

Composition of stateful deterministic
services in ATL

Paolo Felli
paolo.felli@gmail.com

Matteo Vita
matteo.vita@gmail.com

Dipartimento di Informatica e Sistemistica

Sapienza Università di Roma

Outline

Our purpose is to show how a Service Composition
Problem instance can be encoded into a concurrent game
structure, and how searching for a composition is
equivalent to searching for a winning strategy for a
corresponding multi-player game.

We'll make use of Alternating-time Temporal Logic (ATL).

Web Services

Web Services are self-describing computational
elements representing software modules capable of
performing actions. These modules are intended to
interact with a client and their interactions follow a
given behavior.

Services can be characterized in different ways. In our
approach services are described by their
conversational behaviour, modeled as transition
systems that capture the possible conversations a
service can have with its clients.

Transition systems

Transition System TS = <A,S,s0,δ,F> is defined as
follows:

● A is the finite alphabet of actions
● S is the finite set of states
• s0 is the initial state
• δ is the transition relation δ ⊆ S x A x S
• F is the set of final states

Service composition

Our goal is, given a target service specifying a desired
interaction with the client, to synthesize an
orchestrator capable of realizing it exploiting a set of
available services.

Notably the target service itself is represented by a
transition system TSt but it is not one of the available
services.

Orchestrator

An orchestrator is, basically, a function which selects an
available service for executing the action requested,
maintaining with the client the same (infinite)
interaction that it would have with the target service.

Assumptions

1. The orchestrator has full observability on the
available services and it can keep track at runtime of
their current state.

2. All services are stateful and deterministic (fully
controllable).

Alternating-time Temporal Logic

We briefly discuss Alternating-time Temporal Logic
(ATL). In particular:

● Why to use ATL temporal logic
● ATL syntax and semantics
● The Composition Problem in ATL

Open systems

A closed system is a system whose behavior is
completely determined by its own state.

However we need to model reactive systems, in which
each component behaves as an open system that
interacts with its environment and whose behavior is
determined by the state of the system as well as the
state of the environment.

Satisfaction Problem

Alternation can be considered as a natural
generalization of existential and universal branching.

● Universal satisfaction (LTL):
do all computations satisfy a property?

● Existential satisfaction (CTL):
does some computation satisfy a property?

● Alternating satisfaction (ATL):
can the system resolve its internal choises so that the
satisfaction of a property is guaranteed no matter how
the environment resolves the external choices?

Alternating satisfaction

ATL offers selective quantification over paths seen as
possible outcomes of a game between a system and the
environment.

 → alternating satisfaction can be viewed as a winning
condition in this game.

Concurrent Game Structure

While modeling language for open system use a variety
of different communication mechanism, they can be
given a common semantics in terms of Concurrent
Game Structure (CGS) in which:

● A concurrent game is played on a state space
● At each step each player chooses a move
● A transition is determined by a combination of choices.

CGS types

There are three types of game structures:

Turn-based synchronous : at each step, only one
player has a choice of moves, and this player is
determined by the current state.

Moore synchronous : at each step all players proceed
simultaneously choosing their next state independently
of the moves chosen by the others.

Turn-based asynchronous : at each step, only one
player has a choice of moves, and that player is chosen
by a fair scheduler.

Multi-player games

In order to capture composition of open systems we
consider, instead of 2-player game, the more general
setting of multi-player game, with a finite set of
players that represent all the different components
involved.

Multi-player games

Consider a game between a protagonist and an
antagonist. Consider a set A Σ of players, a set L of ⊆
computations, and a state q of the system.

Starting from state q, at each step the protagonist
moves players in A (he chooses a move for each of
them) while the antagonist resolves the remaining
choices.

If the infinite computation resulting from this game
belongs to set L, then the antagonist wins; otherwise he
loses.

Winning strategies

If the protagonist can actually win the game, then exist
a winning strategy that the players in A can follow to
force a computation in L, irrespective of how the
players in Σ\A choose their moves.

We say that the ATL formula A L is satisfied in the ≪ ≫
state q.

Hence A is a generalization of CTL path quantifiers:≪ ≫

● the existential path quantifier is equivalent to Σ∃ ≪ ≫
● the universal corresponds to .∀ ≪≫

ATL syntax

The temporal logic ATL is defined with respect to a finite set
Π of propositions and afinite set Σ = {1...k} of players. An
ATL formula is one of the following:

 1. p, for propositions p Π.∈
 2. ¬φ or φ1 φ2∨ , where φ, φ1 and φ2 are ATL

formulas.
 3. A φ≪ ≫○ , A □φ≪ ≫ or A φ1Uφ2≪ ≫ , where A Σ ⊆

is a set of players and φ, φ1 and φ2 are ATL formulas.

The operator · is a path quantifier, and (“next”), ≪ ≫ ○
□(“always”), and U (“until”) are temporal operators.

 We write A≪ ≫φ for A trueUφ.≪ ≫

ATL semantics

We write S,q|=ψ to indicate that the state q satisfies the formula ψ in
the structure S. The satisfaction relation |= is inductively defined, for all
states q, as follows:

● q |= p, for propositions p Π, iff p π(q). ∈ ∈
● q |= ¬φ iff q | ≠φ.
● q |= φ1 φ2∨ iff q |= φ1 or q |= φ2.
● q |= A φ≪ ≫○ iff there exists a set FA of strategies, one for each

player in A, such that for all computations λ out(q, F∈ A), we
have λ[1]|= φ.

● q |= A □φ≪ ≫ iff there exists a set FA of strategies, one for each
player in A, such that for all computations λ out(q, F∈ A) and all
positions i ≥ 0, we have λ[i] |= φ.

● q |= A φ1Uφ2≪ ≫ iff there exists a set FA of strategies, one for each
player in A, such that for all computations λ out(q, F∈ A), there
exists a position i ≥ 0 such that λ[i] |= φ2 and for all positions 0 ≤
j<i , we have λ[j] |= φ1

ATL semantics

The dual form for A is [[A]] : while A φ ≪ ≫ ≪ ≫
intuitively means that the players in A can cooperate to
make φ true (can enforce φ), [[A]]φ means that the
players in A cannot cooperate to make φ false.

Hence A can be viewed as a path quantifier, ≪ ≫
parameterized with the set A of players, which ranges
over all computations that the players in A can force the
game into, irrespective of how the players Σ\A proceed.

Composition problem in ATL

As stated before, we intend to reduce the search for a
composition to the search for winning strategies for the
corresponding multi-player game over a concurrent
game structure.

We chosen the Turn-based Asynchronous Game
Structure.

Concurrent Game Structure

A Concurrent Game Structure is a tuple
S=<k,Q,Π,π,d,δ>

● A natural number k≥1 of players.

● A finite set Q of states.

● A finite set Π of observable propositions.

● ∀q Q a set  π(q)Π of propositions true at q

Concurrent Game Structure

● For each player a {1..k}, a natural number d a(q)≥1 of
moves available at state q for player a. We identify the
moves of a player a at state q with the number
1...da(q).

● ∀q Q and for each move vector <j 1...jk> D(q), a state 

δ(q,j1...jk) Q that results from state q if every player 

a {1..k} chooses move ja.

Turn-based Asynchronous GS

In a turn-based asynchronous game structure, one
player is designed to represent a scheduler.

If the set of player is {1,...,k}, we assume that the scheduler is
always player k.

In every state, the scheduler select one of the other k-1
players. Scheduled player completely determines the
next state.

We say that a player a{1..k} is scheduled whenever player k
chooses move a.

Turn-based Asynchronous GS

Formally, a game structure S = < k,Q,Π,π,d,δ > is a
turn-based asynchronous game structure if k≥2 and for
every state q Q the following two condition are 
satisfied:

● dk(q)=k-1

● For all move vectors <j1...jk>,<j'1...j'k> D(q)

if jk=j'k and ja=j'a for a=jk

then δ(q,j1...jk)=δ(q,j'1...j'k)

Composition Problem in ATL

We defined a CGS for the composition problem starting
from the definition of Turn-based Asynchronous game
structure.

GS = < k,Q,Π,π,d,δ,ω >

Composition Problem in ATL

We define the global alphabet of operation
A = A

1
 U...U An+1

For each one of the n available services we add an error
state s_err to the set S

i

Composition Problem in ATL

All services partecipate to the game. Each of the k
players is identified by a number:

● 1..n are the available services
● t=k-1 is the target service
● player k is the scheduler

The game starts with all services in their local initial
state.

In each round all services choose a move corresponding
to an available operation for its local state. The move of
the scheduled player determines the next state.

Composition Problem in ATL

Π = {sij , schi, opa, finali, last_schi, last_opta}

For each state we build meta-propositions over the set Π:

statei : the local state of the service i

SCH : the index of the scheduled service

LAST_SCH : the index of the previously scheduled service

op : the operation performed by scheduled service

last_opt : the last operation performed by the target

Composition Problem in ATL

For each player i{1..k} and for each qQ, the natural
number di(q)≥1 is the number of game moves available

at state q to player i. In particular we have:

di(q)=|A| i≠k∀

dk(q)=k-1

Note that this doesn't mean that each service i can
actually perform exactly |A| operations in each state of
TSi .

Composition Problem in ATL

For each q,q'Q we say that q' is a successor of q if
exist a move vector <j1,...,jk>D(q) such that q'= δ(q,

j1,...,jk).

Being d
i
(q)=|A|, we can now define a total order over

alphabet A obtaining an biunivocal correspondence
between services' moves and alphabet operations.

Composition Problem in ATL

For each q,q' Q we say that q' is a successor of q if
exists a move vector <j1,...,jk>D(q) such that q'=

δ(q, j1,...,jk).

-We now call propositions of q as unprimed, and
propositions of q' as primed.
- let be h=jk (i.e. the index of the scheduled player)

- let aA be the operation associated to j
h

Composition Problem in ATL

If the current state is qQ and players choose moves j1,...,jk then

the successor state q'=δ(q, j1,...,jk) is so that:

sch' =h
last_sch'=sch
op'=a
stateh'=sS

h
if <state

h
,a,s>δ

h
, otherwise state

h
'=s_err

state'
i
=state

i
 i≠h, i∀ {1,..,k-1}

last_opt'=a iff h=t, otherwise last_opt'=last_opt

final
i
=true iff state

h
' F

i
 , false otherwise i∀ {1,..,k-1}

Composition Problem in ATL

Checking the existence of an orchestrator is reduced to
checking the ATL formula:

≪S1...Sn ,Sk (≫ □

Init V statet=s_err V

(¬(SCH=t) → (opsch=last_opt Λ
(finalt final→ i{1...n}) Λ

 ¬(statei{1...n}=s_err) Λ
LAST_SCH=t)

)
 Λ

(SCH=t ¬(LAST_SCH=t))→
)

Where Init denotes the initial state of the game structure:
Init=true iff SCH=null and LAST_SCH=null

Tools

We used two different tools for system specification and
verification:

● MOCHAMOCHA: Exploiting modularity in Model Checking
● MCMAS: Model Checker for Multi-Agent Systems

jMocha & cMocha

Mocha is available in two versions: jMocha v2.0.1 &
cMocha v1.0.1. Both versions offer the following
capabilities:

● System specification in Reactive Module Language

● System execution (random, guided or mixed mode)

● Implementation verification (refinement)

● Requirement specification and verification:

● invariant checking

● ATL checking (cMocha only)

Mocha: RML

ReactiveModules is the modeling formalism and input
language to Mocha.

The system is described as atoms and modules.

RML: Atoms

The state of the system is described by a set of state
variable: each system state correspond to an
assignment of values to the variables.

3 types of variables:
● Controlled by the atom
● Read by the atom
● Awaited (the atom can read their next value)

The behavior of the system consist in:
● An initial round which initializes the variables
● An infinite sequence of guarded update rounds

RML: Modules

A module is a collection of atoms, containing a
declaration of variables that occur in the module:

● Private
● Interface
● External

module RandomWalk is
 interface x: (0..9)

 atom IncrDecr
 controls x
 reads x
 init
 [] true ­> x’ := 0
 update
 [] true ­> x’ := inc x by 1
 [] true ­> x’ := dec x by 1
 endatom
endmodule

Composition Problem in Mocha

Each player of the game is represented with a module:
the scheduler, available services and the target service.

Services are scheduled by the Scheduler at each step:
each module representing a service awaits an external
variable sch controlled by the Scheduler.

Example

Scheduler
type state: {s0,s1,s2,s_err}

type sched_type: {schnil,ST,S1}
type op: {A,B}

module Scheduler
 interface sch : sched_type; last_sch : sched_type

atom ts
controls sch,last_sch
reads sch
init

[]true ­> sch' := schnil; last_sch':= schnil
update

[]sch=schnil ­> last_sch':=sch; sch':= ST
[]sch=schnil ­> last_sch':=sch; sch':= S1
[]sch=ST ­> last_sch':=sch; sch':= S1
[]sch=ST ­> last_sch':=sch; sch':= ST
[]sch=S1 ­> last_sch':=sch; sch':= S1
[]sch=S1 ­> last_sch':=sch; sch':= ST

endatom
endmodule

Example
module Service1

interface opS1: op; finalS1:bool; stateS1:state
external sch: sched_type
atom ts

controls stateS1,opS1,finalS1
reads stateS1,finalS1
awaits sch

init
[]true ­> stateS1':=s0; finalS1':=true

update
[]stateS1=s0 & sch'=S1 ­> stateS1':=s1; opS1':=A; finalS1':=false

 []stateS1=s0 & sch'=S1 ­> stateS1':=s0; opS1':=B; finalS1':=true
[]stateS1=s1 & sch'=S1 ­> stateS1':=s2; opS1':=A; finalS1':=true
[]stateS1=s1 & sch'=S1 ­> stateS1':=s1; opS1':=B; finalS1':=false
[]stateS1=s2 & sch'=S1 ­> stateS1':=s0; opS1':=A; finalS1':=true
[]stateS1=s2 & sch'=S1 ­> stateS1':=s2; opS1':=B; finalS1':=true
[]stateS1=s_err & sch'=S1 ­>

stateS1':=s_err; opS1':=A; finalS1':=false
[]stateS1=s_err & sch'=S1 ­>

stateS1':=s_err; opS1':=B; finalS1':=false
[]~(sch'=S1) ­> stateS1':= stateS1; finalS1':=finalS1

endatom

endmodule

Example

module Target

interface opST : op; finalST:bool; stateST:state

external sch: sched_type

atom ts

controls stateST,opST,finalST

reads stateST,finalST,opST

awaits sch

init

[]true ­> stateST' := s0; finalST':=true

update

[]stateST=s0 & sch'=ST ­> stateST':=s0; opST':=A; finalST':=true

[]stateST=s_err & sch'=ST ­>

stateST':=s0; opST':=A; finalST':=false

[]sch'=ST ­> stateST':=s_err; opST':=B; finalST':=false

[]~(sch'=ST) ­> stateST':=stateST; finalST':=finalST; opST':=opST

 endatom

endmodule

Example

atl "formula1" << Scheduler,Service1>> G(

stateST=s_err |

((~(sch=schnil & last_sch=schnil) & ~(sch=ST)) =>
((sch=S1 => opS1=opST) &
(finalST => finalS1) &
~(stateS1=s_err) &
last_sch=ST)

)
&

(sch=ST => ~(last_sch=ST)));

A specification file contains a list of specifications. We
gave cMocha the ATL specification:

Mocha output: ATL_CHECK: formula "formula1" failed

Which is a predictable result, due to the fact that the
state Service1.s1 is not a final state.

Mocha : conclusions

Currently the ATL model-checker does not have any
mechanism to generate counter-examples.

The impossibility of having any witness or
counterexample for ATL checking drove us

to search for further confirmations.

MCMAS

MCMAS is a Model Checker for Multi-Agent Systems
(MAS).

MCMAS takes in input a MAS specification and a set of
formulae to be verified, and it evaluates the truth value
of these formulae using algorithms based on Ordered
Binary Decision Diagrams (OBDDs).

MCMAS : features

CMAS allows the verification of a number of modalities,
including CTL operators, epistemic operators, operators
to reason about correct behavior and strategies, with or
without fairness conditions.

MCMAS can also be used to run interactive, step-by-step
simulations.

Additionally, a graphical interface is provided as an
Eclipse plug-in which includes a graphical editor and
simulator and graphical analyzer for counterexamples.

MCMAS : ISPL

Multi-Agent Systems are described in MCMAS using a
dedicated programming language called ISPL
(Interpreted Systems Programming Language).

ISPL resembles the SMV language characterizing agents
by means of variables and represents their evolution
using boolean expressions.

MCMAS : agents

MCMAS distinguishes between two kinds of agents:

● standard agents

● environment agent

The environment is used to describe boundary conditions
and infrastructures shared by standard agents.

MCMAS : agents

In MCMAS each agent (including the environment) is
characterized by:

 1. A set of local states

 2. A set of actions

 3. A rule describing which action can be performed
by the agent in a given local state (protocol)

 4. An evolution function, describing how the local
states of the agents evolve based on their
current local state and on other agents’
actions.

Composition problem in MCMAS

● Each player representing a service (either target
service or an available service) has been encoded with a
standard Agent.

● Environment Agent corresponds to the Scheduler : at
each step it sets an observable variable to schedule a
player.

● Game moves correspond to Actions: protocol and
evolution functions are used to encode the transition
system of a service.

Composition problem in MCMAS

Each player chooses an Action at each round, but only
the scheduled player can change its current state (hence
the global game state) accordingly.

Example
Agent Environment

Obsvars:
 sch : {nil,S1,S2,ST};

end Obsvars
Vars:

 lastsch : {nil,S1,S2,ST};
end Vars
RedStates:
end RedStates

Actions = {nil,S1,S2,ST};

Protocol:
Other : {S1,S2,ST}; ­­It can choose any player in each state.

end Protocol

Evolution:
­­sch and lastsch are updated according to the chosen action
(lastsch = sch) and (sch = S1) if (Action = S1);
(lastsch = sch) and (sch = S2) if (Action = S2);
(lastsch = sch) and (sch = ST) if (Action = ST);

 end Evolution
end Agent

Environment

Example

Agent S1

Vars:
stateS1 : {s0,s_err};
finalS1 : boolean;
opeS1 : {a,b};
end Vars

RedStates:
end RedStates

Actions = {a,b}; ­­service's moves

Protocol:
Other : {a,b}; ­­moves available in each state

end Protocol

Example

Evolution:

­­if S1 has been scheduled and it chooses action a from state s0, then
­­the next state will remain s0 with finalS1=true. OpeS1 is set to a.

(stateS1=s0) and (finalS1 = true) and (opeS1=a)
if (stateS1=s0) and (Action=a) and (Environment.Action=S1);

­­if the player i chooses a move corresponding to an operation the
­­available service it represents cannot actually perform:

 (stateS1=s_err) and (opeS1=a) and (finalS1=false)
 if (Action=a and stateS1=s_err) and (Environment.Action=S1);

 (stateS1=s_err) and (opeS1=b) and (finalS1=false)
 if (Action=b) and (Environment.Action=S1);

­­if the scheduler chose another service then S1 doesn't evolve even
­­if, as requested by the game structure, it can choose an action.
(stateS1=stateS1) and (finalS1=finalS1) if !(Environment.Action=S1);

 end Evolution
 end Agent

Example

Agent S2
Vars:

stateS2 : {s0,s1,s_err};
finalS2 : boolean;
opeS2 : {a,b};
end Vars
RedStates:

end RedStates
Actions = {a,b};

Protocol:
Other : {a,b};
end Protocol

 Evolution:
(stateS2=s1) and (finalS2 = false) and (opeS2=b)

if (stateS2=s0) and (Action=b) and (Environment.Action=S2);
(stateS2=s1) and (finalS2 = false) and (opeS2=a)

if (stateS2=s0) and (Action=a) and (Environment.Action=S2);
(stateS2=s0) and (finalS2 = true) and (opeS2=b)

if (stateS2=s1) and (Action=b) and (Environment.Action=S2);
(stateS2=s_err) and (opeS2=a) and (finalS2=false)

if (Action=a and !(stateS2=s0)) and (Environment.Action=S2);
(stateS2=s_err) and (opeS2=b) and (finalS2=false)

if (Action=b and stateS2=s_err) and (Environment.Action=S2);
 (stateS2=stateS2) and (finalS2=finalS2) if !(Environment.Action=S2);

end Evolution
end Agent

Example
Agent ST

Vars:
stateST : {s0,s1,s2,s_err};

finalST : boolean;
opeST : {a,b};
end Vars
RedStates:

 end RedStates
Actions = {a,b};

Protocol:
Other : {a,b};

 end Protocol
 Evolution:

(stateST=s1) and (finalST = false) and (opeST=a)
if (stateST=s0) and (Action=a) and (Environment.Action=ST);

(stateST=s2) and (finalST = false) and (opeST=a)
if (stateST=s1) and (Action=a) and (Environment.Action=ST);

(stateST=s0) and (finalST = true) and (opeST=b)
if (stateST=s2) and (Action=b) and (Environment.Action=ST);
 (stateST=s_err) and (opeST=a) and (finalST=false)
if (Action=a and stateST=s2) and (Environment.Action=ST);

(stateST=s_err) and (opeST=a) and (finalST=false)
if (Action=b and !(stateST=s2)) and (Environment.Action=ST);

 (stateST=stateST) and (finalST=finalST) and (opeST=opeST)
if !(Environment.Action=ST);

end Evolution
end Agent

Example
 Evaluation
 TargetMoved if (Environment.sch=ST);
 Replayed if
 ((!(Environment.sch=S1) or (S1.opeS1=ST.opeST)) and
 (!(Environment.sch=S2) or (S2.opeS2=ST.opeST))
)
 and
 (ST.finalST=false or (S1.finalS1=true and S2.finalS2=true));
 LastTargetMoved if Environment.lastsch=ST;
 Init if (Environment.lastsch=nil and Environment.sch=nil);

 Error if (S1.stateS1=s_err) or (S2.stateS2=s_err);
 Invalid if ST.stateST=s_err;

end Evaluation
● TargetMoved is evaluated to true in every round in which Target has been
scheduled.
● Replayed is true if the scheduled agent emulates the last operation performed
by the target and if target state is final, then all services are in final state.
● LastTargetMoved is evaluated to true if the Scheduler (Environment) chose
action ST in the previous round, i.e. if target service has been scheduled in the
previous round.
● Error and Invalid are true available/target services are in error state

Example

InitStates
 (S1.stateS1=s0) and (S2.stateS2=s0) and (ST.stateST=s0) and
 (Environment.sch=nil) and (S1.finalS1=true) and (S2.finalS2=true)
 and (ST.finalST=true) and (Environment.lastsch=nil);
end InitStates

Groups
 PlayersPlusEnv = { S1,S2,Environment } ; excluding agent ST­­
end Groups
Fairness
end Fairness

At the end there is the definition of the ATL formula to be checked. This
formula uses the evaluation function previously defined.

Formulae
 <PlayersPlusEnv> G (

Init or Invalid or
(

(!TargetMoved ­> (Replayed and !Error and LastTargetMoved))
and
(TargetMoved ­> !LastTargetMoved)

));
end Formulae

Conclusions

Neither cMocha nor MCMASv0.9.6.2 provide
witnesses and we are not currently able to
synthesize an orchestrator for the composition
problem expressed in ATL.

For this reason our work has been concluded
providing extensive examples.

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24
	Pagina 25
	Pagina 26
	Pagina 27
	Pagina 28
	Pagina 29
	Pagina 30
	Pagina 31
	Pagina 32
	Pagina 33
	Pagina 34
	Pagina 35
	Pagina 36
	Pagina 37
	Pagina 38
	Pagina 39
	Pagina 40
	Pagina 41
	Pagina 42
	Pagina 43
	Pagina 44
	Pagina 45
	Pagina 46
	Pagina 47
	Pagina 48
	Pagina 49
	Pagina 50
	Pagina 51
	Pagina 52
	Pagina 53
	Pagina 54
	Pagina 55
	Pagina 56
	Pagina 57
	Pagina 58
	Pagina 59

