Universita degli Studi di Roma “Sapienza”
Facolta di Ingegneria

Corso di Laurea Specialistica in Ingegneria Informatica

Composition of stateful
deterministic services in
Alternating-time Temporal Logic

Seminari di Ingegneria del Software

Metodi Formali nell'Ingegneria del Software

Paolo Felli
paolo.felli@gmail.com

Matteo Vita
matteo.vita@gmail.com

L. INtrodUCHION ..o s 2

2. PremiSES ...t e 4
2.1. Automatic service compositionc.vviiiiiiiiiiie i 4
2.2. The ATL IOGIC viiviiiiiiiiiiiiii st an e reanaens 4
3. Composition problem in ATL ... 9
4. Implementation ... 13
4.1. jMocha & cMOCha ...cvviii i 13
4.2. MCMAS L. 19
G T =] 1 2] 01 L= P 28
REfEreNCEeScoviiii i 28

1. Introduction

Web services are self-describing computational elements that support rapid, low-cost
and easy composition of loosely coupled distributed applications. From a technical
point of view, these services are modular applications that can be described,
published, located, invoked and composed over a variety of networks : any piece of
code and any application component deployed on a system can be wrapped and
transformed into a network available service, by using standard languages and
protocols.

The availability of an high level description opens the possibility of composing services
in an automatic way, with the aim of realizing target computations.

The promise of Web Service Composition is to use Web Services as fundamental
elements for realizing distributed applications and solutions. In particular, when no
available services satisfies a desired specification, different available services can be
composed and orchestrated in order to realize the specification.

Services can be characterized in different ways, but in this document we follow the
approach usually referred to as the Roman Model [1]. In such approach, services are
described by their conversational behaviour, modeled as transition systems that
capture the possible conversations a service can have with its clients.

In this document, we address the automatic composition of deterministic available
services, hence we are referring to services that are fully controllable.

Composition’s goal is, given a target service specifying a desired interaction with the
client, synthesize an orchestrator generator capable of realizing the target service
exploiting the community of available services.

An orchestrator is, basically, a function which selects an available service for executing
the action requested, maintaining with the client the same (infinite) interaction that it
would have with the target service.

Hence the orchestrator realizes a target service if and only if it's able at every step to
delegate every operation executable by the target to one of the available services.

This composition involves two different phases: the composition synthesis, where the
specification of an orchestrator is synthesized either manually or automatically, and
the composition deployment, that is the actual implementation of the orchestrator
specification in a given technology.

Our goal is to verify and realize this composition using Alternating-time Temporal
Logic (ATL).

Temporal logic was considered in two varieties : Linear-time Temporal Logic assumes
implicit universal quantification over all path that are generated by the execution of a
system, while Branching-time Temporal Logic allows explicit existential and universal
quantification over all path.

ATL represents a third, more general variety of temporal logic: Alternating-time
Temporary Logic offers selective quantification over paths seen as possible outcomes
of a game between a system and the environment.

Alternating-time temporal logic have been introduced to enrich temporal logic so that
alternating properties can be specified within the logic: since modeling languages for
open systems distinguish between internal nondeterminism (choices made by the
system) and external nondeterminism (choice made by the environment), a more
complex question arises: “can the system resolve its internal choices so that the
satisfaction of a property is guaranteed no matter how the environment resolves the
external choices?”. Alternation can be considered as a natural generalization of
existential and universal branching.

We just said that this 'alternating' satisfaction can be viewed as a winning condition in
a game between a system and its environment, but in order to capture composition of
open systems (i.e systems that interact with their environment and whose behaviors
depend on the state of the system as well as the behavior of the environments) we
consider, instead of 2-player game, the more general setting of multi-player game,
with a finite set of players that represent all the different components involved.

ATL is interpreted over a concurrent game structure. Every state transition of a
concurrent game structure results from a choice of moves, one of each player. The
player represent the individual component s and the environment of an open system.
Concurrent game structure can capture various forms of synchronous composition for
open systems and if augmented with fairness constraints, also asynchronous
composition.

We aim to show how a service composition problem instance, for services exporting
their behavior in the form of a finite deterministic transition system, can be encoded
into a concurrent game structure, and how searching for a composition is equivalent
to searching for a winning strategy for a corresponding multi-player game. Such a
requirement can be expressed and verified using alternating-time temporal logic.

This document is organized in three sections as follows: in section 2 we recall the
basic framework of our approach including ATL syntax and semantics, in section 3 we
formulate the composition problem in ATL logic, finally in the last section we provide
implementation examples using tools for system specification and verification: Mocha
and MCMAS (v0.9.6.2).

2. Premises

2.1. Automatic service composition

Services represent software modules capable of performing actions. These modules
are intended to interact with a client and their interactions follow a given behavior:
according to current state, a service offers a choice of available operations and
performs the one chosen by the client, then moves to the corresponding successor
state.

Such interaction is potentially infinite and can be stopped by the client whenever the
service is left in a consistent state, that is, the service is in a 'final' state.

This interaction pattern requires a formal representation of services; in this approach
their (public) dynamic behaviour is described as a finite transition system (TS).

A Transition System TS = <A, S, s°, 8, F> is defined as follows:
¢ A is the finite alphabet of actions
¢ S is the finite set of states
e s%is the initial state
e d € S x Ax S is the transition relation
e F is the set of final states; services can be left only in final states.

We call 'available services' those services that correspond to existing programs and
are directly available to the client.

Our goal is, given a target service specifying a desired interaction with the client, to
synthesize an orchestrator capable of realizing the target service exploiting the
community of available services. Hence the orchestrator realizes a target service if
and only if it's able at every step to delegate every operation executable by the target
to one of the available services.

Notably the target service itself is represented by a transition system TS: = <A, S,
sO:, &, Ft> sharing the operations in A, but this service is not one of the available
services of the community. Hence, it must be realized by exploiting fragments of the
available service behaviors (computations), since these are the only services that
correspond to existing programs in the system.

We make these assumptions:

1. The orchestrator has full observability on the available services and it can keep
track at runtime of their current state.

2. All services are fully controllable, being stateful and deterministic.

2.2. The ATL logic

We briefly discuss Alternating-time Temporal Logic [2]. ATL is a generalization of the
temporal logic CTL and is designed to write requirements of open systems, and is
defined by generalizing the existential and universal path quantifiers of CTL.

LTL and CTL are interpreted over Kripke structures, since these structures offer a
natural model for computations of closed systems (whose behavior is determined only
by the state of the system). However we need to model reactive systems, in which
each component behaves as an open system that interacts with its environment and
whose behavior is determined by the state of the system as well as the state of the
environment. For this reason, besides existential and universal requirements, we want
to verify if a property can be enforced by the system no matter how the environment
resolves its choices.

We already said that this 'alternating' satisfaction can be viewed as a winning
condition in a multi-player game between a set > of players that represent all the
different components involved. This game is equivalent to a 2-players game between
a protagonist and an antagonist:

Consider a set Ac> of players, a set L of computations, and a state q of the system.
Starting from state g, at each step the protagonist moves players in A (chooses a
move for each of them) while the antagonist resolves the remaining choices. If the
infinite computation resulting from this game belongs to set L, then the antagonist
wins; otherwise he loses. If the protagonist can actually win the game, then exist a
winning strategy that the players in A can follow to force a computation in L,
irrespective of how the players in Z\A choose their moves. We say that the ATL
formula <A>L is satisfied in the state g.

<A> can be viewed as a path quantifier parameterized with the set A of players,
which ranges over all computations that the players in A can force the game into.
Hence, the existential path quantifier 3 is equivalent to <>, while the universal V
corresponds to <>,

While modeling language for open system use a variety of different communication
mechanism, they can be given a common semantics in terms of concurrent game
structure in which at each step each player chooses a move, and the combination of
choices determines a transition from the current state to a successor state.

As stated before, we intend to reduce the search for a composition to the search for
winning strategies for the corresponding multi-player game over a concurrent game
structure, so we are going to avoid the dichotomy between Community transition
system and Target transition system: what we aim to obtain is a (single) game
structure for the whole set of services.

Concurrent Game Structures

As defined in [2 - p.6], a Concurrent Game Structure is a tuple S = < k,Q,M,n,d,d >
with the following components:

e A natural number k > 1 of players. Players are identified with number 1..k.
e A finite set Q of states.
e A finite set IN of propositions (observables).

e For each state gqeQ, a set n(q) < N of propositions true at q. The function n is
called labeling function.

e For each player ae{1..k} and for each state qeQ, a natural number d.(q)=1 of
moves available at state g to player a. We identify the moves available to player
a at state q with the number 1,..., d. (q) . For each state qeQ, we write D(q)

for the set {1..d1(q)} x ... x {1..d(q)} of move vectors. The function D is called
Move Function

e For each state qeQ and each move vector <ji,...,jx > € D(q), a state 9(q,
ji,--.,Jk) €Q that result from state q if every player ae{1..k} choose move j,

There are three types of game structures for the synchronous composition of open
systems:

Turn-based synchronous : at each step, only one player has a choice of
moves, and that player is determined by the current state.

Moore synchronous : in every state all players proceed simultaneously
choosing their next state independently of the moves chosen by the others.

Turn-based asynchronous : at each step, only one player has a choice of
moves, and that player is chosen by a fair scheduler.

The latter case has been used to encode Composition Problem instances as
concurrent asynchronous games.

Turn Based Asynchronous Game Structure

In a turn-based asynchronous game structure, one player is designed to represent a
scheduler. If the set of player is {1,...,,k}, we assume that the scheduler is always
player k.

In every state, the scheduler select one of the other k-1 players. We say that a player
ae{1, ..,k} is 'scheduled' whenever player k chooses move a. Scheduled player
completely determines the next state: moves chosen by other players are 'ignored'.

Formally, a game structure S = < k,Q,lN,n,d,d > is a turn-based asynchronous game
structure if k=2 and for every state qe Q the following two conditions are satisfied:

e du(g) = k-1
e for all move vectors <ji,...,jk >,<ji’,...,.Jk > €D(Qq), if jx = j«' and j. =j.’ for a=j«
then 6(ql jll"'ljk) = 6(ql jll-"ljk,)

ATL Syntax and semantics

The game structure S over whom ATL formulas are interpreted has the same
propositions and players as the formula itself: the labeling of the states in S is used to
evaluate the atomic formulas of ATL.

For easier reading we resume here ATL syntax and semantics [2 - pp. 15-19].

The temporal logic ATL is defined with respect to a finite set N of propositions and a
finite set = = {1,...,k} of players. An ATL formula is one of the following:

1. p, for propositions p € I.
2. "por 1 v ¢2, where ¢, 1 and ¢$2 are ATL formulas.

3. KA>00, <A>od or <KA>$1Ud2, where A c 2 is a set of players and ¢,$1 and
¢2 are ATL formulas.

The operator <-> is a path quantifier, and O (“next”), o (Yalways”), and U (“until”)
are temporal operators. We write <A><¢ ¢ for <A>trueU¢.

We write S, q |= y to indicate that the state q satisfies the formula g in the structure
S. The satisfaction relation |= is defined, for all states q of S, inductively as follows:

e (|= p, for propositions p € N, iff p € n(q).

o q|="yiffq|+y.

e gl=¢1v P2iffq|=¢¢lorqg|= ¢2.

e (J |= <A iff there exists a set Fa of strategies, one for each player in A,

such that for all computations A€ out(q, F,), we haveA[1] |= ¢.

e (|= <A>n¢ iff there exists a set FA of strategies, one for each player in A,
such that for all computations A€ out(q, F,) and all positions i = 0, we have A[i]

|= ¢.

e (J |= <A>9p1U0d2 iff there exists a set Fa of strategies, one for each player in A,
such that for all computations A € out(q, F,), there exists a position i = 0 such
that A[i] |= ¢2 and for all positions 0 < j< i, we have A[j] |= ¢1

The dual form for <A> is [[A]] : while <A>¢ intuitively means that the players in A
can cooperate to make ¢ true (can enforce ¢), [[A]l¢ means that the players in A
cannot cooperate to make ¢ false.

Hence «<A> can be viewed as a path quantifier, parameterized with the set A of
players, which ranges over all computations that the players in A can force the game
into, irrespective of how the players Z\A proceed.

3. Composition problem in ATL

Given a finite set of services (a community of n available services and a target
service) whose behaviours are described by a set of Transition Systems TS; = <A, S;,
s%,0, Fi>, ie{l...n+1}, we are going to define a concurrent game structure GS
starting from the general definition of Turn-Based Asynchronous Game Structure S =
<kIQInInId16>'

Premises:

1. We define the alphabet A = A; U ... U A..1 . This is the the global alphabet of
operations that all services share.

2. For each service i (available services and target service) we add an error state
's_err' to the set Si. s_err is considered a not-final state.

The Game Structure GS is a tuple < k,Q,MNM,n,d,d > where:

e k = 3 is equal to the cardinality of the set of players Z. Each player is identified
with an integer:
- ie {1...n} are the available services (n = k-2)
- t = k-1 is the target service
- k is the scheduler

e Q is a finite set of states. The number of states is equal to the powerset of the
set Il (see below).

e A finite set N of propositions (observables). For each state qeQ, a set n(q)c of
boolean propositions true at g. The function n is called labeling function.

N = {si, schi, op,, final;, last_sch;, last_opt, } where:

o sij,ie{l...k-1} jeS;

o sch;, ie {1...k-1}

O OPpa , acA

o final;, ie {1...k-1}

o last_sch; ,ie {1...k-1}
o last_opt,, acA

With this semantics:

sy=true iff service i is in its local state j

schi=true iff service i was scheduled in the current state (its move determined
current state).

op.=true iff the scheduled service performed action a
final, =true iff service i is in one of its local final states F;
last_sch; =true iff service i was the one scheduled in the previous state

last_opt.=true iff the last action performed (not just chosen) by the target is a.

While these observable propositions have boolean type, we define some more
handy meta-propositions for each qe Q:

state; : service i is in its (local) state j iff s; =true and s, =false Vy#j where
ie{1...k-1} j,yeSi . We will write state; = j.

scH : We will say that service i was scheduled in the current state (i.e. current
state was determined by its move), writing scH=i , iff sch; =true and sch; =false
V j#i, i,je{1...k-1} . If schi=false Vie{1...k-1} then we write scH=null.

Last_scH : We will say that wast_scH=i iff last_sch; =true and last_sch; =false V
j#i, i,je{1...k-1}. If last_schi=false Vie{l...k-1} then ast_scH=null. Hence
LAsT_scH is the player scheduled in the previous round.

op : op=a (the operation performed by scheduled player is a) iff op.=true and
opp=false V b#a and a,beA

last_opt : last_opt=a (the last operation performed by the target is a) iff
last_opt.=true and last_opt,=false V b#¥a , a,beA.

At the beginning of the game we have sci=null, ast_sch=null, state=s’
Vie{l...k-1%}, i.e. every service is in its local initial state. More precisely we
have that, according to the given semantics, (scH=null A ast_sch=null) iff the
game is in initial state.

For each player ie{1..k} and for each geQ, the natural number di(q)=1 is the
number of game moves available at state g to player i. In every state qeQ a
player i selects a move index 1< ji <di(q).

In particular, Vge Q we have:
o di(gq)=|A|l Vi*k
o d(q)=k-1

This means that the scheduler, as required by the turn-based asynchronous
game structure, can always schedule any player of the game, while each
service can choose a game move corresponding to any service operation in the
alphabet A (note that this doesn't mean that each service i can actually perform
exactly |A| operations in each state of TS;).

As usual, we identify the moves of a player i at state q with the index 1,...,di(q).
For each state geQ, we write D(q) for the set {1..di(q)} x ... x {1..dw(q)} of
move vectors. The function D is called 'move function'.

Being di(q)=|A|, we can now define a total order over alphabet A obtaining an
biunivocal correspondence between services' moves and alphabet operations:
we'll say that each move index ji <di(q) corresponds to a move ae A according to
the total order defined (operation acA performed by a player ie{1,..,k-1}
representing a service will be the ji-th element of A).

For each state qeQ and each move vector <ji,...,jx >eD(q), a state 0(q, ji,..-,jk)
e Q that result from state q if every player ie{1..k} choose move j. Each move
vector <ji,...,.jx > D(q) leads to a single successor state 6(q, ji,...,jx).

For each q,q' €eQ we say that q' is a successor of g if exists a move vector
<ji,.--,jx>€D(q) such that q'= 8(q, ji,---,jk)-

- we call propositions of g as unprimed, and propositions of q' as primed
- let be h=ji (i.e. the index of the scheduled player)

- let ae A be the operation associated to j, , that is the move index chosen by
player h (as we said this operation is univocally determined).

If the current state is qeQ and players choose moves ji,...,jx then the (single)
successor state q'=0(q, ji,...,jx) is so that:

o scH'=h

i.e. sch'n=true and sch'j=false Vj#h, je{1...k-1}

O LAST_SCH'=SsCH

i.e. last_sch'i= last_sch; Vie{1l...k-1}

o op'=a
i.e. op'a=true and op',=false V b#a, a,beA

o statey'=seS, if <staten,a,s>e0n, otherwise staten'=s_err

10

i.e. s'ns =true and s'y, =false Vy#s (y,seS;) if player h can perform operation
a in its local state staten according to TS, : staten—. s

otherwise s'ns or =true and s'y, =false Vy#s_err (y,s_erreS;)

o state'=state; Vi#h, ie{1,..,k-1}
i.e. S'ij=Sij Vi#h , |€{1k'1},]€S|

o last_opt'=a iff h=t, otherwise last_opt'=Ilast_opt

i.e. last_opt's=true and last_opt',=false Vb#a with a,be A if target has been
scheduled, otherwise last_opt', =last_opt, VacA.

o final'i=true iff staten' eF; , false otherwise Vie{1,..,k-1}

Note how whenever a scheduled service (available or target service)
represented by a player ie{1,..,k-1} selects a move index corresponding to an
operation it cannot actually perform in its local state, then statei=s_err in the
successor state q'. Note that there is no way the proposition s, .. can change

its value from true to false since s_err has no outbound edges in ST,.

Note that Turn-base asynchronous game structure constraint is respected:
For all move vectors <ji,...,Jk >,<ji’,...,J« > €D(q), if jk = j" and jn =jn" for h=j«
then 6(CII jll"'ljk) = 6(ql jll"-ljk,)

This game structure follows turn-based asynchronous game structure requirements,
granting observability and controllability of available services as required by
assumptions.

ATL formula

We show now how we intend to reduce the search for a composition to the search for
winning strategies for the corresponding multi-player game over structure GS.

Referring to ATL semantics, a composition exists iff the players representing the
available services and the scheduler can always cooperate, irrespective of how the
target service chooses its moves, to enforce computations that satisfy a formula,
interpreted over the set of observable propositions I, capturing the requirements of
the Composition Problem.

More precisely this corresponds to the existence a set F, of strategies, one for each

player in A={1..n,k} such that, starting from the initial game state q, for all the
resulting computations A€ out(q, F,) and all positions i=0 we have that A[i] satisfy the

given formula.

11

- The basic idea is to accept computations in which the scheduler schedules players
alternating between target and available services:

(7(sch=t) » rasT_scH=t) A (sch=t » =(LasT_scH=t))

- Whenever an available service is scheduled, we require that the player can repeat
the last operation performed by the scheduler (player t) without ending up in an
error state:

7(sch=t) = (opsch=last_opt A -(statei.(i..;=s_err))

- Whenever the target service moves to a final state, than all services have to be in
a local final state in the next game state:

(scH=t) - (finalt = finalic¢1..n})

- When the player t is scheduled, it has free choice of action: it is able to select any
possible move, but we are not interested in computations in which the target
chooses move indexes corresponding to operations it can't actually perform
according to its transition system. We want to check that all this requirements can
be enforced by players in 2\{t} (i.e. irrespective of target choices), so we simply
accept all game states in which the target selects an invalid move; this can be
done because, whenever target service is scheduled, all branches will be explored
in order to check the formula.

Checking the existence of an orchestrator is therefore reduced to checking the this
ATL formula w.r.t. the game structure GS and the set of players (we call here S; the

player i).

«S;...5,,Sc> O (

Init V statei=s err V

(
(7(sch=t) - (opsch=last_opt A
(finale - finalicqi..np) A
“(stateicqi..ny=s_err) A
LAsT_scH=t))
N
((scH=t) » ~(LasT_scH=t))
)

Where Init denotes the initial state of the game structure: Init=true iff sch=null and
last_sch=null (and Init=true - state;=s% Vie{1...k-1}).

12

4. Implementation

4.1. jMocha & cMocha [3]

Mocha is a growing interactive software environment for system specification and
verification. The main objective of Mocha is to exploit, rather than destroy, design
structure in automatic verification. Mocha is intended as a vehicle for development of
new verification algorithms and approaches. MOCHA is available in two versions,
cMocha (version 1.0.1) and jMocha (version 2.0).

Both versions offer the following capabilities:

v System specification in the language of Reactive Modules (Reactive Module
Language: RML[4]). Reactive Modules allow the formal specification of
heterogeneous systems with synchronous, asynchronous, and real-time
components. Reactive Modules support modular and hierarchical structuring
and reasoning principles.

v System execution by randomized, user-guided, or mixed-mode trace generation

v Requirement specification. Mocha’s checker can perform invariant-checking: an
invariant of a module is a predicate that is intended to hold true in all reachable
states of the module. Mocha supports the checking of state invariants as well as
transition invariants (boolean formulae which involve both current and next
state variables). Invariants are expressed by judgements.

In addition to invariant checking, cMocha supports also ATL requiremens. The
logic ATL allows the formal specification of requirements that refer to
collaborative as well as adversarial relationships between modules.

v Requirement verification by ATL-model checking (cMocha only) and both
symbolic and enumerative model checking.

v Implementation verification by checking trace containment between
implementation and specification modules.

We used jMocha just for tests and simulations (random simulation, manual simulation,
and game simulation) but its lack of an ATL checker drove our attention on cMocha.

cMOCHA: Reactive Modules

ReactiveModules is the modeling formalism and input language to Mocha. It provides
extensive facilities for the modular description of a system, and for modeling both
synchronous and asynchronous types of behavior.

An input file for MOCHA is a file with the .rm extension, which is what mocha assumes
by default. The system is described as atom and modules.

ATOMS : The state of the system is described by a set of state variable: each system
state correspond to an assignment of values to the variables. The behavior of the
system consist in an initial round which initializes the variables to their initial values,
followed by an infinite sequence of update rounds, which assign new values to the

13

variables, thus describing the evolution of the system’s state. You can also think of the
initial round correspond to the initial states of the transition system, and the update
rounds define the transition relation.

You can access the next value of the variable x (/latched value) just typing x’ (updated
value).

Atoms and modules are used to specify the initial and update rounds for all variables.
An atom is the basic unit used to described the initial condition and transition relation
of a group of related variables. It has three types of variables:

e Controlled variables: the variables for which the atom can specify the values
in each round. Each variable is controlled by almost one atom

e Read variables: the variables whose current value can be read by the atom to
decide the next values of the controlled variable

e Awaited variables: The variables whose next value can be read by the atom
in order to decide the next value of the controlled variable

The Guarded Command statements following the init keyword specify the values of
the controlled variables at the end of the initial round. The guarded command
statements following the update keyword specify the values of the controlled variables
at the end of an update round. A guarded command consist in two part : a guard that
is Boolean expression specifying when the guarded command can be executed, and a
list of assignments, used to specify the next value of the controlled variables.

This is an example of an atom:

atom IncrDecr

controls x

reads x

init
[] true -> x’' := 0

update
[] true -> x’ := inc x by 1
[] true -> x’ = dec x by 1

endatom

The atom specifies that the variable x has initially value 0 and that this value can be
non-deterministically incremented or decremented by 1 at each round, being the
guards of all guarded commands always true.

The smallest units of input are modules, not atoms, so you cannot feed an atom as
input to Mocha but it has to be embedded in a module.

MODULES : A module is a collection of atoms, together with a declaration of variables
that occur in the module. There are 2 types of module

14

1. Simple modules, obtained bay specifying directly the atoms composing the
module. A simple module is defined with the construct module module-name is
module-body

2. Composite module, obtained by combining or modifying existing modules.

Associated with each module are three set of variables:

e Private variables are the variables that are controlled by some atom of the
module, and that cannot be read or awaited by other modules. The values of a
private variables is thus local to the module.

e Interface variable are the variables that are controlled by some atom in the
module, and that can be read or awaited by atoms in other modules. These
variables cannot however be controlled by atoms of other modules, according to
the general rule stating that a variable can be controlled by at most one atom.

e External variables are the variables whose value can be read or awaited by the
atoms in the module. These module cannot be controlled by any atom in the
module.

Each of the private and interface variables of the module must be controlled by some
atom, as shown in the example:

module RandomWalk is
interface x: (0..9)

atom IncrDecr
controls x

reads x

init
[] true -> x' := 0

update
[] true -> x’ := inc x by 1
[l true -> x’ = dec x by 1

endatom
endmodule

This module is a valid input to Mocha.

Composition problem in cMOCHA

Now we introduce a representation of the Service Composition’s problem using
cMOCHA. Each player is represented through a module: scheduler, available services
and target service. Services are scheduled by the Scheduler at each step: each
module representing a service awaits an external variable sch controlled by the
Scheduler.

We show here a basic example with a target service (ST) looping in the same state
with operation 'a' and a single available service (S1).

15

51 2 ST

\7

b b

We defined custom enumeration types for some variables due to the fact that Mocha
sometimes incurs a segmentation fault error when using integer enumeration types.

In “examplel.rm” file we write:

type state: {s0,sl,s2,s err}
type sched type: {schnil,ST,S1}
type op: {A,B}

module Scheduler
interface sch : sched type; last sch : sched type
atom ts
controls sch,last sch

reads sch

init
[Jtrue -> sch' := schnil; last sch':= schnil

update
[Isch=schnil -> last sch':=sch; sch':= ST
[]sch=schnil -> last sch':=sch; sch':= Sl
[1sch=ST -> last sch':=sch; sch':= Sl
[1sch=ST -> last sch':=sch; sch':= ST
[I]sch=S1 -> last sch':=sch; sch':= Sl
[Isch=S1 -> last sch':=sch; sch':= ST

endatom
endmodule

module Servicel
interface opSl: op; finalSl:bool; stateSl:state

external sch: sched type

16

atom ts
controls stateS1l,opSl,finalsSl
reads stateS1l,finalSl
awaits sch
init
[Jtrue -> stateS1':=s0; finalS1l':=true
update
[IstateS1=s0 & sch'=S1l -> stateS1l':=sl; opSl':=A; finalSl':=false
[]stateS1=s0 & sch'=S1l -> stateS1':=s0; opSl':=B; finalSl':=true

[]stateS1l=sl & sch'=S1 -> stateSl':=s2; opSl':=A; finalSl':=true
[]stateSl=sl & sch'=S1l -> stateS1l':=sl; opSl':=B; finalSl':=false
[]stateS1=s2 & sch'=S1 -> stateS1':=s0; opSl':=A; finalSl':=true
[]stateS1=s2 & sch'=S1l -> stateSl':=s2; opSl':=B; finalSl':=true

[IstateSl=s err & sch'=S1 ->
stateSl':=s err; opSl':=A; finalSl':=false
[IstateSl=s err & sch'=S1l ->
stateSl':=s err; opSl':=B; finalSl':=false
[]~(sch'=S1l) -> stateSl':= stateSl; finalSl':=finalS1
endatom
endmodule

module Target
interface opST : op; finalST:bool; stateST:state
external sch: sched type
atom ts
controls stateST,opST,finalST
reads stateST,finalST, opST
awaits sch
init
[Jtrue -> stateST' := s0; finalST':=true
update
[]stateST=s0 & sch'=ST -> stateST':=s0; opST':=A; finalST':=true
[IstateST=s err & sch'=ST -> stateST':=s0; opST':=A; finalST':=false
[]sch'=ST -> stateST':=s err; opST':=B; finalST':=false
[]~(sch'=ST) -> stateST':=stateST; finalST':=finalST; opST':=o0pST

endatom

endmodule

17

Main:= Servicel || Target || Scheduler

Turn-based Asynchronous Game Structure requirements are respected: at each round
the Scheduler updates the value of the sch variable nondeterministically and the move
chosen by scheduled player completely determines the next state. All atoms are
deterministic.

Note that every times the Target service is not scheduled, its operation remains
unchanged: this is the reason why, in the ATL formula, Target.opST is used in the
place of last opt (the operation chosen by the target at the 'previous round', as
defined in GS game structure).

Through parallel composition the three modules have been combined into a single
module Main whose behavior captures the interaction between them. Such a
composition is possible as long as simple modules are compatible. Two simple
modules P and Q are compatible if the set of interface variables of P and Q are disjoint
and the global 'awaits relation' is acyclic: modules cannot be in a deadlock.

A specification file contains a list of specifications, i.e. invariant or ATL formulae. In
our case the specification is given through the ATL formula formulal in the
“examplel.spec” file:

atl "formulal" << Scheduler,Servicel >> G (
stateST=s err |
((~(sch=schnil & last sch=schnil) & ~(sch=ST)) =>
((sch=S1l => opSl=0pST) &
(finalST => finalSl) &
~(stateSl=s_err) &
last sch=ST)
)
&
(sch=8T => ~(last sch=ST))

) ;

ATL-check is executed typing the following command in cMocha command interface:

atl check Main formulal

And this is the output generated:

18

Converting formula to existential normal form...
Performing semantic check on the formulas...
SIM: building atom dependency info

Start model checking...

Building transition relations for module...
Ordering variables using sym static order
Transition relation computed : 3 conjuncts
Calling Dynamic Reordering with sift

Done initializing image info...

Building the initial region of the module...

Model-checking formula "formulal"

ATL CHECK: formula "formulal" failed

Which is a predictable result, due to the fact that the state Servicel.s1 is not a final
state. If we force state sl to be final, cMocha produces the same output ending with:

ATL CHECK: formula "formulal" passed

cMocha: conclusions

Currently the ATL model-checker does not have any mechanism to generate counter-
examples. Despite what's stated in cMocha manual [3 - p.72], the original plan to
integrate model checker to provide counter-examples and witnesses is currently
suspended by developers since the project is no more supported.

The impossibility of having any witnhess or counterexample for ATL checking drove us
to search for further confirmations.

4.1. MCMAS
This section is mainly extracted by [5]. We used MCMAS v0.9.6.2 and v0.9.7.1.

MCMAS is a Model Checker for Multi-Agent Systems (MAS). MCMAS takes in input a
MAS specification and a set of formulae to be verified, and it evaluates the truth value
of these formulae using algorithms based on Ordered Binary Decision Diagrams
(OBDDs).

Whenever possible, MCMAS produces counterexamples for false formulae and
witnesses for true formulae (but MCMAS doesn't provide this feature for ATL formulas
yet).

CMAS allows the verification of a number of modalities, including CTL operators,
epistemic operators, operators to reason about correct behavior and strategies, with

19

or without fairness conditions. MCMAS can also be used to run interactive, step-by-
step simulations.

Additionally, a graphical interface is provided as an Eclipse plug-in which includes a
graphical editor with syntax recognition, a graphical simulator, and a graphical
analyzer for counterexamples.

System of agents

Multi-Agent Systems are described in MCMAS using a dedicated programming
language derived from the formalism of interpreted systems. This language, called
ISPL (Interpreted Systems Programming Language), resembles the SMV language
characterizing agents by means of variables and represents their evolution using
boolean expressions.

MCMAS distinguishes between two kinds of agents: “standard” agents, and the
environment agent. The environment is used to describe boundary conditions and
infrastructures shared by standard agents and it is modeled similarly to standard
agents. In brief, in MCMAS each agent (including the environment) is characterized
by:

1. A set of local states
2. A set of actions

3. A rule describing which action can be performed by an agent in a given local
state. We call this rule a protocol

4. An evolution function, describing how the local states of the agents evolve
based on their current local state and on other agents’ actions.

Local states. Local states are defined in terms of local variables (i.e. corresponding
to all the possible combinations of their values). Local states are private and each
agent can observe only its own local states, and all the other parameters discussed
below (protocol and evolution function) cannot refer to other agents’ local variables.

The only exception is the environment agent: for this agent two kind of variables can
be defined: standard variables and observable variables. Standard agents can 'peek’
at the observable variables of the environment and their evolution function can refer
to these variables.

Actions. Each agent (including the environment) is allowed to perform actions. It is
assumed that all actions performed are visible by all the other agents.

Protocols. Protocols describe which actions can be performed in a given local state.
As local states are defined in terms of variables, the protocol for an agent is expressed
as a function from variable assignments to actions.

ISPL protocols are not required to be exhaustive: it is sufficient to specify only the
variables assignments relevant to the execution of certain actions, and introduce a

20

catch-all assignment by means of the keyword 'Others'. Protocols are not required to
be deterministic.

Evolution functions. The evolution function for an agent describes how variable
assignments change as a results of the actions performed by all the other agents.

Fairness conditions can also be specified in ISPL, to rule out unwanted behaviour.

ISPL overview: syntax

A multi-agent system specified in ISPL is composed of an Environment agent and a
set of standard agents. Each agent has a set of local variables and the Environment
also has a set of observable variables, which can be “observed” by other agents.

Definition of variables

Currently, ISPL allows three types of variables: Boolean, enumeration and bounded
integer. Suppose X, y and y are variables of Boolean, enumeration and bounded
integer respectively. They are be defined as follows:

X : boolean; y : {a, b, c}; z:1.. 4;

A comparison over Boolean variables or enumeration variables can only be an equality
test.

Definition of actions
All actions of an agent are defined in the section Actions:
Actions = { al, b2, c3};

Definition of protocol function

A line in a protocol function is composed of a condition, which is a Boolean formula
over local states, and a list of actions. The condition represents all local states that
satisfy the condition and the list of actions allowed to be performed in local states
specified by the condition. In this example :

x =trueandz < 2 : {al, a3};
x = true and z < 2 is the condition and {al, a3} is the list of actions.

The conditions appearing in different lines do not need to be mutually exclusive, i.e.,
the conjunction of these two conditions needs not to be false. If this is the case, the
agent has nondeterministic behavour and all behaviours are considered possible by
MCMAS. For an agent that has many local states, it might be unrealistic or even
impossible to specify actions for every state. MCMAS includes the reserved keyword
'Other'; e.g. Other : { action-list };

Definition of evolution function

A line in an evolution function consists of a set of assignments of local variables (and
observable variables for the Environment) and an enabling condition, which is a

21

Boolean formula over local variables, observable variables of the Environment, and
actions of all agents.

The left hand side (LHS) of an assignment is a local/observable variable being
assigned to a new value and the right hand side (RHS) is a truth value or a Boolean
local/observable variable if LHS is a Boolean variable, an enumeration value or an
enumeration local/observable variable if LHS is an enumerate variable, or an
arithmetic expression if LHS is a bounded integer variable.

An observable variable must have a prefix “Environment”, such as Environment.x .
Multiple assignments can be connected by the keyword 'and'. In an enabling
condition, all observable variable must have the prefix “Environment”. A proposition
over actions is of the form XXX.Action = xxx, where XXX is the name of an agent and
xxx is one of its actions. This is a possible line of an evolution function:

(x = true and z = Environment.z + 1) if (y = b and TestAgent.Action = al);

This is read as: “in the next step, the value of x is true and the value of z is equal to
the (current) value of z for the Environment if the current value of y is b and
TestAgent is performing action al”.

Definition of evaluation function

An evaluation function consists of a group of atomic propositions, which are defined
over global states. Each atomic proposition is associated with a Boolean formula over
local variables of all agents and observable variables in the Environment. The
proposition is evaluated to true in all the global states that satisfy the Boolean
formula. Every variable involved in the formula has a prefix indicating the agent the
variable belongs to. An example of defining an atomic proposition is shown below:

happy if Environment.x = true and TestAgent.z < Environment.z;

Definition of initial states

Initial states are defined by a Boolean formula over variables. For simplicity,
arithmetic expressions are not allowed. Below is an example:

Environment.x=false and Environment.y=a;

Definition of groups

Groups are used in formulae involving group modalities. A group includes one or more
agents, including the Environment, such as

groupl = { TestAgent, Environment };

Definition of formulas to be checked

A formula to be verified is defined over atomic proposition. It can have one of the
following forms:

formula ::= (formula) | formula and formula | formula or formula | ! formula |
formula —> formula | AG formula | EG formula | AX formula | EX formula | AF formula

| EF formula | A (formula U formula) | E (formula U formula) | K (AgentName ,

22

formula) | GK (GroupName , formula) | GCK (GroupName , formula) | O
(AgentName , formula) | KH (AgentName , AgentNameOrGroupName , formula) |
DKH (GroupName , AgentNameOrGroupName , formula) | DK (GroupName ,
formula) | < GroupName > X formula | < GroupName > F formula | < GroupName >

G formula | < GroupName > (formula U formula) | AtomicProposition

Using MCMAS for the composition problem

Each player representing a service (either target service or an available service) has
been encoded with a standard Agent. Environment Agent corresponds to the
Scheduler player. Game moves correspond to Agents' Actions.

There are two environment variables: variable sch which is observable by all agents
and local variable /astsch. The first one is used to select nondeterministically
scheduled players at each round, while /astsch holds the value of sch at previous
round.

Agent Environment
Obsvars:
sch : {nil,Ss1,S2,ST};
end Obsvars
Vars:
lastsch : {nil,S1,S2,ST};
end Vars
RedStates:
end RedStates

Actions = {nil,S1,S2,ST};
Protocol:
Other : {S1,S2,ST}; --It can choose any player in each state.

end Protocol

Evolution:
--sch and lastsch are updated according to the chosen action

(lastsch = sch) and (sch = S1) if (Action = S1);

(lastsch = sch) and (sch = S2) if (Action = S2);

(lastsch = sch) and (sch = ST) if (Action = ST);
end Evolution

end Agent

The protocol section defines the list of actions allowed to be performed in local states.
We can notice how, as stated in the Turn-based asynchronous game structure, in
every state the scheduler has the possibility to choose either the Target (ST) or one of
the community available services (S1, S2).

23

Now we show the Agents representing remaining players, i.e. available services and
target service.

Each Agent has a variable for the current state, one boolean variable that indicates if
the corresponding service is in a (local) final state and, as for the Scheduler, a variable
holding the chosen action.

Agent S1
Vars:
stateSl : {sO0,s_err}; 51
finalSl : boolean;
opeSl : {a,b};
end Vars —
RedStates:
end RedStates a
Actions = {a,b}; --service's moves
Protocol:
Other : {a,b}; --moves available in each state

end Protocol
Evolution:

--if S1 has been scheduled and it chooses action a from state s0O, then
--the next state will remain sO0 with finalSl=true. OpeSl is set to a.
(stateS1l=s0) and (finalS1l = true) and (opeSl=a)

if (stateSl=s0) and (Action=a) and (Environment.Action=S1);

--if the player i chooses a move corresponding to an operation the
--available service it represents cannot actually perform:
(statesl=s_err) and (opeSl=a) and (finalsl=false)

if (Action=a and stateSl=s_err) and (Environment.Action=S1);
(stateSl=s _err) and (opeSl=b) and (finalSl=false)

if (Action=b) and (Environment.Action=S1);

--if the scheduler chose another service then S1 doesn't evolve even
--if, as requested by the game structure, it can choose an action.
(stateSl=stateSl) and (finalSl=finalSl) if ! (Environment.Action=S1);

end Evolution
end Agent

24

Agent S2

vVars: 52 a

states2 : {s0,sl,s_erry};
finalS2 : boolean; .
opeS2 : {a,b}; \\ /
end Vars b » sl
RedStates: \
end RedStates
Actions = {a,b}; b
Protocol:

Other : {a,b};
end Protocol
Evolution:
(stateS2=s1) and (finalS2 = false) and (opeS2=b)
if (stateS2=s0) and (Action=b) and (Environment.Action=S2);
(stateS2=sl1l) and (finalS2 = false) and (opeS2=a)
if (stateS2=s0) and (Action=a) and (Environment.Action=S2);
(stateS2=s0) and (finalS2 = true) and (opeS2=b)
if (stateS2=sl) and (Action=b) and (Environment.Action=S2);
(stateS2=s_err) and (opeS2=a) and (finals2=false)
if (Action=a and !(stateS2=s0)) and (Environment.Action=S2);
(stateS2=s_err) and (opeS2=b) and (finals2=false)
if (Action=b and stateS2=s_err) and (Environment.Action=S2);
(stateS2=stateS2) and (finalS2=finalS2) if ! (Environment.Action=S2);
end Evolution
end Agent

Agent ST
Vars:
stateST {s0,s1,82,s_erry};
finalST boolean;
opeST : {a,b}; ST
end Vars
RedStates: a
end RedStates _—

Actions = {a,b};

Protocol:
Other : {a,b}; b
end Protocol

Evolution:
(stateST=sl) and (finalST = false) and (opeST=a)
if (stateST=s0) and (Action=a) and (Environment.Action=ST);
(stateST=s2) and (finalST = false) and (opeST=a)
if (stateST=sl) and (Action=a) and (Environment.Action=ST);
(stateST=s0) and (finalST = true) and (opeST=b)
if (stateST=s2) and (Action=b) and (Environment.Action=ST);
(stateST=s_err) and (opeST=a) and (finalST=false)
if (Action=a and (stateST=s2 or stateST=s_err))
and (Environment.Action=ST);
(stateST=s_err) and (opeST=b) and (finalsT=false)
if (Action=b and ! (stateST=s2)) and (Environment.Action=ST);
(stateST=stateST) and (finalST=finalST) and (opeST=opeST)
if !(Environment.Action=ST);
end Evolution
end Aagent

25

As was done in cMocha, ST's action remains unchanged every time ST is not
scheduled. Hence opeST variable always holds the last operation chosen by the Target.
Here we show the code of the evaluation function:

Evaluation
TargetMoved if (Environment.sch=ST);

Replayed if
((!(Environment.sch=S1) or (Sl.opeS1=ST.opeST)) and
(! (Environment.sch=S2) or (S2.o0peS2=ST.opeST))
)
and
(ST.finalST=false or (Sl.finalSl=true and S2.finalS2=true));

LastTargetMoved if Environment.lastsch=ST;

Init if (Environment.lastsch=nil and Environment.sch=nil);
Error if (Sl.stateSl=s _err) or (S2.stateS2=s err);

Invalid if ST.stateST=s_err;

end Evaluation

TargetMoved is evaluated to true in every round in which Target has been scheduled
(The environment performed Action ST).

Replayed is true if the scheduled agent replicated the last operation performed by
the target and all services are in final state if target state is final.

LastTargetMoved is evaluated to true if the Scheduler (Environment) chose action
ST in the previous round, i.e. if target service has been scheduled in the previous
round.

Init is true if the game is in its initial state.
Error is evaluated to true whenever an available service is in its local error state.
Invalid is true if the agent ST is in error state.

InitStates

(Sl.stateS1=s0) and (S2.stateS2=s0) and (ST.stateST=s0) and
(Environment.sch=nil) and (Sl.finalSl=true) and (S2.finalS2=true)
and (ST.finalST=true) and (Environment.lastsch=nil);

end InitStates
Groups
PlayersPlusEnv = { S1,S2,Environment } ; --excluding agent ST

end Groups

Fairness
end Fairness

26

At the end there is the definition of the ATL formula to be checked. This formula uses
the evaluation function previously defined.

Formulae
<PlayersPlusEnv> G (

Init or Invalid or
(
(!TargetMoved -> (Replayed and !Error and LastTargetMoved))
and
(TargetMoved -> !LastTargetMoved)
)
)i

end Formulae

MCMAS results

As said before, the current version of MCMAS doesn't produce withesses or
counterexample for ATL formulas, so MCMAS is able to give us a simple boolean
verification result. For the previous example it was TRUE.

4.3 Further examples

Not being able to generate an orchestrator or witnesses, we provide here some
examples. All examples are provided with a variant showing how the verification result
changes accordingly. Examples' code follows strictly the one shown above.

These examples are ordered by increasing complexity.

References

[1] D. Calvanese, G. De Giacomo, M. Lenzerini, M. Mecella, F. Patrizi. Automatic
Service Composition and Syntesis: the Roman Model.

[2] R. Alur, T. A. Henziger, O. Kupferman. Alternating-time Temporal Logic.

[3] A. Alur, H. Anand, R. Grosu, L. de Alfano, T.A. Henziger, B. Horowits et al. Mocha
1.0.1 User Manual. cMocha and jMocha documentation and downloads can be found
at http://mtc.epfl.ch/software-tools/mocha/

[4] R. Alur, T. A. Henziger. Computer-Aided Verification, Chapter 1.

[5] MCMAS v0.9.6.2 User Manual. MCMAS homepage at: http://www-lai.doc.ic.ac.uk/
mcmas/

27

Example 1

ST
S1

S2 a

s
v
/‘"N 4
w
iy

We can see how in every state Service S2 can perform operation b and S1 can loop
with operation a. MCMAS result is: TRUE

Agent Environment
Obsvars:
sch : {nil,S1,S2,ST};
end Obsvars
Vars:
lastsch : {nil,S1,S2,ST};
end Vars
RedStates:
end RedStates
Actions = {nil,S1,S2,ST};
Protocol:
Other : {S1,S2,ST};
end Protocol
Evolution:
(lastsch = sch) and (sch = S1) if (Action = S1);
(lastsch sch) and (sch S2) if (Action S2);
(lastsch sch) and (sch ST) if (Action ST);
end Evolution
end Agent

Agent S1

Vars:
stateSl : {s0,s_err};
finalSl : boolean;
opeSl : {a,b};

end Vars

RedStates:

end RedStates

Actions = {a,b};

Protocol:

Other : {a,b};

28

end Protocol
Evolution:
(stateSl=s0) and (finalS1l = true) and (opeSl=a)
if (stateSl=s0) and (Action=a) and (Environment.Action=S1);
(stateSl=s_err) and (opeSl=a) and (finalSl=false)
if (Action=a and stateSl=s err) and (Environment.Action=S51);
(stateSl=s_err) and (opeSl=b) and (finalsl=false)
if (Action=b) and (Environment.Action=S1);
(stateSl=stateSl) and (finalSl=finalS1l) if ! (Environment.Action=S1);
end Evolution
end Agent

Agent S2
vVars:
states2 : {s0,sl,s err};
finalS2 : boolean;
opeS2 : {a,b};
end Vars
Redstates:
end RedStates
Actions = {a,b};
Protocol:
Other : {a,b};
end Protocol
Evolution:
(stateS2=sl) and (finalS2 = false) and (opeS2=b)
if (stateS2=s0) and (Action=b) and (Environment.Action=S2);
(stateS2=sl1) and (finalS2 = false) and (opeS2=a)
if (stateS2=s0) and (Action=a) and (Environment.Action=S2);
(stateS2=s0) and (finalS2 = true) and (opeS2=b)
if (stateS2=sl) and (Action=b) and (Environment.Action=S2);
(stateS2=s_err) and (opeS2=a) and (finals2=false)
if (Action=a and !(stateS2=s0)) and (Environment.Action=S2);
(states2=s_err) and (opeS2=b) and (finals2=false)
if (Action=b and stateS2=s_err) and (Environment.Action=S2);
(stateS2=stateS2) and (finalS2=finalS2) if ! (Environment.Action=S2);
end Evolution
end Agent

Agent ST
vVars:
stateST : {s0,sl,s2,s_err};
£inalST : boolean;
opeST : {a,b};
end Vars
Redstates:
end RedStates
Actions = {a,b};
Protocol:
Other : {a,b};
end Protocol
Evolution:
(stateST=sl) and (finalST = false) and (opeST=a)
if (stateST=s0) and (Action=a) and (Environment.Action=ST);
(stateST=s2) and (finalST = false) and (opeST=a)
if (stateST=sl) and (Action=a) and (Environment.Action=ST);
(stateST=s0) and (finalST = true) and (opeST=b)
if (stateST=s2) and (Action=b) and (Environment.Action=ST);
(stateST=s_err) and (opeST=a) and (finalsT=false)

29

if (Action=a and (stateST=s2 or stateST=s_err)) and
(Environment.Action=ST);
(stateST=s_err) and (opeST=b) and (finalST=false)
if (Action=b and ! (stateST=s2)) and (Environment.Action=ST);
(stateST=stateST) and (finalST=finalST) and (opeST=opeST)
if ! (Environment.Action=ST);
end Evolution

end Agent
Evaluation
TargetMoved if (Environment.sch=ST);
Replayed if ((!(Environment.sch=S1l) or (Sl.opeSl=ST.opeST)) and

(! (Environment.sch=S2) or (S2.opeS2=ST.opeST)))
and (ST.finalST=false or (Sl.finalSl=true and S2.finalS2=true));
LastTargetMoved if Environment.lastsch=ST;
Init if (Environment.lastsch=nil and Environment.sch=nil);
Error if (Sl.stateSl=s_err) or (S2.stateS2=s _err);
Invalid if ST.stateST=s err;

end Evaluation

InitStates
(Sl.stateS1=s0) and (S2.stateS2=s0) and (ST.stateST=s0) and
(Environment.sch=nil) and (Sl.finalSl=true) and (S2.finalS2=true) and
(ST.finalST=true) and (Environment.lastsch=nil);

end InitStates

Groups
PlayersPlusEnv = { S1,S2,Environment } ;
end Groups

Fairness
end Fairness

Formulae
<PlayersPlusEnv> G(
Init or Invalid or
(
(!TargetMoved -> (Replayed and !Error and LastTargetMoved))
and
(TargetMoved -> !LastTargetMoved)
)
)i

end Formulae

30

Example 1b

° .
ST I]
da
S2 ,
b

There's no way operation a can be performed twice by S1 or S2. MCMAS result: FALSE

Agent Environment
Obsvars:
sch : {nil,S1,S2,ST};
end Obsvars
Vars:
lastsch : {nil,S1,S2,ST};
end Vars
RedStates:
end RedStates
Actions = {nil,S1,S2,ST};
Protocol:
Other : {S1,S2,ST};
end Protocol
Evolution:
(lastsch = sch) and (sch = S1) if (Action = Sl);

(lastsch = sch) and (sch = S2) if (Action = S2);
(lastsch = sch) and (sch = ST) if (Action = ST);
end Evolution
end Agent
Agent S1
vars:

statesl : {s0,s_err};
finalSl : boolean;
opeSl : {a,b};
end Vars
RedStates:
end RedStates
Actions = {a,b};
Protocol:
Other : {a,b};
end Protocol
Evolution:
(stateSl=s0) and (finalS1l = true) and (opeSl=b)

31

if (stateSl=s0) and (Action=b) and (Environment.Action=S1);
(stateSl=s_err) and (opeSl=a) and (finalSl=false)

if (Action=a) and (Environment.Action=S1l);
(stateSl=s_err) and (opeSl=b) and (finalsl=false)

if (Action=b and stateSl=s_err) and (Environment.Action=S1);
(stateSl=stateSl) and (finalSl=finalS1l) if ! (Environment.Action=S1);
end Evolution

end Agent
Agent S2
Vars:
states2 : {s0,sl,s err};
finalS2 : boolean;
opeS2 : {a,b};
end Vars
RedStates:

end RedStates
Actions = {a,b};
Protocol:
Other : {a,b};
end Protocol
Evolution:
(stateS2=sl) and (finalS2 = false) and (opeS2=b)
if (stateS2=s0) and (Action=b) and (Environment.Action=S2);
(stateS2=sl1) and (finalS2 = false) and (opeS2=a)
if (stateS2=s0) and (Action=a) and (Environment.Action=S2);
(stateS2=s0) and (finalS2 = true) and (opeS2=b)
if (stateS2=sl) and (Action=b) and (Environment.Action=S2);
(stateS2=s_err) and (opeS2=a) and (finals2=false)
if (Action=a and !(stateS2=s0)) and (Environment.Action=S2);
(states2=s_err) and (opeS2=a) and (finals2=false)
if (Action=b and stateS2=s_err) and (Environment.Action=S2);
(stateS2=stateS2) and (finalS2=finalS2) if ! (Environment.Action=S2);
end Evolution
end Agent

Agent ST
Vars:
stateST
£inalST
opeST :
end Vars
RedStates:
end RedStates
Actions = {a,b};
Protocol:
Other : {a,b};
end Protocol

{s0,sl1,s2,s_err};
boolean;
a,b};

A e oo

Evolution:
(stateST=sl) and (finalST = false) and (opeST=a)
if (stateST=s0) and (Action=a) and (Environment.Action=ST);

(stateST=s2) and (finalST = false) and (opeST=a)

if (stateST=sl) and (Action=a) and (Environment.Action=ST);
(stateST=s0) and (finalST = true) and (opeST=b)

if (stateST=s2) and (Action=b) and (Environment.Action=ST);
(stateST=s_err) and (opeST=a) and (finalsT=false) if (Action=a and

(stateST=s2 or stateST=s _err)) and (Environment.Action=ST);
(statesT=s_err) and (opeST=b) and (finalsT=false)

if (Action=b and ! (stateST=s2)) and (Environment.Action=ST);

32

(stateST=stateST) and (finalST=finalST) and (opeST=opeST)
if ! (Environment.Action=ST);
end Evolution

end Agent
Evaluation
TargetMoved if (Environment.sch=ST);
Replayed if ((!(Environment.sch=S1l) or (Sl.opeSl=ST.opeST)) and (!

(Environment.sch=S2) or (S2.opeS2=ST.opeST)))
and (ST.finalST=false or (Sl.finalSl=true and S2.finalS2=true));
LastTargetMoved if Environment.lastsch=ST;
Init if (Environment.lastsch=nil and Environment.sch=nil);
Error if (Sl.stateSl=s_err) or (S2.stateS2=s_err);
Invalid if ST.stateST=s_err;

end Evaluation

InitStates
(Sl.stateS1=s0) and (S2.stateS2=s0) and (ST.stateST=s0) and
(Environment.sch=nil) and (Sl.finalSl=true) and (S2.finalS2=true) and
(ST.finalST=true) and (Environment.lastsch=nil);

end InitStates

Groups
PlayersPlusEnv = { S1,S2,Environment } ;
end Groups

Fairness
end Fairness

Formulae
<PlayersPlusEnv> G(
Init or Invalid or
(
(!TargetMoved -> (Replayed and !Error and LastTargetMoved))
and
(TargetMoved -> !LastTargetMoved)
)
)i

end Formulae

33

Example 2

ST a
= s0 \) b =\ sl
c s2 b____\
S1 _a sl
o

Depending on the operation chosen by ST at s0, service S1 or S2 can be easily used
to replicate the target. MCMAS result: TRUE

Agent Environment
Obsvars:
sch : {nil,sS1,S2,ST};
end Obsvars
Vars:
lastsch : {nil,S1,S2,ST};
end Vars
RedStates:
end RedStates
Actions = {nil,S1,S2,ST};
Protocol:
Other : {S1,S2,ST};
end Protocol

Evolution:
(lastsch = sch) and (sch = S1) if (Action = Sl);
(lastsch = sch) and (sch = S2) if (Action = S2);
(lastsch = sch) and (sch = ST) if (Action = ST);
end Evolution
end Agent
Agent S1
Vars:
statesl : {s0,sl,s err};

finalSl : boolean;
opeSl : {a,b,c};
end Vars
RedStates:
end RedStates
Actions = {a,b,c};
Protocol:
Other : {a,b,c};
end Protocol
Evolution:

34

(stateSl=sl) and (finalSl = false) and (opeSl=a)

if (stateSl=s0) and (Action=a) and (Environment.Action=S1);
(stateSl=s0) and (finalSl = true) and (opeSl=c)

if (stateSl=sl) and (Action=c) and (Environment.Action=S1);
(stateSl=s_err) and (opeSl=a) and (finalST=false)

if (Action=a and !(stateSl=s0)) and (Environment.Action=S1l);
(stateSl=s _err) and (opeSl=b) and (finalSl=false)

if (Action=b) and (Environment.Action=S1);
(stateSl=s_err) and (opeSl=c) and (finalSl=false)

if (Action=c and !(stateSl=sl)) and (Environment.Action=S1);
(stateSl=stateSl) and (finalSl=finalS1l) if ! (Environment.Action=S1);
end Evolution

end Agent

Agent S2
Vars:
states2 : {s0,sl,s err};
finalS2 : boolean;
opeS2 : {a,b,c};
end Vars
RedStates:
end RedStates
Actions = {a,b,c};
Protocol:
Other : {a,b,c};
end Protocol
Evolution:
(stateS2=s1) and (finalS2 = false) and (opeS2=b)
if (stateS2=s0) and (Action=b) and (Environment.Action=S2);
(stateS2=s0) and (finalS2 = true) and (opeS2=c)
if (stateS2=sl) and (Action=c) and (Environment.Action=S2);
(states2=s_err) and (opeS2=a) and (finals2=false)
if (Action=a) and (Environment.Action=S2);
(states2=s_err) and (opeS2=b) and (finals2=false)
if (Action=b and ! (stateS2=s0)) and (Environment.Action=S2);
(stateS2=s err) and (opeS2=c) and (finalS2=false)
if (Action=c and !(stateS2=sl)) and (Environment.Action=S2);
(stateS2=stateS2) and (finalS2=finalS2) if ! (Environment.Action=S2);
end Evolution
end Agent

Agent ST

vars:
stateST : {s0,sl,s_err};
finalST : boolean;
opeST : {a,b,c};

end Vars

RedStates:

end RedStates

Actions = {a,b,c};

Protocol:

35

Other : {a,b,c};
end Protocol
Evolution:
(stateST=sl) and (finalST = false) and (opeST=a)
if (Action=a and stateST=s0) and (Environment.Action=ST);
(stateST=sl) and (finalST = false) and (opeST=b)
if (Action=b and stateST=s0) and (Environment.Action=ST);
(stateST=s0) and (finalST = true) and (opeST=c)
if (Action=c and stateST=sl) and (Environment.Action=ST);
(statesT=s_err) and (opeST=a) and (finalsT=false)
if (Action=a and ! (stateST=s0)) and (Environment.Action=ST);
(stateST=s_err) and (opeST=b) and (finalST=false)
if (Action=b and ! (stateST=s0)) and (Environment.Action=ST);
(stateST=s_err) and (opeST=c) and (finalsST=false)
if (Action=c and !(stateST=sl)) and (Environment.Action=ST);
(stateST=stateST) and (finalST=finalST) and (opeST=opeST) if !
(Environment.Action=ST);
end Evolution

end Agent
Evaluation
TargetMoved if (Environment.sch=ST);
Replayed if ((!(Environment.sch=S1l) or (Sl.opeS1l=ST.opeST)) and (!

(Environment.sch=S2) or (S2.opeS2=ST.opeST)))
and (ST.finalST=false or (Sl.finalSl=true and S2.finalS2=true));
LastTargetMoved if Environment.lastsch=ST;
Init if (Environment.lastsch=nil and Environment.sch=nil);
Error if (Sl.stateSl=s_err) or (S2.stateS2=s_err);
Invalid if ST.stateST=s_err;
end Evaluation

InitStates
(Sl.stateS1=s0) and (S2.stateS2=s0) and (ST.stateST=s0) and
(Environment.sch=nil) and (Sl.finalSl=true) and (S2.finalS2=true) and
(ST.finalST=true) and (Environment.lastsch=nil);

end InitStates

Groups
PlayersPlusEnv = { S1,S2,Environment } ;
end Groups
Fairness
end Fairness

Formulae
<PlayersPlusEnv> G(
Init or Invalid or
(
(!TargetMoved -> (Replayed and !Error and LastTargetMoved))
and
(TargetMoved -> !LastTargetMoved)
)
)i

end Formulae

36

Example 2b

ST a

S2 b

S1 has been changed. MCMAS result: FALSE

Agent Environment
Obsvars:
sch : {nil,S1,S2,S8T};
end Obsvars
Vars:
lastsch : {nil,S1,S2,ST};
end Vars
RedStates:
end RedStates
Actions = {nil,S1,S2,ST};
Protocol:
Other : {S1,S2,ST};
end Protocol

Evolution:
(lastsch = sch) and (sch = S1) if (Action = Sl);
(lastsch = sch) and (sch = S2) if (Action = S2);
(lastsch = sch) and (sch = ST) if (Action = ST);
end Evolution
end Agent
Agent S1
Vars:
stateSl : {s0,sl,s_err};

finalSl : boolean;

opeSl : {a,b,c};
end Vars
RedStates:
end RedStates
Actions = {a,b,c};
Protocol:

Other : {a,b,c};

end Protocol
Evolution:

37

(stateSl=sl) and (finalSl = false) and (opeSl=a)

if (stateSl=s0) and (Action=a) and (Environment.Action=S1);
(stateSl=sl) and (finalSl = false) and (opeSl=b)

if (stateSl=s0) and (Action=b) and (Environment.Action=S1);
(stateSl=sl) and (finalSl = true) and (opeSl=c)

if (stateSl=sl) and (Action=c) and (Environment.Action=S1l);
(stateSl=s _err) and (opeSl=a) and (finalSl=false)

if (Action=a and !(stateSl=s0)) and (Environment.Action=S1l);
(stateSl=s_err) and (opeSl=b) and (finalSl=false)

if (Action=b and !(stateSl=s0)) and (Environment.Action=S1);
(stateSl=s_err) and (opeSl=c) and (finalsl=false)

if (Action=c and !(stateSl=sl)) and (Environment.Action=S1);
(stateSl=stateSl) and (finalSl=finalSl) if ! (Environment.Action=S1);
end Evolution

end Agent

Agent S2
vars:
states2 : {s0,sl,s _err};
finalS2 : boolean;
opeS2 : {a,b,c};
end Vars
RedStates:
end RedStates
Actions = {a,b,c};
Protocol:
Other : {a,b,c};
end Protocol
Evolution:
(stateS2=sl1l) and (finalS2 = false) and (opeS2=b)
if (stateS2=s0) and (Action=b) and (Environment.Action=S2);
(stateS2=s0) and (finalS2 = true) and (opeS2=c)
if (stateS2=sl) and (Action=c) and (Environment.Action=S2);
(states2=s_err) and (opeS2=a) and (finals2=false)
if (Action=a) and (Environment.Action=S2);
(stateS2=s err) and (opeS2=b) and (finalS2=false)
if (Action=b and ! (stateS2=s0)) and (Environment.Action=S2);
(stateS2=s_err) and (opeS2=c) and (finalsS2=false)
if (Action=c and !(stateS2=sl)) and (Environment.Action=S2);
(stateS2=stateS2) and (finalS2=finalS2) if ! (Environment.Action=S2);
end Evolution
end Agent

Agent ST

vVars:
stateST : {s0,sl,s_err};
£inalST : boolean;
opeST : {a,b,c};

end Vars

RedStates:

end RedStates

38

Actions = {a,b,c};
Protocol:
Other : {a,b,c};
end Protocol
Evolution:
(stateST=sl) and (finalST = false) and (opeST=a)
if (Action=a and stateST=s0) and (Environment.Action=ST);
(stateST=sl) and (finalST = false) and (opeST=b)
if (Action=b and stateST=s0) and (Environment.Action=ST);
(stateST=s0) and (finalST = true) and (opeST=c)
if (Action=c and stateST=sl) and (Environment.Action=ST);
(stateST=s_err) and (opeST=a) and (finalST=false)
if (Action=a and !(stateST=s0)) and (Environment.Action=ST);
(stateST=s_err) and (opeST=b) and (finalsST=false)
if (Action=b and !(stateST=s0)) and (Environment.Action=ST);
(statesST=s_err) and (opeST=c) and (finalsT=false)
if (Action=c and !(stateST=sl)) and (Environment.Action=ST);
(stateST=stateST) and (finalST=finalST) and (opeST=opeST)
if ! (Environment.Action=ST);
end Evolution

end Agent
Evaluation
TargetMoved if (Environment.sch=ST);
Replayed if ((!(Environment.sch=S1l) or (Sl.opeSl=ST.opeST)) and

(! (Environment.sch=S2) or (S2.opeS2=ST.opeST)))
and (ST.finalST=false or (Sl.finalSl=true and S2.finalS2=true));
LastTargetMoved if Environment.lastsch=ST;
Init if (Environment.lastsch=nil and Environment.sch=nil);
Error if (Sl.stateSl=s_err) or (S2.stateS2=s_err);
Invalid if ST.stateST=s_err;
end Evaluation

InitStates
(Sl.stateSl=s0) and (S2.stateS2=s0) and (ST.stateST=s0) and
(Environment.sch=nil) and (Sl.finalSl=true) and (S2.finalS2=true) and
(ST.finalST=true) and (Environment.lastsch=nil);

end InitStates

Groups

PlayersPlusEnv = { S1,S2,Environment } ;

end Groups

Fairness

end Fairness

Formulae
<PlayersPlusEnv> G(
Init or Invalid or (
(!TargetMoved -> (Replayed and !Error and LastTargetMoved))
and
(TargetMoved -> !LastTargetMoved)
)i

end Formulae

39

Example 3

ST

S1 cannot simulate service ST. Since S1.s1 in not final, the sequence of actions b,a,b
brings ST in a final state leaving S1 in a not-final state. MCMAS result: FALSE

Agent Environment
Obsvars:
sch
end Obsvars
Vars:
lastsch
end Vars
RedStates:
end RedStates

{nil,S1,ST};

{nil,S1,ST};

Actions = {nil,S1,ST};

Protocol:
Other {S1,ST};

end Protocol

Evolution:
(lastsch = sch) and (sch = S1) if
(lastsch = sch) and (sch = ST) if

end Evolution

end Agent
Agent S1

vVars:
stateSl {s0,s1,s2,s_err};
finalsl boolean;
opeSl {a,b};

end Vars

RedStates:

end RedStates

Actions = {a,b};

Protocol:
Other {a,b};

end Protocol
Evolution:

40

(Action
(Action

S1);
ST);

(stateSl=s0) and (finalSl = true) and (opeSl=a)
if (stateSl=s0) and (Action=a) and (Environment.Action=S1);
(stateSl=sl) and (finalSl = false) and (opeSl=b)
if (stateSl=s0) and (Action=b) and (Environment.Action=S1);
(stateSl=s0) and (finalSl = true) and (opeSl=a)
if (stateSl=sl) and (Action=a) and (Environment.Action=S1);
(stateSl=s0) and (finalS1l = true) and (opeSl=b)
if (stateSl=sl) and (Action=b) and (Environment.Action=S1);
(stateSl=s_err) and (opeSl=a) and (finalSl=false)
if (Action=a and stateSl=s err) and (Environment.Action=S51);
(stateSl=s_err) and (opeSl=b) and (finalsl=false)
if (Action=b and stateSl=s_err) and (Environment.Action=S1l);
(stateSl=stateSl) and (finalSl=finalS1l) if ! (Environment.Action=S1);
end Evolution

end Agent
Agent ST
vVars:
stateST : {s0,sl,s_err};
finalST : boolean;
opeST : {a,b};
end Vars
RedStates:

end RedStates
Actions = {a,b};
Protocol:
Other : {a,b};
end Protocol
Evolution:
(stateST=sl) and (finalST = false) and (opeST=b)
if (stateST=s0) and (Action=b) and (Environment.Action=ST);
(stateST=s1l) and (finalST = false) and (opeST=a)
if (stateST=sl) and (Action=a) and (Environment.Action=ST);
(stateST=s0) and (finalST = true) and (opeST=b)
if (stateST=sl) and (Action=b) and (Environment.Action=ST);
(stateST=s_err) and (opeST=a) and (finalST=false)
if (Action=a and ! (stateST=sl)) and (Environment.Action=ST);
(stateST=s_err) and (opeST=a) and (finalsT=false)
if (Action=b and stateST=s_err) and (Environment.Action=ST);
(stateST=stateST) and (finalST=finalST) and (opeST=opeST)
if ! (Environment.Action=ST);
end Evolution
end Agent

Evaluation
TargetMoved if (Environment.sch=ST);

Replayed if ((!(Environment.sch=S1l) or (Sl.opeSl=ST.opeST)) and
(ST.finalST=false or Sl.finalSl=true));

41

LastTargetMoved if Environment.lastsch=ST;
Init if (Environment.lastsch=nil and Environment.sch=nil);
Error if (Sl.stateSl=s_err);
Invalid if ST.stateST=s_err;
end Evaluation

InitStates
(Sl.stateS1l=s0) and (ST.stateST=s0) and (Environment.sch=nil) and
(Sl.finalSl=true) and (ST.finalST=true) and (Environment.lastsch=nil);
end InitStates

Groups
PlayersPlusEnv = { Sl,Environment } ;
end Groups

Fairness

end Fairness

Formulae
<PlayersPlusEnv> G(
Init or Invalid or
(
(!TargetMoved -> (Replayed and !Error and LastTargetMoved))
and
(TargetMoved -> !LastTargetMoved)
)
)i

end Formulae

42

Example 3b

ST

Making S1.s1 final, MCMAS answers TRUE.

Agent Environment
Obsvars:
sch : {nil,S1,ST};
end Obsvars
Vars:
lastsch : {nil,S1,ST};
end Vars
RedStates:
end RedStates
Actions = {nil,S1,ST};
Protocol:
Other : {S1,ST};

end Protocol

Evolution:
(lastsch = sch) and (sch = S1) if (Action = S1);
(lastsch = sch) and (sch = ST) if (Action = ST);
end Evolution
end Agent
Agent S1
vVars:
stateSl : {s0,sl,s2,s_err};
finalSl : boolean;
opeSl : {a,b};
end Vars
RedStates:

end RedStates
Actions = {a,b};
Protocol:
Other : {a,b};
end Protocol
Evolution:
(stateSl=s0) and (finalSl = true) and (opeSl=a)
if (stateSl=s0) and (Action=a) and (Environment.Action=S1);

43

(stateSl=sl) and (finalSl = true) and (opeSl=b)

if (stateSl=s0) and (Action=b) and (Environment.Action=S1);
(stateSl=s0) and (finalSl = true) and (opeSl=a)

if (stateSl=sl) and (Action=a) and (Environment.Action=S1);
(stateSl=s0) and (finalS1l = true) and (opeSl=b)

if (stateSl=sl) and (Action=b) and (Environment.Action=S1);
(stateSl=s_err) and (opeSl=a) and (finalSl=false)

if (Action=a and stateSl=s_err) and (Environment.Action=S1l);
(stateSl=s _err) and (opeSl=b) and (finalSl=false)

if (Action=b and stateSl=s err) and (Environment.Action=S1);
(stateSl=stateSl) and (finalSl=finalSl) if ! (Environment.Action=S1);

end Evolution

end Agent
Agent ST
Vars:
stateST : {s0,sl,s_err};
finalST : boolean;
opeST : {a,b};
end Vars
RedStates:

end RedStates
Actions = {a,b};
Protocol:
Other : {a,b};
end Protocol
Evolution:
(stateST=sl) and (finalST = false) and (opeST=b)
if (stateST=s0) and (Action=b) and (Environment.Action=ST);
(stateST=sl) and (finalST = false) and (opeST=a)
if (stateST=sl) and (Action=a) and (Environment.Action=ST);
(stateST=s0) and (finalST = true) and (opeST=b)
if (stateST=sl) and (Action=b) and (Environment.Action=ST);
(stateST=s_err) and (opeST=a) and (finalsT=false)
if (Action=a and !(stateST=sl)) and (Environment.Action=ST);
(stateST=s_err) and (opeST=a) and (finalST=false)
if (Action=b and stateST=s err) and (Environment.Action=ST);
(stateST=stateST) and (finalST=finalST) and (opeST=opeST)
if ! (Environment.Action=8T);

end Evolution

end Agent
Evaluation
TargetMoved if (Environment.sch=ST);
Replayed if ((!(Environment.sch=S1l) or (Sl.opeSl=ST.opeST)) and

(ST.finalST=false or Sl.finalSl=true));
LastTargetMoved if Environment.lastsch=ST;
Init if (Environment.lastsch=nil and Environment.sch=nil);

44

Error if (Sl.stateSl=s_err);
Invalid if ST.stateST=s_err;
end Evaluation

InitStates
(Sl.stateS1l=s0) and (ST.stateST=s0) and (Environment.sch=nil) and
(Sl.finalSl=true) and (ST.finalST=true) and (Environment.lastsch=nil);
end InitStates

Groups
PlayersPlusEnv = { S1l,Environment } ;
end Groups

Fairness

end Fairness

Formulae
<PlayersPlusEnv> G(
Init or Invalid or
(
(!TargetMoved -> (Replayed and !Error and LastTargetMoved))
and
(TargetMoved -> !LastTargetMoved)
)
)i

end Formulae

45

Example 4

a

ST a
/ a
C
b
S1 b a °
C
If ST performs operation a (sO —a sl1) and the scheduler delegates it to service S2,
then there's no possibility to replicate operation ¢ (s1 —c¢ s0). Similarly, if the

scheduler delegates operation a to S1, then ST can perform a (s1 —a s2) but, despite
it can be replicated by S2, the service S1 is left in not-final state. FALSE.

S2

\ 4

C

Agent Environment

Obsvars:

sch : {nil,S1,S2,S8T};
end Obsvars
vars:

lastsch : {nil,S1,S2,ST};
end Vars
RedStates:
end RedStates
Actions = {nil,S1,S2,ST};
Protocol:

Other : {S1,S2,ST};
end Protocol

Evolution:
(lastsch = sch) and (sch = S1) if (Action = S1l);
(lastsch = sch) and (sch = S2) if (Action = S2);
(lastsch = sch) and (sch = ST) if (Action = ST);
end Evolution
end Agent
Agent S1
Vars:

stateSl : {s0,sl,s_erry};
finalSl : boolean;
opeSl : {a,b,c};

end Vars

RedStates:

end RedStates

46

Actions = {a,b,c};
Protocol:
Other : {a,b,c};
end Protocol
Evolution:
(stateSl=sl) and (finalSl = false) and (opeSl=a)
if (stateSl=s0) and (Action=a) and (Environment.Action=S1);
(stateSl=s0) and (finalSl = true) and (opeSl=b)
if (stateS1l=s0) and (Action=b) and (Environment.Action=S1);
(stateSl=s0) and (finalSl = true) and (opeSl=c)
if (stateSl=sl) and (Action=c) and (Environment.Action=S1);
(stateSl=s _err) and (opeSl=a) and (finalSl=false)
if (Action=a and !(stateSl=s0)) and (Environment.Action=S1l);
(stateSl=s_err) and (opeSl=b) and (finalSl=false)
if (Action=b and !(stateSl=s0)) and (Environment.Action=S1);
(stateSl=s_err) and (opeSl=c) and (finalSl=false)
if (Action=c and ! (stateSl=sl)) and (Environment.Action=S1l);
(stateSl=stateSl) and (finalSl=finalSl) if ! (Environment.Action=S1);
end Evolution
end Agent

Agent S2
vars:
stateS2
finalsS2
opeS2 :
end Vars
RedStates:
end RedStates
Actions = {a,b,c};
Protocol:
Other : {a,b,c};
end Protocol
Evolution:
(stateS2=sl) and (finalS2 = false) and (opeS2=b)
if (stateS2=s0) and (Action=b) and (Environment.Action=S2);
(stateS2=s0) and (finalS2 = true) and (opeS2=a)
if (stateS2=s0) and (Action=a) and (Environment.Action=S2);
(stateS2=s0) and (finalS2 = true) and (opeS2=c)
if (stateS2=sl) and (Action=c) and (Environment.Action=S2);
(stateS2=s_err) and (opeS2=a) and (finals2=false)
if (Action=a and !(stateS2=s0)) and (Environment.Action=S2);
(stateS2=s_err) and (opeS2=b) and (finalS2=false)
if (Action=b and ! (stateS2=s0)) and (Environment.Action=S2);
(stateS2=s err) and (opeS2=c) and (finals2=false)
if (Action=c and !(stateS2=sl)) and (Environment.Action=S2);
(stateS2=stateS2) and (finalS2=finalS2) if ! (Environment.Action=S2);
end Evolution

{s0,sl,s_err};
boolean;
a,b,c};

A e oo

end Agent
Agent ST
vars:
stateST : {s0,sl,s2,s_err};
finalST : boolean;
opeST : {a,b,c};
end Vars
RedStates:
end RedStates
Actions = {a,b,c};

47

Protocol:
Other : {a,b,c};
end Protocol
Evolution:
(stateST=sl) and (finalST = false) and (opeST=a)
if (stateST=s0) and (Action=a) and (Environment.Action=ST);
(stateST=sl) and (finalST = false) and (opeST=b)
if (stateST=s0) and (Action=b) and (Environment.Action=ST);
(stateST=s0) and (finalST = true) and (opeST=c)
if (stateST=sl) and (Action=c) and (Environment.Action=ST);
(stateST=s2) and (finalST = true) and (opeST=a)
if (stateST=sl) and (Action=a) and (Environment.Action=ST);
(stateST=s2) and (finalST = true) and (opeST=a)
if (stateST=s2) and (Action=a) and (Environment.Action=ST);
(stateST=s_err) and (opeST=a) and (finalsT=false)
if (Action=a and stateST=s_err) and (Environment.Action=ST);
(stateST=s_err) and (opeST=b) and (finalsT=false)
if (Action=b and !(stateST=s0)) and (Environment.Action=ST);
(stateST=s_err) and (opeST=c) and (finalST=false)
if (Action=c and ! (stateST=sl)) and (Environment.Action=ST);
(stateST=stateST) and (finalST=finalST) and (opeST=opeST)
if ! (Environment.Action=8T);
end Evolution

end Agent
Evaluation
TargetMoved if (Environment.sch=ST);
Replayed if ((!(Environment.sch=S1l) or (Sl.opeS1l=ST.opeST)) and (!

(Environment.sch=S2) or (S2.opeS2=ST.opeST)))
and (ST.finalST=false or (Sl.finalSl=true and
S2.finalS2=true));

LastTargetMoved if Environment.lastsch=ST;

Init if (Environment.lastsch=nil and Environment.sch=nil);

Error if (Sl.stateSl=s_err) or (S2.stateS2=s_err);

Invalid if ST.stateST=s_err;

end Evaluation

InitStates
(Sl.stateS1=s0) and (S2.stateS2=s0) and (ST.stateST=s0) and
(Environment.sch=nil) and (Sl.finalSl=true) and (S2.finalS2=true) and
(ST.finalST=true) and (Environment.lastsch=nil);

end InitStates

Groups
PlayersPlusEnv = { S1,S2,Environment } ;
end Groups
Fairness
end Fairness

Formulae
<PlayersPlusEnv> G(
Init or Invalid or
(
(!TargetMoved -> (Replayed and !Error and LastTargetMoved))
and
(TargetMoved -> !LastTargetMoved)
)
)i

end Formulae

48

Example 4b

ja¥]

ST a

(g}

Adding a loop in S1.s0 (sO —»c s0) MCMAS answers TRUE.

Agent Environment
Obsvars:
sch : {nil,S1,S2,ST};
end Obsvars
Vars:
lastsch : {nil,S1,S2,ST};
end Vars
RedStates:
end RedStates
Actions = {nil,S1,S2,ST};
Protocol:
Other : {S1,S2,ST};
end Protocol
Evolution:
(lastsch = sch) and (sch = S1) if (Action = S1l);

(lastsch = sch) and (sch = S2) if (Action = S2);
(lastsch = sch) and (sch = ST) if (Action = ST);
end Evolution
end Agent
Agent S1
vars:
statesl : {s0,sl,s err};
finalSl : boolean;
opeSl : {a,b,c};
end Vars
RedStates:
end RedStates
Actions = {a,b,c};

Protocol:
Other : {a,b,c};
end Protocol
Evolution:
(stateSl=sl) and (finalSl = false) and (opeSl=a)
if (stateS1l=s0) and (Action=a) and (Environment.Action=S1);

49

(stateSl=s0) and (finalSl = true) and (opeSl=b)

if (stateSl=s0) and (Action=b) and (Environment.Action=S1);
(stateS1l=s0) and (finalS1l = true) and (opeSl=c)

if (stateSl=s0) and (Action=c) and (Environment.Action=S1);
(stateSl=s0) and (finalSl = true) and (opeSl=c)

if (stateSl=sl) and (Action=c) and (Environment.Action=S1);
(stateSl=s_err) and (opeSl=a) and (finalsl=false)

if (Action=a and ! (stateSl=s0)) and (Environment.Action=S1l);
(stateSl=s_err) and (opeSl=b) and (finalSl=false)

if (Action=b and ! (stateSl=s0)) and (Environment.Action=S1l);
(stateSl=s_err) and (opeSl=c) and (finalSl=false)

if (Action=c and stateSl=s err) and (Environment.Action=S51);
(stateSl=stateSl) and (finalSl=finalSl) if ! (Environment.Action=S1);
end Evolution

end Agent
Agent S2
Vars:
stateS2 : {s0,sl,s_err};
finalS2 : boolean;
opeS2 : {a,b,c};
end Vars
RedStates:
end RedStates
Actions = {a,b,c};
Protocol:

Other : {a,b,c};
end Protocol
Evolution:
(stateS2=sl) and (finalS2 = false) and (opeS2=b)
if (stateS2=s0) and (Action=b) and (Environment.Action=S2);
(stateS2=s0) and (finalS2 = true) and (opeS2=a)
if (stateS2=s0) and (Action=a) and (Environment.Action=S2);
(stateS2=s0) and (finalS2 = true) and (opeS2=c)
if (stateS2=sl) and (Action=c) and (Environment.Action=S2);
(stateS2=s err) and (opeS2=a) and (finals2=false)
if (Action=a and !(stateS2=s0)) and (Environment.Action=S2);
(stateS2=s_err) and (opeS2=b) and (finals2=false)
if (Action=b and !(stateS2=s0)) and (Environment.Action=S2);
(stateS2=s_err) and (opeS2=c) and (finalS2=false)
if (Action=c and ! (stateS2=sl)) and (Environment.Action=S2);
(stateS2=stateS2) and (finalS2=finalS2) if ! (Environment.Action=S2);
end Evolution

end Agent
Agent ST
Vars:
stateST : {s0,sl,s2,s err};
finalST : boolean;
opeST : {a,b,c};
end Vars
RedStates:
end RedStates
Actions = {a,b,c};
Protocol:

Other : {a,b,c};
end Protocol
Evolution:
(stateST=sl) and (finalST = false) and (opeST=a)

50

if (stateST=s0) and (Action=a) and (Environment.Action=ST);
(stateST=sl) and (finalST = false) and (opeST=b)

if (stateST=s0) and (Action=b) and (Environment.Action=ST);
(stateST=s0) and (finalST = true) and (opeST=c)

if (stateST=sl) and (Action=c) and (Environment.Action=ST);
(stateST=s2) and (finalST = true) and (opeST=a)

if (stateST=sl) and (Action=a) and (Environment.Action=ST);
(stateST=s2) and (finalST = true) and (opeST=a)

if (stateST=s2) and (Action=a) and (Environment.Action=ST);
(stateST=s_err) and (opeST=a) and (finalST=false)

if (Action=a and stateST=s_err) and (Environment.Action=ST);
(stateST=s_err) and (opeST=b) and (finalsT=false)

if (Action=b and ! (stateST=s0)) and (Environment.Action=ST);
(stateST=s_err) and (opeST=c) and (finalsT=false)

if (Action=c and !(stateST=sl)) and (Environment.Action=ST);
(stateST=stateST) and (finalST=finalST) and (opeST=opeST)

if ! (Environment.Action=ST);

end Evolution

end Agent
Evaluation
TargetMoved if (Environment.sch=ST);
Replayed if ((!(Environment.sch=Sl) or (Sl.opeSl=ST.opeST)) and

(! (Environment.sch=S2) or (S2.opeS2=ST.opeST)))
and (ST.finalST=false or (Sl.finalSl=true and
S2.finalS2=true));

LastTargetMoved if Environment.lastsch=ST;

Init if (Environment.lastsch=nil and Environment.sch=nil);

Error if (Sl.stateSl=s_err) or (S2.stateS2=s _err);

Invalid if ST.stateST=s err;

end Evaluation

InitStates
(Sl.stateS1=s0) and (S2.stateS2=s0) and (ST.stateST=s0) and
(Environment.sch=nil) and (Sl.finalSl=true) and (S2.finalS2=true) and
(ST.finalST=true) and (Environment.lastsch=nil);

end InitStates

Groups
PlayersPlusEnv = { S1,S2,Environment } ;
end Groups
Fairness
end Fairness

Formulae
<PlayersPlusEnv> G(
Init or Invalid or
(
(!TargetMoved -> (Replayed and !Error and LastTargetMoved))
and
(TargetMoved -> !LastTargetMoved)
)
)i

end Formulae

51

Example 5

s1 ST

\3

b b

In this example, ST simply loops in sO with operation a: but S1 can perform it just
twice. MCMAS answers FALSE.

Agent Environment
Obsvars:
sch : {nil,S1,ST};
end Obsvars
Vars:
lastsch : {nil,S1,ST};
end Vars
RedStates:
end RedStates
Actions = {nil,S1,ST};
Protocol:
Other : {S1,ST};
end Protocol
Evolution:
(lastsch = sch) and (sch = S1) if (Action = S1l);
(lastsch sch) and (sch ST) if (Action ST);
end Evolution
end Agent

Agent S1
Vars:
stateSl
finalsl
opeS1 :
end Vars
RedStates:
end RedStates
Actions = {a,b};
Protocol:
Other : {a,b};
end Protocol
Evolution:
(stateSl=sl) and (finalSl = true) and (opeSl=a)
if (stateSl=s0) and (Action=a) and (Environment.Action=S1l);
(stateSl=s0) and (finalS1l = true) and (opeSl=b)
if (stateSl=s0) and (Action=b) and (Environment.Action=S1);
(stateSl=s2) and (finalSl = true) and (opeSl=a)
if (stateSl=sl) and (Action=a) and (Environment.Action=S1);
(stateSl=sl) and (finalSl = true) and (opeSl=b)
if (stateSl=sl) and (Action=b) and (Environment.Action=S1l);
(stateSl=s2) and (finalS1l = true) and (opeSl=b)
if (stateSl=s2) and (Action=b) and (Environment.Action=S1l);

{s0,s1,s2,s_err};
boolean;
a,b};

A ee ee

52

(stateSl=s_err) and (opeSl=a) and (finalSl=false) if (Action=a and
(stateSl=s2 or stateSl=s_err)) and (Environment.Action=S1l);
(stateSl=s_err) and (opeSl=b) and (finalSl=false)
if (Action=b and (stateSl=s_err)) and (Environment.Action=S1);
(stateSl=stateSl) and (finalSl=finalSl) if ! (Environment.Action=S1);
end Evolution
end Agent

Agent ST
vars:
stateST
finalST
opeST :
end Vars
RedStates:
end RedStates
Actions = {a,b};
Protocol:
Other : {a,b};
end Protocol
Evolution:
(stateST=s0) and (finalST = true) and (opeST=a)
if (Action=a) and (Environment.Action=ST);
(stateST=s_err) and (opeST=a) and (finalST=false)
if (Action=a and (stateST=s_err)) and (Environment.Action=S1);
(stateST=s_err) and (opeST=b) and (finalST=false)
if (Action=b) and (Environment.Action=S1l);
(stateST=stateST) and (finalST=finalST) and (opeST=opeST)
if ! (Environment.Action=ST);
end Evolution

{s0,s_err};
boolean;
a,b};

A ee ee

end Agent
Evaluation
TargetMoved if (Environment.sch=ST);
Replayed if ((!(Environment.sch=S1l) or (Sl.opeSl=ST.opeST)) and

(ST.finalST=false or Sl.finalSl=true));
LastTargetMoved if Environment.lastsch=ST;
Init if (Environment.lastsch=nil and Environment.sch=nil);
Error if (Sl.stateSl=s_err);
Invalid if ST.stateST=s err;
end Evaluation

InitStates
(Sl.stateS1=s0) and (ST.stateST=s0) and (Environment.sch=nil) and
(Sl.finalSl=true) and (ST.finalST=true) and (Environment.lastsch=nil);

end InitStates

Groups
PlayersPlusEnv = { S1,Environment } ;
end Groups
Fairness
end Fairness
Formulae
<PlayersPlusEnv> G(
Init or Invalid or (
(!TargetMoved -> (Replayed and !Error and LastTargetMoved))
and
(TargetMoved -> !LastTargetMoved)
));

end Formulae

53

Example 5b

Now MCMAS answers TRUE.

Agent Environment

Obsvars:
sch : {nil,S1,ST};
end Obsvars
Vars:
lastsch {nil,S1,ST};
end Vars
RedStates:

end RedStates
Actions =
Protocol:
Other :
end Protocol
Evolution:
(lastsch
(lastsch
end Evolution

end Agent

Agent S1
vars:
stateSl :
finalSl :
opeSl :
end Vars
Redstates:
end RedStates
Actions = {a,b};

Protocol:

{a,b};

{nil,S1,ST};

{S1,ST};

sch) and (sch

sch) and (sch

{s0,s1,s2,s_err};

boolean;

S1l) if (Action

ST) if (Action

54

51);
ST);

ST

Other : {a,b};
end Protocol
Evolution:

(stateSl=sl) and (finalS1l = true) and (opeSl=a)

if (stateSl=s0) and (Action=a) and (Environment.Action=S1);
(stateSl=s0) and (finalS1l = true) and (opeSl=b)

if (stateS1l=s0) and (Action=b) and (Environment.Action=S1);
(stateSl=s2) and (finalSl = true) and (opeSl=a)

if (stateSl=sl) and (Action=a) and (Environment.Action=S1l);
(stateSl=sl) and (finalS1l = true) and (opeSl=b)

if (stateSl=sl) and (Action=b) and (Environment.Action=S1l);
(stateSl=s0) and (finalSl = true) and (opeSl=a)

if (stateSl=s2) and (Action=a) and (Environment.Action=S1l);
(stateSl=s2) and (finalS1l = true) and (opeSl=b)

if (stateSl1l=s2) and (Action=b) and (Environment.Action=S1l);
(stateSl=s_err) and (opeSl=a) and (finalsl=false)

if (Action=a and (stateSl=s_err)) and (Environment.Action=S1);
(statesl=s_err) and (opeSl=b) and (finalsl=false)

if (Action=b and (stateSl=s_err)) and (Environment.Action=51);
(stateSl=stateSl) and (finalSl=finalSl) if ! (Environment.Action=S1);
end Evolution

end Agent

Agent ST
vars:
stateST : {s0,s_err};
finalST : boolean;
opeST : {a,b};
end Vars
RedStates:
end RedStates
Actions = {a,b};
Protocol:
Other : {a,b};
end Protocol
Evolution:
(stateST=s0) and (finalST = true) and (opeST=a)
if (Action=a) and (Environment.Action=ST);
(statesT=s_err) and (opeST=a) and (finalsT=false)
if (Action=a and (stateST=s_err)) and (Environment.Action=S1);
(stateST=s_err) and (opeST=b) and (finalST=false)

if (Action=b) and (Environment.Action=S1);

55

(stateST=stateST) and (finalST=finalST) and (opeST=opeST)
if ! (Environment.Action=ST);
end Evolution

end Agent

Evaluation
TargetMoved if (Environment.sch=ST);
Replayed if ((!(Environment.sch=S1l) or (Sl.opeSl=ST.opeST)) and

(ST.finalST=false or Sl.finalSl=true));

LastTargetMoved if Environment.lastsch=ST;
Init if (Environment.lastsch=nil and Environment.sch=nil);
Error if (Sl.stateSl=s_err);
Invalid if ST.stateST=s_err;

end Evaluation

InitStates
(Sl.stateSl=s0) and (ST.stateST=s0) and (Environment.sch=nil) and
(Sl.finalSl=true) and (ST.finalST=true) and (Environment.lastsch=nil);
end InitStates

Groups
PlayersPlusEnv = { S1,Environment } ;

end Groups

Fairness

end Fairness

Formulae
<PlayersPlusEnv> G(
Init or Invalid or
(
(!TargetMoved -> (Replayed and !Error and LastTargetMoved))
and
(TargetMoved -> !LastTargetMoved)
)
)i

end Formulae

56

Example 6

The simplest way to see way MCMAS answers FALSE is noticing that available services
cannot replicate the sequence a,b,b of moves.

Agent Environment
Obsvars:
sch : {nil,S1,S2,S8T};
end Obsvars
Vars:
lastsch : {nil,S1,S2,ST};
end Vars
RedStates:
end RedStates
Actions = {nil,S1,S2,ST};
Protocol:
Other : {S1,S2,ST};
end Protocol
Evolution:
(lastsch = sch) and (sch = S1) if (Action = S1l);
(lastsch sch) and (sch S2) if (Action = S2);
(lastsch sch) and (sch ST) if (Action = ST);
end Evolution
end Agent

Agent S1

Vars:
stateSl : {s0,sl,s _err};
finalSl : boolean;
opeSl : {a,b};

end Vars

RedStates:

end RedStates

Actions = {a,b};

Protocol:

Other : {a,b};

57

end Protocol
Evolution:
(stateSl=s0) and (finalS1l = true) and (opeSl=a)
if (stateSl=s0) and (Action=a) and (Environment.Action=S1);
(stateSl=sl) and (finalSl true) and (opeSl=b)
if (stateSl=s0) and (Action=b) and (Environment.Action=S1);
(stateSl=sl) and (finalSl true) and (opeSl=a)
if (stateSl=sl) and (Action=a) and (Environment.Action=S1);
(stateSl=s_err) and (opeSl=a) and (finalSl=false)
if (Action=a and stateSl=s_err) and (Environment.Action=Sl);
(stateSl=s_err) and (opeSl=b) and (finalSl=false)
if (Action=b and !(stateSl=s0)) and (Environment.Action=S1);
(stateSl=stateSl) and (finalSl=finalSl) if ! (Environment.Action=S1);
end Evolution

end Agent
Agent S2
Vars:
stateS2 : {s0,sl,s2,s_err};
finalS2 : boolean;
opeS2 : {a,b};
end Vars
RedStates:
end RedStates
Actions = {a,b};
Protocol:
Other : {a,b};
end Protocol
Evolution:

(stateS2=sl1l) and (finalS2
if (stateS2=s0) and
(stateS2=s2) and (finalS2
if (stateS2=sl) and
(stateS2=s1) and (finalS2
if (stateS2=s2) and

false) and (opeS2=Db)
(Action=b) and (Environment.Action=S2);
true) and (opeS2=b)
(Action=b) and (Environment.Action=S2);
false) and (opeS2=a)
(Action=a) and (Environment.Action=S2);

(stateS2=s err) and (opeS2=a) and (finalS2=false)

if (Action=a and !(stateS2=s2)) and (Environment.Action=S2);
(stateS2=s_err) and (opeS2=b) and (finals2=false)

if (Action=b and stateS2=s err) and (Environment.Action=52);
(stateS2=stateS2) and (finalS2=finalS2) if ! (Environment.Action=S2);
end Evolution

end Agent
Agent ST
Vars:
stateST : {s0,sl,s2,s3,s_err};
finalST : boolean;
opeST : {a,b};
end Vars
RedStates:
end RedStates
Actions = {a,b};
Protocol:
Other : {a,b};
end Protocol
Evolution:

(stateST=sl) and (finalST true) and (opeST=a)
if (stateST=s0) and (Action=a) and (Environment.Action=ST);
(stateST=s2) and (finalST false) and (opeST=a)

58

if (stateST=sl) and (Action=a) and (Environment.Action=ST);
(stateST=s3) and (finalST = true) and (opeST=b)

if (stateST=sl) and (Action=b) and (Environment.Action=ST);
(stateST=sl) and (finalST = true) and (opeST=b)

if (stateST=s2) and (Action=b) and (Environment.Action=ST);
(stateST=sl) and (finalST = true) and (opeST=b)

if (stateST=s3) and (Action=b) and (Environment.Action=ST);
(stateST=s_err) and (opeST=a) and (finalsST=false) if (Action=a and

! (stateST=s0 or stateST=sl)) and (Environment.Action=S1);
(stateST=s_err) and (opeST=b) and (finalST=false) if (Action=b and

(statesT=s0 or stateST=s err)) and (Environment.Action=S1);
(stateST=stateST) and (finalST=finalST) and (opeST=opeST)

if ! (Environment.Action=ST);
end Evolution

end Agent
Evaluation
TargetMoved if (Environment.sch=ST);
Replayed if ((!(Environment.sch=S1l) or (Sl.opeS1=ST.opeST)) and (!

(Environment.sch=S2) or (S2.opeS2=ST.opeST)))
and (ST.finalST=false or (Sl.finalSl=true and S2.finalS2=true));
LastTargetMoved if Environment.lastsch=ST;
Init if (Environment.lastsch=nil and Environment.sch=nil);
Error if (Sl.stateSl=s err) or (S2.stateS2=s err);
Invalid if ST.stateST=s_err;
end Evaluation

InitStates
(Sl.stateS1=s0) and (S2.stateS2=s0) and (ST.stateST=s0) and
(Environment.sch=nil) and (Sl.finalSl=true) and (S2.finalS2=true) and
(ST.finalST=true) and (Environment.lastsch=nil);

end InitStates

Groups
PlayersPlusEnv = { S1,S2,Environment } ;
end Groups

Fairness
end Fairness

Formulae
<PlayersPlusEnv> G(
Init or Invalid or
(
(!TargetMoved -> (Replayed and !Error and LastTargetMoved))
and
(TargetMoved -> !LastTargetMoved)
)
)i

end Formulae

59

Example 6b

MCMAS's result is: TRUE

Agent Environment
Obsvars:
sch : {nil,S1,S2,S8T};
end Obsvars
vars:
lastsch : {nil,S1,S2,ST};
end Vars
RedStates:
end RedStates
Actions = {nil,S1,S2,ST};
Protocol:
Oother : {S1,S2,ST};
end Protocol
Evolution:
(lastsch = sch) and (sch = S1) if (Action = S1l);
(lastsch sch) and (sch S2) if (Action S2);
(lastsch sch) and (sch ST) if (Action ST);
end Evolution
end Agent

Agent S1

Vars:
stateS1
finalsSl
opeS1 :

end Vars

RedStates:

end RedStates

Actions = {a,b};

{s0,s1,s_err};
boolean;
a,b};

A ee oo

60

Protocol:
Other : {a,b};
end Protocol
Evolution:
(stateSl=s0) and (finalS1l = true) and (opeSl=a)
if (stateS1l=s0) and (Action=a) and (Environment.Action=S1);
(stateSl=sl) and (finalSl = true) and (opeSl=b)
if (stateSl=s0) and (Action=b) and (Environment.Action=S1);
(stateSl=sl) and (finalS1l = true) and (opeSl=b)
if (stateSl=sl) and (Action=b) and (Environment.Action=S1);
(stateSl=s_err) and (opeSl=a) and (finalSl=false)
if (Action=a and !(stateSl=s0)) and (Environment.Action=S1);
(statesl=s_err) and (opeSl=b) and (finalsl=false)
if (Action=b and stateSl=s_err) and (Environment.Action=S1);
(stateSl=stateSl) and (finalSl=finalS1l) if ! (Environment.Action=S1);
end Evolution
end Agent

Agent S2
Vars:
stateS2
finalsS2
opeS2 :
end Vars
Redstates:
end RedStates
Actions = {a,b};
Protocol:
Other : {a,b};
end Protocol
Evolution:
(stateS2=sl) and (finalS2 = true) and (opeS2=b)
if (stateS2=s0) and (Action=b) and (Environment.Action=S2);
(stateS2=s2) and (finalS2 = false) and (opeS2=a)
if (stateS2=sl) and (Action=a) and (Environment.Action=S2);
(stateS2=sl) and (finalS2 = true) and (opeS2=b)
if (stateS2=s2) and (Action=b) and (Environment.Action=S2);
(stateS2=s_err) and (opeS2=a) and (finals2=false)
if (Action=a and !(stateS2=sl)) and (Environment.Action=S2);
(stateS2=s_err) and (opeS2=b) and (finalS2=false) if (Action=b and
(stateS2=sl1 or stateS2=s_err)) and (Environment.Action=S2);
(stateS2=stateS2) and (finalS2=finalS2) if ! (Environment.Action=S2);
end Evolution

{s0,sl1,s2,s_err};
boolean;
a,b};

A e oo

end Agent
Agent ST
Vars:
stateST : {s0,sl,s2,s3,s _err};
£inalST : boolean;
opeST : {a,b};
end Vars
RedStates:

end RedStates
Actions = {a,b};
Protocol:
Other : {a,b};
end Protocol
Evolution:
(stateST=sl) and (finalST = true) and (opeST=a)

61

if (stateST=s0) and (Action=a) and (Environment.Action=ST);
(stateST=s2) and (finalST = false) and (opeST=a)

if (stateST=sl) and (Action=a) and (Environment.Action=ST);
(stateST=s3) and (finalST = true) and (opeST=b)

if (stateST=sl) and (Action=b) and (Environment.Action=ST);
(stateST=sl) and (finalST = true) and (opeST=b)

if (stateST=s2) and (Action=b) and (Environment.Action=ST);
(stateST=sl) and (finalST = true) and (opeST=b)

if (stateST=s3) and (Action=b) and (Environment.Action=ST);
(stateST=s_err) and (opeST=a) and (finalST=false) if (Action=a and

! (stateST=s0 or stateST=sl)) and (Environment.Action=ST);
(stateST=s_err) and (opeST=b) and (finalsT=false) if (Action=b

and (stateST=s0 or stateST=s_err)) and (Environment.Action=ST);
(stateST=stateST) and (finalST=finalST) and (opeST=opeST)

if ! (Environment.Action=ST);
end Evolution

end Agent
Evaluation
TargetMoved if (Environment.sch=ST);
Replayed if ((!(Environment.sch=S1l) or (Sl.opeSl=ST.opeST)) and (!

(Environment.sch=S2) or (S2.o0opeS2=ST.opeST)))
and (ST.finalST=false or (Sl.finalSl=true and S2.finalS2=true));
LastTargetMoved if Environment.lastsch=ST;
Init if (Environment.lastsch=nil and Environment.sch=nil);
Error if (Sl.stateSl=s_err) or (S2.stateS2=s _err);
Invalid if ST.stateST=s err;
end Evaluation

InitStates
(Sl.stateS1=s0) and (S2.stateS2=s0) and (ST.stateST=s0) and
(Environment.sch=nil) and (Sl.finalSl=true) and (S2.finalS2=true) and
(ST.finalST=true) and (Environment.lastsch=nil);

end InitStates

Groups
PlayersPlusEnv = { S1,S2,Environment } ;
end Groups

Fairness
end Fairness

Formulae
<PlayersPlusEnv> G(
Init or Invalid or
(
(!TargetMoved -> (Replayed and !Error and LastTargetMoved))
and
(TargetMoved -> !LastTargetMoved)
)
)i

end Formulae

62

Example 7

S1 S2
a b

S3

S1 and S2 can easily exploited to mimic ST behavior. MCMAS result: TRUE

Agent Environment
Obsvars:
sch : {nil,S1,S2,S3,ST};
end Obsvars
Vars:
lastsch : {nil,S1,S2,S3,ST};
end Vars
RedStates:
end RedStates
Actions = {nil,S1,S2,S3,ST};
Protocol:
Other : {S1,S2,S3,ST};
end Protocol

Evolution:
(lastsch = sch) and (sch = S1) if (Action = Sl);
(lastsch = sch) and (sch = S2) if (Action = S2);
(lastsch = sch) and (sch = S3) if (Action = S3);
(lastsch = sch) and (sch = ST) if (Action = ST);
end Evolution
end Agent
Agent S1
vars:

stateSl : {s0,sl,s_err};
finalSl : boolean;
opeSl : {a,b,c};

end Vars

63

RedStates:
end RedStates
Actions = {a,b,c};
Protocol:
Other : {a,b,c};
end Protocol
Evolution:
(stateSl=sl) and (finalSl = false) and (opeSl=a)
if (stateS1l=s0) and (Action=a) and (Environment.Action=S1);
(stateSl=s0) and (finalS1l = true) and (opeSl=c)
if (stateSl=sl) and (Action=c) and (Environment.Action=S1);
(stateSl=s_err) and (opeSl=a) and (finalsl=false)
if (Action=a and ! (stateSl=s0)) and (Environment.Action=S1l);
(stateSl=s _err) and (opeSl=c) and (finalSl=false)
if (Action=c and !(stateSl=sl)) and (Environment.Action=S1l);
(statesl=s_err) and (opeSl=b) if (Action=b) and (Environment.Action=S1);
(stateSl=stateSl) and (finalSl=finalSl) if ! (Environment.Action=S1);
end Evolution
end Agent

Agent S2
vars:
states2 : {s0,sl,s _err};
finalS2 : boolean;
opeS2 : {a,b,c};
end Vars
RedStates:
end RedStates
Actions = {a,b,c};
Protocol:
Other : {a,b,c};
end Protocol
Evolution:
(stateS2=sl1l) and (finalS2 = false) and (opeS2=b)
if (stateS2=s0) and (Action=b) and (Environment.Action=S2);
(stateS2=s0) and (finalS2 = true) and (opeS2=c)
if (stateS2=sl) and (Action=c) and (Environment.Action=S2);
(stateS2=s err) and (opeS2=b) and (finalS2=false)
if (Action=b and ! (stateS2=s0)) and (Environment.Action=S2);
(states2=s_err) and (opeS2=c) and (finals2=false)
if (Action=c and ! (stateS2=sl)) and (Environment.Action=S2);
(stateS2=s_err) and (opeS2=a) if (Action=a) and (Environment.Action=S2);
(stateS2=stateS2) and (finalS2=finalS2) if ! (Environment.Action=S2);
end Evolution
end Agent

Agent S3

64

vars:
stateS3 : {s0,sl,s_err};
finalS3 : boolean;
opeS3 : {a,b,c};
end Vars
RedStates:
end RedStates
Actions = {a,b,c};
Protocol:
Other : {a,b,c};
end Protocol
Evolution:
(stateS3=s0) and (finalS3 = true) and (opeS3=a)
if (stateS3=s0) and (Action=a) and (Environment.Action=S3);
(stateS3=s0) and (finalS3 = true) and (opeS3=c)
if (stateS3=s0) and (Action=c) and (Environment.Action=S3);
(stateS3=sl) and (finalS3 = true) and (opeS3=b)
if (stateS3=s0) and (Action=b) and (Environment.Action=S3);
(stateS3=sl) and (finalS3 = true) and (opeS3=b)
if (stateS3=sl) and (Action=b) and (Environment.Action=S3);
(states3=s_err) and (opeS3=a) and (finals3=false)
if (Action=a and ! (stateS3=s0)) and (Environment.Action=S3);
(stateS3=s_err) and (opeS3=b) and (finalS3=false)
if (Action=b and stateS3=s err) and (Environment.Action=S3);
(states3=s_err) and (opeS3=c) and (finals3=false)
if (Action=c and !(stateS3=s0)) and (Environment.Action=S3);
(stateS3=stateS3) and (finalS3=finalS3) if ! (Environment.Action=S3);
end Evolution
end Agent

Agent ST
Vars:
stateST : {s0,sl,s err};
£finalST : boolean;
opeST : {a,b,c};
end Vars
RedStates:
end RedStates
Actions = {a,b,c};
Protocol:
Other : {a,b,c};
end Protocol
Evolution:
(stateST=sl) and (finalST = false) and (opeST=a)
if (stateST=s0) and (Action=a) and (Environment.Action=ST);
(stateST=sl) and (finalST = false) and (opeST=b)
if (stateST=s0) and (Action=b) and (Environment.Action=ST);

65

(stateST=s0) and (finalST = true) and (opeST=c)

if (stateST=sl) and (Action=c) and (Environment.Action=ST);
(stateST=s_err) and (opeST=a) and (finalST=false)

if (Action=a and ! (stateST=s0)) and (Environment.Action=ST);
(statesT=s_err) and (opeST=b) and (finalsT=false)

if (Action=b and !(stateST=s0)) and (Environment.Action=ST);
(stateST=s_err) and (opeST=c) and (finalsT=false)

if (Action=c and ! (stateST=sl)) and (Environment.Action=ST);
(stateST=stateST) and (finalST=finalST) and (opeST=opeST) if !

(Environment.Action=ST);

end Evolution

end Agent

Evaluation
TargetMoved if (Environment.sch=ST);

Replayed if ((!(Environment.sch=S1l) or (Sl.opeSl=ST.opeST)) and (!
(Environment.sch=S2) or (S2.opeS2=ST.opeST)) and

(! (Environment.sch=S3) or (S3.opeS3=ST.opeST)))

and (ST.finalST=false or (Sl.finalSl=true and S2.finalS2=true
and S3.finalS3=true));

LastTargetMoved if Environment.lastsch=ST;
Init if (Environment.lastsch=nil and Environment.sch=nil);
Error if (Sl.stateSl=s_err) or (S2.stateS2=s_err) or (S3.stateS3=s_err);
Invalid if ST.stateST=s_err;
end Evaluation

InitStates

(Sl.stateS1=s0) and (S2.stateS2=s0) and (S3.stateS3=s0) and
(ST.stateST=s0) and (Environment.sch=nil) and

(Sl.finalSl=true) and (S2.finalS2=true) and (S3.finalS3=true) and
(ST.finalST=true) and (Environment.lastsch=nil);

end InitStates

Groups

PlayersPlusEnv = { S1,S2,S3,Environment } ;
end Groups
Fairness

end Fairness

Formulae
<PlayersPlusEnv> G(
Init or Invalid or
(
(!TargetMoved -> (Replayed and !Error and LastTargetMoved))
and
(TargetMoved -> !LastTargetMoved)
)
)i

end Formulae

66

Example 7b
S1 S2
a b
¢ C
33 ST

a @ . ib

The loop added in ST.s1 involves using S3, but S3.s1 is not final. Result: FALSE

Agent Environment
Obsvars:
sch : {nil,Ss1,S2,S3,ST};
end Obsvars
Vars:
lastsch : {nil,S1,S2,S3,ST};
end Vars
RedStates:
end RedStates
Actions = {nil,S1,S2,S3,ST};
Protocol:
Other : {S1,S2,S3,ST};
end Protocol

Evolution:
(lastsch = sch) and (sch = S1) if (Action = S1);
(lastsch = sch) and (sch = S2) if (Action = S2);
(lastsch = sch) and (sch = S3) if (Action = S3);
(lastsch = sch) and (sch = ST) if (Action = ST);
end Evolution
end Agent
Agent S1
vars:
stateSl : {s0,sl,s_err};

finalSl : boolean;
opeSl : {a,b,c};
end Vars
RedStates:
end RedStates

67

Actions = {a,b,c};
Protocol:
Other : {a,b,c};
end Protocol
Evolution:
(stateSl=sl) and (finalSl = false) and (opeSl=a)
if (stateSl=s0) and (Action=a) and (Environment.Action=S1);
(stateSl=s0) and (finalSl = true) and (opeSl=c)
if (stateSl=sl) and (Action=c) and (Environment.Action=S1);
(stateSl=s_err) and (opeSl=a) and (finalsl=false)
if (Action=a and !(stateSl=s0)) and (Environment.Action=S1l);
(stateSl=s_err) and (opeSl=c) and (finalSl=false)
if (Action=c and ! (stateSl=sl)) and (Environment.Action=S1l);
(stateSl=s_err) and (opeSl=b) and (finalsl=false)
if (Action=b) and (Environment.Action=S1);
(stateSl=stateSl) and (finalSl=finalSl) if ! (Environment.Action=S1);
end Evolution
end Agent

Agent S2
Vars:
states2 : {s0,sl,s err};
finalS2 : boolean;
opeS2 : {a,b,c};
end Vars
RedStates:
end RedStates
Actions = {a,b,c};
Protocol:
Other : {a,b,c};
end Protocol
Evolution:
(stateS2=sl1l) and (finalS2 = false) and (opeS2=b)
if (stateS2=s0) and (Action=b) and (Environment.Action=S2);
(stateS2=s0) and (finalS2 = true) and (opeS2=c)
if (stateS2=sl) and (Action=c) and (Environment.Action=S2);
(stateS2=s err) and (opeS2=b) and (finalS2=false)
if (Action=b and ! (stateS2=s0)) and (Environment.Action=S2);
(states2=s_err) and (opeS2=c) and (finals2=false)
if (Action=c and ! (stateS2=sl)) and (Environment.Action=S2);
(stateS2=s_err) and (opeS2=a) and (finals2=false)
if (Action=a) and (Environment.Action=S2);
(stateS2=stateS2) and (finalS2=finalS2) if ! (Environment.Action=S2);
end Evolution
end Agent

Agent S3

Vars:
stateS3 : {s0,sl,s_err};

68

finalS3 : boolean;
opeS3 : {a,b,c};
end Vars
RedStates:
end RedStates
Actions = {a,b,c};
Protocol:
Other : {a,b,c};
end Protocol
Evolution:
(stateS3=s0) and (finalS3 = true) and (opeS3=a)
if (stateS3=s0) and (Action=a) and (Environment.Action=S3);
(stateS3=s0) and (finalS3 = true) and (opeS3=c)
if (stateS3=s0) and (Action=c) and (Environment.Action=S3);
(stateS3=sl) and (finalS3 = false) and (opeS3=b)
if (stateS3=s0) and (Action=b) and (Environment.Action=S3);
(stateS3=sl) and (finalS3 = false) and (opeS3=b)
if (stateS3=sl) and (Action=b) and (Environment.Action=S3);
(states3=s_err) and (opeS3=a) and (finals3=false)
if (Action=a and ! (stateS3=s0)) and (Environment.Action=S3);
(states3=s_err) and (opeS3=b) and (finals3=false)
if (Action=b and stateS3=s err) and (Environment.Action=S3);
(stateS3=s_err) and (opeS3=c) and (finals3=false)
if (Action=c and !(stateS3=s0)) and (Environment.Action=S3);
(stateS3=stateS3) and (finalS3=finalS3) if ! (Environment.Action=S3);
end Evolution
end Agent

Agent ST
Vars:
stateST : {s0,sl,s_err};
£finalST : boolean;
opeST : {a,b,c};
end Vars
RedStates:
end RedStates
Actions = {a,b,c};
Protocol:
Other : {a,b,c};
end Protocol
Evolution:
(stateST=sl) and (finalST false) and (opeST=a)
if (stateST=s0) and (Action=a) and (Environment.Action=ST);
(stateST=sl) and (finalST = false) and (opeST=b)
if (stateST=s0) and (Action=b) and (Environment.Action=ST);
(stateST=sl) and (finalST false) and (opeST=Db)
if (stateST=sl) and (Action=b) and (Environment.Action=ST);
(stateST=s0) and (finalST = true) and (opeST=c)
if (stateST=sl) and (Action=c) and (Environment.Action=ST);

69

(statesT=s_err) and (opeST=a) and (finalsT=false)

if (Action=a and ! (stateST=s0)) and (Environment.Action=ST);
(stateST=s_err) and (opeST=b) and (finalsST=false)

if (Action=b and stateST=s_err) and (Environment.Action=ST);
(statesT=s_err) and (opeST=c) and (finalsT=false)

if (Action=c and ! (stateST=sl)) and (Environment.Action=ST);
(stateST=stateST) and (finalST=finalST) and (opeST=opeST)

if ! (Environment.Action=ST);
end Evolution

end Agent
Evaluation
TargetMoved if (Environment.sch=ST);
Replayed if ((!(Environment.sch=S1l) or (Sl.opeS1l=ST.opeST)) and

(! (Environment.sch=S2) or (S2.0opeS2=ST.opeST)) and
(! (Environment.sch=S3) or (S3.opeS3=ST.opeST)))

and (ST.finalST=false or (Sl.finalSl=true and S2.finalS2=true
and S3.finalS3=true));

LastTargetMoved if Environment.lastsch=ST;
Init if (Environment.lastsch=nil and Environment.sch=nil);
Error if (Sl.stateSl=s _err) or (S2.stateS2=s err) or (S3.stateS3=s err);
Invalid if ST.stateST=s_err;
end Evaluation

InitStates

(Sl.stateS1=s0) and (S2.stateS2=s0) and (S3.stateS3=s0) and
(ST.stateST=s0) and (Environment.sch=nil) and

(Sl.finalSl=true) and (S2.finalS2=true) and (S3.finalS3=true) and
(ST.finalST=true) and (Environment.lastsch=nil);

end InitStates

Groups
PlayersPlusEnv = { S1,S2,S3,Environment } ;
end Groups

Fairness
end Fairness

Formulae
<PlayersPlusEnv> G(
Init or Invalid or
(
(!TargetMoved -> (Replayed and !Error and LastTargetMoved))
and
(TargetMoved -> !LastTargetMoved)
)
)i

end Formulae

70

Example 8

S3

MCMAS result: TRUE

Agent Environment

Obsvars:

sch : {nil,s1,S52,S83,ST};
end Obsvars
vars:

lastsch : {nil,s1,S2,S3,ST};
end Vars
RedStates:
end RedStates
Actions = {nil,S1,S2,S3,ST};
Protocol:

Other : {S1,S2,S3,ST};
end Protocol

Evolution:
(lastsch = sch) and (sch = S1) if (Action = Sl);
(lastsch = sch) and (sch = S2) if (Action = S2);
(lastsch = sch) and (sch = S3) if (Action = S3);
(lastsch = sch) and (sch = ST) if (Action = ST);
end Evolution
end Agent
Agent S1
vVars:

stateSl : {s0,sl,s2,s_err};
finalSl : boolean;

71

opeSl : {a,b,c};
end Vars
RedStates:
end RedStates
Actions = {a,b,c};
Protocol:
Other : {a,b,c};
end Protocol
Evolution:
(stateSl=sl) and (finalSl = false) and (opeSl=a)
if (stateSl=s0) and (Action=a) and (Environment.Action=S1);
(stateSl=s2) and (finalS1l = true) and (opeSl=a)
if (stateSl=sl) and (Action=a) and (Environment.Action=S1);
(stateSl=s2) and (finalSl = true) and (opeSl=c)
if (stateSl=s2) and (Action=c) and (Environment.Action=S1);
(statesl=s_err) and (opeSl=a) and (finalSl=false) if (Action=a
and (stateSl=s2 or stateSl=s_err)) and (Environment.Action=S1);
(stateSl=s _err) and (opeSl=b) and (finalSl=false)
if (Action=b) and (Environment.Action=S1);
(stateSl=s_err) and (opeSl=c) and (finalSl=false)
if (Action=c and !(stateSl=s2)) and (Environment.Action=S1);
(stateSl=stateSl) and (finalSl=finalSl) if ! (Environment.Action=S1);
end Evolution

end Agent
Agent S2
Vars:
stateS2 : {s0,sl,s2,s_err};
finalS2 : boolean;
opeS2 : {a,b,c};
end Vars
RedStates:
end RedStates
Actions = {a,b,c};
Protocol:

Other : {a,b,c};
end Protocol
Evolution:
(stateS2=sl) and (finalS2 = false) and (opeS2=b)
if (stateS2=s0) and (Action=b) and (Environment.Action=S2);
(stateS2=s2) and (finalS2 = true) and (opeS2=b)
if (stateS2=sl) and (Action=b) and (Environment.Action=S2);
(stateS2=s2) and (finalS2 = true) and (opeS2=b)
if (stateS2=s2) and (Action=b) and (Environment.Action=S2);
(stateS2=s2) and (finalS2 = true) and (opeS2=c)
if (stateS2=s2) and (Action=c) and (Environment.Action=S2);
(stateS2=s_err) and (opeS2=a) and (finals2=false)
if (Action=a) and (Environment.Action=S2);
(stateS2=s_err) and (opeS2=b) and (finalS2=false)
if (Action=b and stateS2=s_err) and (Environment.Action=S2);
(stateS2=s err) and (opeS2=c) and (finals2=false)
if (Action=c and !(stateS2=s2)) and (Environment.Action=S2);
(stateS2=stateS2) and (finalS2=finalS2) if ! (Environment.Action=S2);
end Evolution
end Agent

Agent S3

vars:
states3 : {s0,sl,s_erry};

72

finalS3 : boolean;
opeS3 : {a,b,c};

end Vars
RedStates:

end RedStates
Actions = {a,b,c};
Protocol:

Other : {a,b,c};

end Protocol
Evolution:

(stateS3=sl) and (finalS3 = true) and (opeS3=c)

if (stateS3=s0) and (Action=c) and (Environment.Action=S3);
(stateS3=s0) and (finalS3 = true) and (opeS3=a)

if (stateS3=sl) and (Action=a) and (Environment.Action=S3);
(stateS3=s_err) and (opeS3=a) and (finals3=false)

if (Action=a and !(stateS3=sl)) and (Environment.Action=S3);
(stateS3=s_err) and (opeS3=b) and (finals3=false)

if (Action=b) and (Environment.Action=S3);
(states3=s_err) and (opeS3=c) and (finalS3=false)

if (Action=c and ! (stateS3=s0)) and (Environment.Action=S3);
(stateS3=stateS3) and (finalS3=finalS3) if ! (Environment.Action=S3);

end Evolution

end Agent
Agent ST
Vars:
stateST : {s0,sl,s2,s3,s _err};
finalST : boolean;
opeST : {a,b,c};
end Vars
RedStates:
end RedStates
Actions = {a,b,c};
Protocol:

Other : {a,b,c};

end Protocol
Evolution:

(stateST=sl) and (finalST = false) and (opeST=a)

if (stateST=s0) and (Action=a) and (Environment.Action=ST);
(stateST=s3) and (finalST = true) and (opeST=a)

if (stateST=sl) and (Action=a) and (Environment.Action=ST);
(stateST=s2) and (finalST = false) and (opeST=b)

if (stateST=sl) and (Action=b) and (Environment.Action=ST);
(stateST=sl) and (finalST = false) and (opeST=b)

if (stateST=s2) and (Action=b) and (Environment.Action=ST);
(stateST=sl) and (finalST = true) and (opeST=c)

if (stateST=s3) and (Action=c) and (Environment.Action=ST);
(stateST=s_err) and (opeST=a) and (finals3=false) if (Action=a

and (stateST=s3 or stateST=s_err)) and (Environment.Action=ST);
(stateST=s_err) and (opeST=b) and (finals3=false) if (Action=b

and ! (stateST=sl or stateST=s2)) and (Environment.Action=ST);
(stateST=s_err) and (opeST=c) and (finalS3=false)

if (Action=c and ! (stateST=s3)) and (Environment.Action=ST);
(stateST=stateST) and (finalST=finalST) and (opeST=opeST)

if ! (Environment.Action=ST);

end Evolution
end Agent

Evaluation

73

TargetMoved if (Environment.sch=ST);

Replayed if ((!(Environment.sch=S1l) or (Sl.opeSl=ST.opeST)) and (!
(Environment.sch=S2) or (S2.opeS2=ST.opeST)) and (!

(Environment.sch=S3) or (S3.o0peS3=ST.opeST)))

and (ST.finalST=false or (Sl.finalSl=true and S2.finalS2=true

and S3.finalS3=true));
LastTargetMoved if Environment.lastsch=ST;
Init if (Environment.lastsch=nil and Environment.sch=nil);

Error if (Sl.stateSl=s _err) or (S2.stateS2=s err) or (S3.stateS3=s err);

Invalid if ST.stateST=s_err;
end Evaluation

InitStates
(Sl.stateS1=s0) and (S2.stateS2=s0) and (S3.stateS3=s0) and
(ST.stateST=s0) and (Environment.sch=nil) and

(Sl.finalSl=true) and (S2.finalS2=true) and (S3.finalS3=true) and

(ST.finalST=true) and (Environment.lastsch=nil);
end InitStates

Groups
PlayersPlusEnv = { S1,S2,S3,Environment } ;
end Groups

Fairness
end Fairness

Formulae
<PlayersPlusEnv> G(
Init or Invalid or

(
(!TargetMoved -> (Replayed and !Error and LastTargetMoved))

and
(TargetMoved -> !LastTargetMoved)
)
)i

end Formulae

74

Example 8b

S1 c S2 c ‘

00 @0

S3
©

State ST.s2 is now final. MCMAS result: FALSE

Agent Environment
Obsvars:
sch : {nil,S1,S2,S3,ST};
end Obsvars
vars:
lastsch : {nil,S1,S2,S3,ST};
end Vars
RedStates:
end RedStates
Actions = {nil,S1,S2,S3,ST};
Protocol:
Other : {S1,S2,S3,ST};
end Protocol
Evolution:
(lastsch = sch) and (sch = S1) if (Action = Sl);

(lastsch = sch) and (sch = S2) if (Action = S2);
(lastsch = sch) and (sch = S3) if (Action = 83);
(lastsch = sch) and (sch = ST) if (Action = ST);
end Evolution
end Agent
Agent S1

75

Vars:

stateSl : {s0,sl,s2,s_err};
finalSl : boolean;
opeSl : {a,b,c};

end Vars

RedStates:

end RedStates
Actions = {a,b,c};
Protocol:

Other : {a,b,c};

end Protocol
Evolution:

(stateSl=sl) and (finalSl = false) and (opeSl=a)

if (stateSl=s0) and (Action=a) and (Environment.Action=S1);
(stateSl=s2) and (finalS1l = true) and (opeSl=a)

if (stateSl=sl) and (Action=a) and (Environment.Action=S1);
(stateSl=s2) and (finalSl = true) and (opeSl=c)

if (stateSl=s2) and (Action=c) and (Environment.Action=S1);
(statesl=s_err) and (opeSl=a) and (finalSl=false) if (Action=a

and (stateSl=s2 or stateSl=s_err)) and (Environment.Action=S1);
(stateSl=s _err) and (opeSl=b) and (finalSl=false)

if (Action=b) and (Environment.Action=S1);
(stateSl=s_err) and (opeSl=c) and (finalSl=false)

if (Action=c and !(stateSl=s2)) and (Environment.Action=S1);
(stateSl=stateSl) and (finalSl=finalSl) if ! (Environment.Action=S1);

end Evolution

end Agent
Agent S2
Vars:
stateS2 : {s0,sl,s2,s_err};
finalS2 : boolean;
opeS2 : {a,b,c};
end Vars
RedStates:
end RedStates
Actions = {a,b,c};
Protocol:

Other : {a,b,c};

end Protocol
Evolution:

(stateS2=sl) and (finalS2 = false) and (opeS2=b)

if (stateS2=s0) and (Action=b) and (Environment.Action=S2);
(stateS2=s2) and (finalS2 = true) and (opeS2=b)

if (stateS2=sl) and (Action=b) and (Environment.Action=S2);
(stateS2=s2) and (finalS2 = true) and (opeS2=b)

if (stateS2=s2) and (Action=b) and (Environment.Action=S2);
(stateS2=s2) and (finalS2 = true) and (opeS2=c)

if (stateS2=s2) and (Action=c) and (Environment.Action=S2);
(stateS2=s_err) and (opeS2=a) and (finals2=false)

if (Action=a) and (Environment.Action=S2);
(stateS2=s_err) and (opeS2=b) and (finalS2=false)

if (Action=b and stateS2=s_err) and (Environment.Action=S2);
(stateS2=s err) and (opeS2=c) and (finals2=false)

if (Action=c and !(stateS2=s2)) and (Environment.Action=S2);

(stateS2=stateS2) and (finalS2=finalS2) if ! (Environment.Action=S2);
end Evolution
end Agent

76

Agent S3

Vars:
states3 : {s0,sl,s err};
finalS3 : boolean;
opeS3 : {a,b,c};

end Vars

RedStates:

end RedStates

Actions = {a,b,c};

Protocol:

Other : {a,b,c};
end Protocol
Evolution:
(stateS3=sl) and (finalS3 = true) and (opeS3=c)
if (stateS3=s0) and (Action=c) and (Environment.Action=S3);
(stateS3=s0) and (finalS3 = true) and (opeS3=a)
if (stateS3=sl) and (Action=a) and (Environment.Action=S3);
(stateS3=s_err) and (opeS3=a) and (finals3=false)
if (Action=a and !(stateS3=sl)) and (Environment.Action=S3);
(statesS3=s_err) and (opeS3=b) and (finals3=false)
if (Action=b) and (Environment.Action=S3);
(states3=s_err) and (opeS3=c) and (finalS3=false)
if (Action=c and ! (stateS3=s0)) and (Environment.Action=S3);
(stateS3=stateS3) and (finalS3=finalS3) if ! (Environment.Action=S3);
end Evolution

end Agent
Agent ST
Vars:
stateST : {s0,sl,s2,s3,s _err};
finalST : boolean;
opeST : {a,b,c};
end Vars
RedStates:
end RedStates
Actions = {a,b,c};
Protocol:

Other : {a,b,c};
end Protocol
Evolution:
(stateST=sl) and (finalST = false) and (opeST=a)
if (stateST=s0) and (Action=a) and (Environment.Action=ST);
(stateST=s3) and (finalST = true) and (opeST=a)
if (stateST=sl) and (Action=a) and (Environment.Action=ST);
(stateST=s2) and (finalST = true) and (opeST=b)
if (stateST=sl) and (Action=b) and (Environment.Action=ST);
(stateST=sl) and (finalST = false) and (opeST=b)
if (stateST=s2) and (Action=b) and (Environment.Action=ST);
(stateST=sl) and (finalST = true) and (opeST=c)
if (stateST=s3) and (Action=c) and (Environment.Action=ST);
(stateST=s_err) and (opeST=a) and (finalsT=false) if (Action=a
and (stateST=s3 or stateST=s_err)) and (Environment.Action=ST);
(stateST=s_err) and (opeST=b) and (finalsT=false) if (Action=b
and !(stateST=sl or stateST=s2)) and (Environment.Action=ST);
(stateST=s_err) and (opeST=c) and (finalST=false)
if (Action=c and ! (stateST=s3)) and (Environment.Action=ST);
(stateST=stateST) and (finalST=finalST) and (opeST=opeST)
if ! (Environment.Action=8T);
end Evolution

77

end Agent

Evaluation
TargetMoved if (Environment.sch=ST);

Replayed if ((!(Environment.sch=S1l) or (Sl.opeSl=ST.opeST)) and (!
(Environment.sch=S2) or (S2.opeS2=ST.opeST)) and (!

(Environment.sch=S3) or (S3.o0peS3=ST.opeST)))

and (ST.finalST=false or (Sl.finalSl=true and S2.finalS2=true

and S3.finalS3=true));
LastTargetMoved if Environment.lastsch=ST;
Init if (Environment.lastsch=nil and Environment.sch=nil);

Error if (Sl.stateSl=s _err) or (S2.stateS2=s err) or (S3.stateS3=s err);

Invalid if ST.stateST=s_err;
end Evaluation

InitStates
(Sl.stateS1=s0) and (S2.stateS2=s0) and (S3.stateS3=s0) and
(ST.stateST=s0) and (Environment.sch=nil) and

(Sl.finalSl=true) and (S2.finalS2=true) and (S3.finalS3=true) and

(ST.finalST=true) and (Environment.lastsch=nil);
end InitStates

Groups
PlayersPlusEnv = { S1,S2,S3,Environment } ;
end Groups

Fairness
end Fairness

Formulae
<PlayersPlusEnv> G(
Init or Invalid or
(
(!TargetMoved -> (Replayed and !Error and LastTargetMoved))
and
(TargetMoved -> !LastTargetMoved)
)
)i

end Formulae

78

