Actions = { } ;

actionidlist ::= ID | actionidlist , ID

/* PROTOCOL in Environment */
envprotdef ::= Protocol : protdeflist end Protocol
| Protocol : protdeflist otherbranch end Protocol
| Protocol : end Protocol
| Protocol : otherbranch end Protocol

protdeflist ::= protline | protdeflist protline
protline ::= lboolcond : { enabledidlist } ;
enabledidlist ::= ID | enabledidlist , ID
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otherbranch ::= Other : { enabledidlist } ;

/* Boolean conditions for protocols */
lboolcond ::= ( lboolcond )
| lboolcond and lboolcond
| lboolcond or lboolcond
| ! lboolcond
| expr1 logicop expr1

/* Arithmetical expression for Environment */
expr1 ::= expr1 + term1
| expr1 - term1
| term1

term1 ::= term1 * element1
| term1 / element1
| element1

element1 ::= ( expr1 )
| varvalue1

logicop ::= < | <= | > | >= | = | !=

/* Variable values (not allow prefix like ID. ID) */
varvalue1 ::= boolvalue | ID | integer
boolvalue ::= true | false

/* EVOLUTION DEFINITION for Environment */
envevdef ::= Evolution : envevdeflist end Evolution
| Evolution : end Evolution

envevdeflist ::= envevline | envevdeflist envevline
envevline ::= boolresult if eboolcond ;
boolresult ::= ( boolresult )
| boolresult and boolresult
| ID = expr1

/* Boolean conditions for Environment’s evolution function */
eboolcond ::= ( eboolcond )
| eboolcond and eboolcond
| eboolcond or eboolcond
| ! eboolcond
| expr1 logicop expr1
| Action = ID
| ID . Action = ID

/* Agents */
agents ::= agent | agents agent
agent ::= Agent ID vardef reddef actiondef protdef evdef end Agent

/* Non-observable variables */
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vardef ::= Vars : varidlist end Vars

/* ACTIONS */
actiondef ::= Actions = { actionidlist } ;

/* PROTOCOL */
protdef ::= Protocol : protdeflist end Protocol
| Protocol : protdeflist otherbranch end Protocol
| Protocol : otherbranch end Protocol

/* EVOLUTION DEFINITION for normal agents*/
evdef ::= Evolution : evdeflist end Evolution
evdeflist ::= evline | evdeflist evline
evline ::= boolresult1 if gboolcond ;
gboolcond ::= ( gboolcond )
| gboolcond and gboolcond
| gboolcond or gboolcond
| ! gboolcond
| expr2 logicop expr2
| Action = ID
| ID . Action = ID
| Environment . Action = ID

boolresult1 ::= ( boolresult1 )
| boolresult1 and boolresult1
| ID = expr2

/* Arithmetical expression for normal agents */
expr2 ::= expr2 + term2
| expr2 - term2
| term2

term2 ::= term2 * element2
| term2 / element2
| element2

element2 ::= ( expr2 )
| varvalue2

/* Variable values (add Environment.ID) */
varvalue2 ::= boolvalue | ID | Environment . ID | integer

/* EVALUATION */
evaluation ::= Evaluation evalist end Evaluation
evalist ::= evaline | evalist evaline
evaline ::= ID if evaboolcond ;
evaboolcond ::= ( evaboolcond )
| evaboolcond and evaboolcond
| evaboolcond or evaboolcond
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| ! evaboolcond
| expr3 logicop expr3

/* Arithmetical expression for evaluation function */
expr3 ::= expr3 + term3
| expr3 - term3
| term3

term3 ::= term3 * element3
| term3 / element3
| element3

element3 ::= ( expr3 )
| varvalue3

/* Variable values for evaluation function */
varvalue3 ::= boolvalue | ID | ID . ID | Environment . ID | integer

/* INITIAL STATES */
istates ::= InitStates isboolcond ; end InitStates
isboolcond ::= ( isboolcond )
| isboolcond and isboolcond
| isboolcond or isboolcond
| ! isboolcond
| ID . ID = varvalue1
| Environment . ID = varvalue1

/* Groups */
groups ::= Groups groupdeflist end Groups
| Groups end Groups

groupdeflist ::= groupline | groupdeflist groupline
groupline ::= ID = { namelist } ;
namelist ::= agentname | namelist , agentname
agentname ::= Environment | ID

/* FAIRNESS FORMULAE */
fairformulae ::= Fairness fformlist end Fairness
| Fairness end Fairness

fformlist ::= fformula ; | fformlist fformula ;
fformula ::= ( fformula )
| fformula and fformula
| fformula or fformula
| ! fformula
| fformula −> fformula
| ID

/* FORMULAE TO CHECK */
formulae ::= Formulae formlist end Formulae

28



formlist ::= formula ; | formlist formula ;
formula ::= ( formula )
| formula and formula
| formula or formula
| ! formula
| formula −> formula
| AG formula
| EG formula
| AX formula
| EX formula
| AF formula
| EF formula
| A ( formula U formula )
| E ( formula U formula )
| K ( ID , formula )
| K ( Environment , formula )
| GK ( ID , formula )
| GCK ( ID , formula )
| O ( ID , formula )
| O ( Environment , formula )
| KH ( ID , ID , formula )
| KH ( Environment , ID , formula )
| KH ( ID , Environment , formula )
| KH ( Environment , Environment , formula )
| DKH ( ID , ID , formula )
| DKH ( ID , Environment , formula )
| DK ( ID , formula )
| < ID > X formula
| < ID > F formula
| < ID > G formula
| < ID > ( formula U formula )
| ID

3.3 The graphical interface

The graphical interface is installed by copying the file
org.mcmas.ui_1.0.0.jar
into the plugin/ directory under your Eclipse installation. The version available
online has been tested with Eclipse 3.3 and 3.4, with Java 1.5 and 1.6, and with
Linux, Mac, and Windows operating systems. If you have problems with the
plugin, please contact us.

Initial configuration: once the plugin is installed, it needs to be configured
by specifying the directory locations of MCMAS, DOT (http://www.graphviz.
org) and (optional, only if you are using MCMAS under windows) of Cygwin.
This is done by accessing the general “Preferences” of Eclipse, as in Figure 3.1.
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Figure 3.1: The MCMAS preference tab.
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Figure 3.2: The MCMAS project wizard.

Once the plugin is installed correctly, it is possible to create a new MCMAS
project using the wizard, by selecting File -¿ New -¿ Other, and then MCMAS
project (see Figure 3.2).

The new project creates an empty file with the initial structure of an ISPL
file. The file can be renamed and it should be completed with all the neces-
sary information required by the grammar. Syntax errors are underlined and
contextual help is provided to fix them (see Figure 3.3).

Verifications, simulations, and counter-examples analysis can be performed
from this graphical interface:

Running a simulation. To run a simulation, select the desired method
from the drop-down MCMAS menu (see Figure 3.4) (symbolic interactive mode
is more appropriate for large examples). Click the appropriate tab under the
editor window to access the correct pane and simply follow the instructions
displayed to move forward and backward in a simulation.

Performing verification. Verification of the fomulae in an ISPL file is per-
formed by selecting “Launch verification” from the MCMAS drop down menu.
The results of the verification are available by clicking on the “Model Checking”
tab at the bottom of the editor window (see Figure 3.5).

Analysing counter-examples. It is possible to analyse witnesses and
counter-examples by clicking on “Show counterexample/witness” from the ver-
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Figure 3.3: The ISPL editor for an empty file.
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Figure 3.4: Running a simulation.

ification window. A description of the states is available on the right-hand side
of the window. Temporal transitions are represented by a black arrow labelled
with the joint action performed. Epistemic transitions are represented by a red
arrow labelled with the appropriate name of the agent (or group of agents) for
the relation.

3.4 Theoretical background: the semantics of
interpreted systems

This section is extracted from [5] and only slightly modified to introduce the
notion of “public” (or “observable”) local states for the environment.

The formalism of interpreted systems was introduced in [4] to model a system
of agents and to reason about the agents’ epistemic and temporal properties.
In this formalism, each agent is modelled using a set of local states, a set of
actions, a protocol, and an evolution function.

• The set of local states for an agent i is denoted by the symbol Li. Elements
of Li capture the “private” information of an agent and, at any given time,
local states represent the state in which an agent is (e.g. ready and busy
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Figure 3.5: Verification results.

Figure 3.6: A counter-example.
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may be elements of Li). Contrary to [4], it is assumed that the set Li is
finite (this is required by the model checking algorithms).

• The set of actions for an agent i is denoted by the symbol Acti. Elements
of Acti represent the possible actions that an agent is allowed to perform.
Differently from local states, actions are “public”. Similarly to local states,
here the set Acti is assumed to be finite.

• The protocol for an agent i is denoted by the symbol Pi. The protocol is
a “rule” establishing which actions may be performed in each local state.
The protocol Pi is modelled by a function Pi : Li → 2Acti , assigning a
set of actions to a local state. Intuitively, this set corresponds to the
actions that are enabled in a given local state. Notice that this definition
may enable more than one action to be performed for a given local state.
When more than one action is enabled, it is assumed that an agent selects
non-deterministically which action to perform.

• The evolution function for agent i is denoted by the symbol ti (notice: [4]
define a single evolution function t for all the agents, see discussion below).
The evolution function determines how local states “evolve”, based on the
agent’s local state, on other agents’ actions, and on the public local state of
a special agent used to model the environment (see below). The evolution
function is modelled by a function ti : Li×LEP

×Act1×. . .×Actn×ActE →
Li, where n is the number of agents in the system.

A special agent E is used to model the environment in which the agents
operate. Similarly to the other agents, E is modelled using a set of local states
LE , a set of actions ActE , a protocol PE , and an evolution function tE . As
mentioned above, part of the local states of E are “public”, i.e. LE = LEP

×LER
,

where LEP
denotes the set of “public” local states of E, and LER

denotes the
set of “private” local states of E: all the remaining agents may “peek” at LEP

to determine their temporal evolution, and the epistemic accessibility relations
of the agents contain the public information of E as well (see below).

For all agents including the environment, the sets Li and Acti are assumed
to be non-empty, and the number n ∈ IN of agents is assumed to be finite.
For convenience, the symbol Act denotes the Cartesian product of the agents’
actions, i.e., Act = Act1 × . . .×Actn ×ActE . An element α ∈ Act is a tuple of
actions (one for each agent) and is referred to as a joint action. The Cartesian
product of the agents’ local states is denoted by S, i.e., S = Li× . . .×Ln×LE .
An element g ∈ S is called a global state; given a global state g, the symbol li(g)
denotes the local state of agent i in the global state g; we write lEP

(g) to denote
the “public” component of lE(g). It is assumed that, in every state, agents
evolve simultaneously (notice that this requirement is similar to the definition
of Moore synchronous game structures: see [5]).

The definition of a single evolution function t : S × Act → S presented
in [4] differs slightly from the definition of n + 1 evolution functions presented
here. The two definitions are, in fact, equivalent: t(g, a) = g′ iff, for all i ∈
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{1, . . . , n}, ti(li(g), a) = li(g′) and tE(lE(g), a) = lE(g′) (the decomposition from
a single t to n+1 “local” transition functions is guaranteed to be possible by the
assumptions on t). This choice is motivated by the fact that the definition of
an evolution function for each agent helps to keep the description of the system
compact.

Given a set of initial global states I ⊆ S, the protocols and the evolution
functions generate a set of reachable global states G ⊆ S, obtained by all the
possible runs of the system. A set of atomic propositions P and an evaluation
relation V ⊆ P ×S are introduced to complete the description of an interpreted
system. Formally, given a set of n agents {1, . . . , n}, an interpreted system is a
tuple:

IS =
〈

(Li, Acti, Pi, ti)i∈{1,...,n} , (LE , ActE , PE , tE) , I, V
〉
.

It has been shown in [4] that interpreted systems can provide a semantics to
reason about time and epistemic properties, by means the following language:

φ ::= p | ¬φ | φ ∨ φ | EXφ | EGφ | E[φUψ] | Kiφ | EΓφ | CΓφ | DΓφ.

In this grammar, p ∈ P is an atomic proposition, and the operators EX,EG,
and EU are the standard CTL operators [3]; the remaining CTL operators
EF,AX,AG,AU,AF can be derived in a standard way. The formula Kiφ
(i ∈ {1, . . . , n}) is read as “agent i knows φ”. The symbol Γ denotes a group of
agents. The formula EΓφ is read as “everybody in group Γ knows φ”; the for-
mula CΓφ is read as “φ is common knowledge in group Γ” (intuitively, common
knowledge of φ in a group of agents denotes the fact that everyone knows φ,
and everyone knows that everybody else knows φ); the formula DΓφ is read as
“φ is distributed knowledge in group Γ” (intuitively, distributed knowledge in a
group of agents is the knowledge obtained by “sharing” all agents’ knowledge).

Given an interpreted system IS , it is possible to associate a Kripke model [4]
MIS = (W,Rt,∼1, . . . ,∼n, V ) to IS ; the model MIS can be used to interpret
formulae of the grammar above. The model MIS is obtained as follows:

• The set of possible worlds W is the set G of reachable global states (this
is to avoid the epistemic accessibility of states which cannot reached using
the temporal relation).

• The temporal relation Rt ⊆ W ×W relating two worlds (i.e., two global
states) is defined by the temporal transition ti. Two worlds w and w′ are
such that wRtw

′ iff there exists a joint action a ∈ Act such that t(g, a) =
g′, where t is the transition relation of IS obtained by the composition of
the functions ti, i ∈ {1, . . . , n} and tE .

• The epistemic accessibility relations ∼i⊆W ×W are defined by imposing
the equality of the local components (for i and for the “public” part of
E) of the global states. Formally, two worlds w,w′ ∈ W are such that
w ∼i w

′ iff li(w) = li(w′) and lEP
(w) = lEP

(w′) (i.e., two worlds w and w′
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are related via the epistemic relation ∼i when the local states of agent i in
global states w and w′ are the same [4], and the “public” or “observable”
part of the Environment local states are the same).

• The evaluation relation V ⊆ AP ×W is the evaluation relation of IS .

Similarly to [3], let π = (w0, w1, . . .) be an infinite sequence of worlds such
that, for all i, wiRtwi+1, and let π(i) denote the i-th world in the sequence (the
temporal relation is assumed to be serial and thus all computation paths are
infinite). Let RE

Γ ⊆ W ×W denote the relation obtained by taking the union
of the epistemic relations for the agents in Γ, i.e., RE

Γ =
⋃

i∈Γ

∼i. Let RD
Γ denote

the intersection of the epistemic relations for the agents in Γ, i.e., RD
Γ =

⋂
i∈Γ

∼i.

Let RC
Γ denote the transitive closure of RE

Γ . It is written MIS , w |= φ when a
formula φ is true at a world w in the Kripke model MIS , associated with an
interpreted system IS . Satisfaction is defined inductively as follows:

MIS , w |= p iff (p, w) ∈ V ,
MIS , w |= ¬φ iff MIS , w 6|= φ,
MIS , w |= φ1 ∨ φ2 iff MIS , w |= φ1 or MIS , w |= φ2,
MIS , w |= EXφ iff there exists a path π such that π(0) = w,

and MIS , π(1) |= φ,
MIS , w |= EGφ iff there exists a path π such that π(0) = w,

and MIS , π(i) |= φ for all i ≥ 0,
MIS , w |= E[φUψ] iff there exists a path π such that π(0) = w, and there exists

k ≥ 0 such that MIS , π(k) |= ψ, and MIS , π(j) |= φ
for all 0 ≤ j < k,

MIS , w |= Kiφ iff for all w′ ∈W , w ∼i w
′ implies MIS , w

′ |= φ,
MIS , w |= EΓφ iff for all w′ ∈W , wRE

Γw
′ implies MIS , w

′ |= φ,
MIS , w |= CΓφ iff for all w′ ∈W , wRC

Γw
′ implies MIS , w

′ |= φ,
MIS , w |= DΓφ iff for all w′ ∈W , wRD

Γ w
′ implies MIS , w

′ |= φ.
Similarly to standard Kripke models, a formula φ is true in a model, written

MIS |= φ, if MIS , w |= φ for all w ∈W .
A formula φ is true in an interpreted system IS , denoted by IS |= φ, iff it is

true in the associated Kripke model ([4], p. 111).
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