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Outline

Our purpose is to show how a Service Composition 
Problem instance can be encoded into a concurrent game 
structure, and how searching for a composition is 
equivalent to searching for a winning strategy for a 
corresponding multi-player game. 

We'll make use of Alternating-time Temporal Logic (ATL).



  

Web Services

Web Services are self-describing computational 
elements representing software modules capable of 
performing actions. These modules are intended to 
interact with a client and their interactions follow a 
given behavior.

Services can be characterized in different ways. In our 
approach services are described by their 
conversational behaviour, modeled as transition 
systems  that capture the possible conversations a 
service can have with its clients.



  

Transition systems

Transition System TS = <A,S,s0,δ,F> is defined as 
follows:

● A is the finite alphabet of actions
● S is the finite set of states
• s0 is the initial state
• δ is the transition relation δ ⊆ S x A x S
• F is the set of final states



  

Service composition

Our goal is, given a target service specifying a desired 
interaction with the client, to synthesize an 
orchestrator  capable of realizing it exploiting a set of 
available services.

Notably the target service itself is represented by a 
transition system TSt  but it is not one of the available 
services.



  

Orchestrator

An orchestrator is, basically, a function which selects an 
available service for executing the action requested, 
maintaining with the client the same (infinite) 
interaction that it would have with the target service.



  

Assumptions

1. The orchestrator has full observability on the 
available services and it can keep track at runtime of 
their current state.

2. All services are stateful and deterministic (fully 
controllable).



  

Alternating-time Temporal Logic

We briefly discuss Alternating-time Temporal Logic 
(ATL). In particular:

●  Why to use ATL temporal logic
●  ATL syntax and semantics
●  The Composition Problem in ATL



  

Open systems

A closed system is a system whose behavior is 
completely determined by its own state.

However we need to model reactive systems, in which 
each component behaves as an open system that 
interacts with its environment and whose behavior is 
determined by the state of the system as well as the 
state of the environment.



  

Satisfaction Problem

Alternation can be considered as a natural 
generalization of existential and universal branching.

● Universal satisfaction (LTL):
do all computations satisfy a property?

● Existential satisfaction (CTL):
does some computation satisfy a property?

● Alternating satisfaction (ATL):
can the system resolve its internal choises so that the 
satisfaction of a property is guaranteed no matter how 
the environment resolves the external choices?



  

Alternating satisfaction

ATL offers selective quantification over paths seen as 
possible outcomes of a game between a system and the 
environment.

 → alternating satisfaction can be viewed as a winning 
condition in this game.



  

Concurrent Game Structure

While modeling language for open system use a variety 
of different communication mechanism, they can be 
given a common semantics in terms of Concurrent 
Game Structure (CGS) in which:

● A concurrent game is played on a state space
● At each step each player chooses a move
● A transition is determined by a combination of choices.



  

CGS types

There are three types of game structures:

Turn-based synchronous  : at each step, only one 
player has a choice of moves, and this player is 
determined by the current state.

Moore synchronous : at each step all players proceed 
simultaneously choosing their next state independently 
of the moves chosen by the others.

Turn-based asynchronous  : at each step, only one 
player has a choice of moves, and that player is chosen 
by a fair scheduler.



  

Multi-player games

In order to capture composition of open systems we 
consider, instead of 2-player game, the more general 
setting of multi-player game, with a finite set of 
players  that represent all the different components 
involved.



  

Multi-player games

Consider a game between a protagonist  and an 
antagonist. Consider a set A Σ of players, a set L of ⊆
computations, and a state q of the system.

Starting from state q, at each step the protagonist 
moves players in A (he chooses a move for each of 
them) while the antagonist resolves the remaining 
choices. 

If the infinite computation resulting from this game 
belongs to set L, then the antagonist wins; otherwise he 
loses. 



  

Winning strategies

If the protagonist can actually win the game, then exist 
a winning strategy that the players in A can follow to 
force a computation in L, irrespective  of how the 
players in Σ\A choose their moves. 

We say that the ATL formula A L is satisfied in the ≪ ≫
state q.

Hence A  is a generalization of CTL path quantifiers:≪ ≫

● the existential path quantifier  is equivalent to Σ∃ ≪ ≫
● the universal  corresponds to .∀ ≪≫



  

ATL syntax

The temporal logic ATL is defined with respect to a finite set 
Π of propositions and afinite set Σ = {1...k} of players. An 
ATL formula is one of the following:
   
   1.  p, for propositions p  Π.∈
   2. ¬φ or φ1  φ2∨ , where φ, φ1 and φ2 are ATL 

formulas.
   3. A φ≪ ≫○ , A □φ≪ ≫  or A φ1Uφ2≪ ≫ , where A  Σ ⊆

is a set of players and φ, φ1 and φ2 are ATL formulas.

The operator ·  is a path quantifier, and  (“next”), ≪ ≫ ○
□(“always”), and U (“until”) are temporal operators.

 We write A≪ ≫φ for A trueUφ.≪ ≫



  

ATL semantics

We write S,q|=ψ to indicate that the state q satisfies the formula ψ in 
the structure S. The satisfaction relation |= is inductively defined, for all 
states q, as follows:
      
●    q |= p, for propositions p  Π, iff p  π(q).   ∈ ∈
●    q |= ¬φ   iff q | ≠φ.   
●    q |= φ1  φ2∨    iff q |= φ1 or q |= φ2.   
●    q |= A φ≪ ≫○  iff there exists a set FA of strategies, one for each 

player in A, such that for all computations λ  out(q, F∈ A), we 
have λ[1]|= φ.

●    q |= A □φ≪ ≫  iff there exists a set FA of strategies, one for each 
player in A, such that for all computations λ  out(q, F∈ A) and all 
positions i ≥ 0, we have λ[i] |= φ.

●    q |= A φ1Uφ2≪ ≫  iff there exists a set FA of strategies, one for each 
player in A, such that for all computations λ  out(q, F∈ A), there 
exists a position i ≥ 0 such that λ[i] |= φ2 and for all positions 0 ≤ 
j<i , we have λ[j] |= φ1



  

ATL semantics

The dual form for A  is [[A]] : while A φ ≪ ≫ ≪ ≫
intuitively means that the players in A can cooperate to 
make φ true (can enforce φ), [[A]]φ means that the 
players in A cannot cooperate to make φ false.

Hence A  can be viewed as a path quantifier, ≪ ≫
parameterized with the set A of players, which ranges 
over all computations that the players in A can force the 
game into, irrespective of how the players Σ\A proceed.



  

Composition problem in ATL

As stated before, we intend to reduce the search for a 
composition to the search for winning strategies for the 
corresponding multi-player game over a concurrent 
game structure.

We chosen the Turn-based Asynchronous  Game 
Structure.



  

Concurrent Game Structure

A Concurrent Game Structure is a tuple 
S=<k,Q,Π,π,d,δ>

● A natural number k≥1 of players.

● A finite set Q of states.

● A finite set Π of observable propositions.

● ∀q Q a set  π(q)Π of propositions true at q



  

Concurrent Game Structure

● For each player a {1..k}, a natural number d a(q)≥1 of 
moves available at state q for player a. We identify the 
moves of a player a at state q with the number 
1...da(q). 

● ∀q Q and for each move vector <j 1...jk> D(q), a state 

δ(q,j1...jk) Q that results from state q if every player 

a {1..k} chooses move ja.



  

Turn-based Asynchronous GS

In a turn-based asynchronous game structure, one 
player is designed to represent a scheduler. 

If the set of player is {1,...,k}, we assume that the scheduler is 
always player k.

In every state, the scheduler select one of the other k-1 
players. Scheduled player completely determines the 
next state.

We say that a player a{1..k} is scheduled  whenever player k 
chooses move a. 



  

Turn-based Asynchronous GS

Formally, a game structure S = < k,Q,Π,π,d,δ > is a 
turn-based asynchronous game structure if k≥2 and for 
every state q Q the following two condition are 
satisfied:

● dk(q)=k-1

● For all move vectors <j1...jk>,<j'1...j'k> D(q)  

if jk=j'k and ja=j'a for a=jk 

then δ(q,j1...jk)=δ(q,j'1...j'k)



  

Composition Problem in ATL

We defined a CGS for the composition problem starting 
from the definition of Turn-based Asynchronous game 
structure.

GS = < k,Q,Π,π,d,δ,ω >



  

Composition Problem in ATL

We define the global alphabet of operation 
A = A

1
 U...U An+1

For each one of the n available services we add an error 
state s_err to the set S

i



  

Composition Problem in ATL

All services partecipate to the game. Each of the k 
players is identified by a number:

● 1..n are the available services
● t=k-1 is the target service
● player k is the scheduler

The game starts with all services in their local initial 
state.

In each round all services choose a move corresponding 
to an available operation for its local state. The move of 
the scheduled player determines the next state.



  

Composition Problem in ATL

Π = {sij , schi, opa, finali, last_schi, last_opta}

For each state we build meta-propositions over the set Π:

statei : the local state of the service i

SCH : the index of the scheduled service

LAST_SCH : the index of the previously scheduled service

op : the operation performed by scheduled service

last_opt : the last operation performed by the target



  

Composition Problem in ATL

For each player i{1..k} and for each qQ, the natural 
number di(q)≥1 is the number of game moves available 

at state q to player i. In particular we have:

di(q)=|A|     i≠k∀

dk(q)=k-1

Note that this doesn't mean that each service i can 
actually perform exactly |A| operations in each state of 
TSi .



  

Composition Problem in ATL

For each q,q'Q we say that q' is a successor of q if 
exist a move vector <j1,...,jk>D(q) such that q'= δ(q, 

j1,...,jk).

Being d
i
(q)=|A|, we can now define a total order over 

alphabet A obtaining an biunivocal  correspondence 
between services' moves and alphabet operations.



  

Composition Problem in ATL

For each q,q' Q we say that q' is a successor of q if 
exists a move vector <j1,...,jk>D(q) such that q'= 

δ(q, j1,...,jk).

-We now call propositions of q as unprimed, and 
propositions of q' as primed.
- let be h=jk (i.e. the index of the scheduled player) 

- let aA be the operation associated to j
h



  

Composition Problem in ATL

If the current state is qQ and players choose moves j1,...,jk  then 

the successor state q'=δ(q, j1,...,jk) is so that:

sch' =h
last_sch'=sch
op'=a
stateh'=sS

h
if <state

h
,a,s>δ

h 
, otherwise  state

h
'=s_err

state'
i
=state

i
   i≠h, i∀ {1,..,k-1}

last_opt'=a iff h=t, otherwise last_opt'=last_opt

final
i 
=true  iff state

h
' F

i
 , false otherwise i∀ {1,..,k-1}



  

Composition Problem in ATL

Checking the existence of an orchestrator is reduced to 
checking the ATL formula:

≪S1...Sn ,Sk     (≫ □

Init V statet=s_err V

(¬(SCH=t) → (opsch=last_opt Λ
(finalt final→ i{1...n}) Λ

 ¬(statei{1...n}=s_err) Λ
LAST_SCH=t)

)
   Λ

( SCH=t   ¬(LAST_SCH=t) )→
)

Where Init denotes the initial state of the game structure: 
Init=true iff SCH=null and LAST_SCH=null 



  

Tools

We used two different tools for system specification and 
verification:

● MOCHAMOCHA: Exploiting modularity in Model Checking
● MCMAS: Model Checker for Multi-Agent Systems



  

jMocha & cMocha

Mocha is available in two versions: jMocha v2.0.1 & 
cMocha v1.0.1. Both versions offer the following 
capabilities:

● System specification in Reactive Module Language

● System execution (random, guided or mixed mode)

● Implementation verification (refinement)

● Requirement specification and verification:

●  invariant checking

●  ATL checking (cMocha only)



  

Mocha: RML

ReactiveModules is the modeling formalism and input 
language to Mocha. 

The system is described as atoms and modules.



  

RML: Atoms

The state of the system is described by a set of state 
variable: each system state correspond to an 
assignment of values to the variables.

3 types of variables:
●  Controlled by the atom
●  Read by the atom
●  Awaited (the atom can read their next value)

The behavior of the system consist in:
●  An initial round which initializes the variables
●  An infinite sequence of guarded update rounds



  

RML: Modules

A module is a collection of atoms, containing a 
declaration of variables that occur in the module:

● Private
● Interface
● External

module RandomWalk is
     interface x: (0..9)

     atom IncrDecr
        controls x
        reads x
        init
           [] true ­> x’ := 0
        update
           [] true ­> x’ := inc x by 1
           [] true ­> x’ := dec x by 1
     endatom
endmodule



  

Composition Problem in Mocha

Each player of the game is represented with a module: 
the scheduler, available services and the target service.

Services are scheduled by the Scheduler at each step: 
each module representing a service awaits an external 
variable sch controlled by the Scheduler.



  

Example 

Scheduler
type state: {s0,s1,s2,s_err} 

type sched_type: {schnil,ST,S1} 
type op: {A,B} 

module Scheduler 
    interface sch : sched_type; last_sch : sched_type 

atom ts 
controls sch,last_sch 
reads sch 
init 

[]true ­>  sch' := schnil; last_sch':= schnil 
update 

[]sch=schnil ­> last_sch':=sch; sch':= ST 
[]sch=schnil ­> last_sch':=sch; sch':= S1 
[]sch=ST ­> last_sch':=sch; sch':= S1 
[]sch=ST ­> last_sch':=sch; sch':= ST 
[]sch=S1 ­> last_sch':=sch; sch':= S1 
[]sch=S1 ­> last_sch':=sch; sch':= ST 

endatom 
endmodule 



  

Example 
module Service1 

interface opS1: op; finalS1:bool; stateS1:state 
external sch: sched_type 
atom ts 

controls stateS1,opS1,finalS1 
reads stateS1,finalS1 
awaits sch 

init 
[]true ­> stateS1':=s0; finalS1':=true 

update 
[]stateS1=s0 & sch'=S1 ­> stateS1':=s1; opS1':=A; finalS1':=false

  []stateS1=s0 & sch'=S1 ­> stateS1':=s0; opS1':=B; finalS1':=true 
[]stateS1=s1 & sch'=S1 ­> stateS1':=s2; opS1':=A; finalS1':=true 
[]stateS1=s1 & sch'=S1 ­> stateS1':=s1; opS1':=B; finalS1':=false
[]stateS1=s2 & sch'=S1 ­> stateS1':=s0; opS1':=A; finalS1':=true 
[]stateS1=s2 & sch'=S1 ­> stateS1':=s2; opS1':=B; finalS1':=true 
[]stateS1=s_err & sch'=S1 ­> 

stateS1':=s_err; opS1':=A; finalS1':=false 
[]stateS1=s_err & sch'=S1 ­>

stateS1':=s_err; opS1':=B; finalS1':=false 
[]~(sch'=S1) ­> stateS1':= stateS1; finalS1':=finalS1 

endatom 

endmodule 



  

Example 

module Target 

interface opST : op; finalST:bool; stateST:state 

external sch: sched_type 

atom ts 

controls stateST,opST,finalST 

reads stateST,finalST,opST 

awaits sch 

init 

[]true  ­>  stateST' := s0; finalST':=true 

update 

[]stateST=s0 & sch'=ST ­> stateST':=s0; opST':=A; finalST':=true 

[]stateST=s_err & sch'=ST ­> 

stateST':=s0; opST':=A; finalST':=false 

[]sch'=ST ­> stateST':=s_err; opST':=B; finalST':=false 

[]~(sch'=ST) ­> stateST':=stateST; finalST':=finalST; opST':=opST

  endatom 

endmodule 



  

Example 

atl "formula1" << Scheduler,Service1>> G( 

stateST=s_err |  

(( ~(sch=schnil & last_sch=schnil) & ~(sch=ST)) => 
((sch=S1 => opS1=opST) & 
(finalST => finalS1) & 
~(stateS1=s_err) &
last_sch=ST )

) 
& 

( sch=ST => ~(last_sch=ST) ));

A specification file contains a list of specifications. We 
gave cMocha the ATL specification:

Mocha output:   ATL_CHECK: formula "formula1" failed

Which is a predictable result, due to the fact that the 
state Service1.s1 is not a final state.



  

Mocha : conclusions

Currently the ATL model-checker does not have any 
mechanism to generate counter-examples.

The impossibility of having any witness or 
counterexample for ATL checking drove us

to search for further confirmations.



  

MCMAS

MCMAS is a Model Checker for Multi-Agent Systems 
(MAS). 

MCMAS takes in input a MAS specification and a set of 
formulae to be verified, and it evaluates the truth value 
of these formulae using algorithms based on Ordered 
Binary Decision Diagrams (OBDDs).



  

MCMAS : features

CMAS allows the verification of a number of modalities, 
including CTL operators, epistemic operators, operators 
to reason about correct behavior and strategies, with or 
without fairness conditions. 

MCMAS can also be used to run interactive, step-by-step 
simulations.

Additionally, a graphical interface is provided as an 
Eclipse plug-in which includes a graphical editor and 
simulator and graphical analyzer for counterexamples.



  

MCMAS : ISPL

Multi-Agent Systems are described in MCMAS using a 
dedicated programming language called ISPL 
(Interpreted Systems Programming Language).

ISPL resembles the SMV language characterizing agents 
by means of variables and represents their evolution 
using boolean expressions.



  

MCMAS : agents

MCMAS distinguishes between two kinds of agents:

● standard agents

● environment agent

The environment is used to describe boundary conditions 
and infrastructures shared by standard agents.



  

MCMAS : agents

In MCMAS each agent (including the environment) is 
characterized by:

   1. A set of local states

   2. A set of actions

   3. A rule describing which action can be performed 
by the agent in a given local state (protocol)

   4. An evolution function, describing how the local 
states of the agents evolve based on their 
current local state and on other agents’ 
actions.



  

Composition problem in MCMAS

● Each player representing a service (either target 
service or an available service) has been encoded with a 
standard Agent. 

● Environment Agent corresponds to the Scheduler : at 
each step it sets an observable variable to schedule a 
player.

● Game moves correspond to Actions: protocol and 
evolution functions are used to encode the transition 
system of a service.



  

Composition problem in MCMAS

Each player chooses an Action at each round, but only 
the scheduled player can change its current state (hence 
the global game state) accordingly.



  

Example
Agent Environment

Obsvars:
    sch : {nil,S1,S2,ST};    

end Obsvars
Vars:

     lastsch : {nil,S1,S2,ST};
end Vars
RedStates:
end RedStates

 
Actions = {nil,S1,S2,ST};

Protocol:
Other : {S1,S2,ST}; ­­It can choose any player in each state.

end Protocol

Evolution:
­­sch and lastsch are updated according to the chosen action
(lastsch = sch) and (sch = S1) if (Action = S1);   
(lastsch = sch) and (sch = S2) if (Action = S2);
(lastsch = sch) and (sch = ST) if (Action = ST);   

    end Evolution
end Agent

Environment



  

Example

Agent S1

Vars: 
stateS1 : {s0,s_err};
finalS1 : boolean;
opeS1 : {a,b};
end Vars

RedStates:
end RedStates

Actions = {a,b}; ­­service's moves

Protocol:
Other : {a,b}; ­­moves available in each state

end Protocol



  

Example

Evolution:

­­if S1 has been scheduled and it chooses action a from state s0, then
­­the next state will remain s0 with finalS1=true. OpeS1 is set to a.

(stateS1=s0) and (finalS1 = true) and (opeS1=a) 
if (stateS1=s0) and (Action=a) and (Environment.Action=S1);

­­if the player i chooses a move corresponding to an operation the 
­­available service it represents cannot actually perform:

 (stateS1=s_err) and (opeS1=a) and (finalS1=false)
  if (Action=a and stateS1=s_err) and (Environment.Action=S1); 

 (stateS1=s_err) and (opeS1=b) and (finalS1=false) 
  if (Action=b) and (Environment.Action=S1);

­­if the scheduler chose another service then S1 doesn't evolve even
­­if, as requested by the game structure, it can choose an action. 
(stateS1=stateS1) and (finalS1=finalS1) if !(Environment.Action=S1);

 

 end Evolution
 end Agent



  

Example

Agent S2
Vars:

stateS2 : {s0,s1,s_err};
finalS2 : boolean;
opeS2 : {a,b};
end Vars
RedStates:

end RedStates
Actions = {a,b};

Protocol:
Other : {a,b};
end Protocol

    Evolution:
(stateS2=s1) and (finalS2 = false) and (opeS2=b) 

if (stateS2=s0) and (Action=b) and (Environment.Action=S2);
(stateS2=s1) and (finalS2 = false)  and (opeS2=a) 

if (stateS2=s0) and  (Action=a) and (Environment.Action=S2);            
(stateS2=s0) and (finalS2 = true)  and (opeS2=b) 

if (stateS2=s1) and  (Action=b) and (Environment.Action=S2);
(stateS2=s_err) and (opeS2=a) and (finalS2=false)

if (Action=a and !(stateS2=s0)) and (Environment.Action=S2);
(stateS2=s_err) and (opeS2=b) and (finalS2=false)

if (Action=b and stateS2=s_err) and (Environment.Action=S2); 
     (stateS2=stateS2) and (finalS2=finalS2) if !(Environment.Action=S2); 

end Evolution
end Agent



  

Example
Agent ST

Vars:
stateST : {s0,s1,s2,s_err};

finalST : boolean;
opeST : {a,b};
end Vars
RedStates:

    end RedStates
Actions = {a,b};

Protocol:
Other : {a,b};

    end Protocol
    Evolution:

(stateST=s1) and (finalST = false) and (opeST=a) 
if (stateST=s0) and (Action=a) and (Environment.Action=ST);

(stateST=s2) and (finalST = false) and (opeST=a) 
if (stateST=s1) and (Action=a) and (Environment.Action=ST);

(stateST=s0) and (finalST = true) and (opeST=b) 
if (stateST=s2) and  (Action=b) and (Environment.Action=ST);
   (stateST=s_err) and (opeST=a) and (finalST=false)
if (Action=a and stateST=s2) and (Environment.Action=ST);

(stateST=s_err) and (opeST=a) and (finalST=false)
if (Action=b and !(stateST=s2)) and (Environment.Action=ST);

   (stateST=stateST) and (finalST=finalST) and (opeST=opeST) 
if !(Environment.Action=ST); 

end Evolution
end Agent



  

Example
 Evaluation
     TargetMoved if (Environment.sch=ST);
     Replayed if
           ((!(Environment.sch=S1) or (S1.opeS1=ST.opeST)) and 
            (!(Environment.sch=S2) or (S2.opeS2=ST.opeST)) 
           ) 
           and 
           (ST.finalST=false or (S1.finalS1=true and S2.finalS2=true));
     LastTargetMoved if Environment.lastsch=ST;
     Init if (Environment.lastsch=nil and Environment.sch=nil);

 Error if (S1.stateS1=s_err) or (S2.stateS2=s_err);
 Invalid if ST.stateST=s_err;

end Evaluation
● TargetMoved is evaluated to true in every round in which Target has been 
scheduled.
● Replayed is true if the scheduled agent emulates the last operation performed 
by the target and if target state is final, then all services are in final state.
● LastTargetMoved is evaluated to true if the Scheduler (Environment) chose 
action ST in the previous round, i.e. if target service has been scheduled in the 
previous round.
● Error and Invalid are true available/target services are in error state



  

Example

InitStates
       (S1.stateS1=s0) and (S2.stateS2=s0) and (ST.stateST=s0) and 
       (Environment.sch=nil) and (S1.finalS1=true) and (S2.finalS2=true)
       and (ST.finalST=true) and (Environment.lastsch=nil);
end InitStates

Groups
    PlayersPlusEnv = { S1,S2,Environment } ;  excluding agent ST­­
end Groups
Fairness
end Fairness

At the end there is the definition of the ATL formula to be checked. This 
formula uses the evaluation function previously defined.

Formulae
  <PlayersPlusEnv> G (

Init or Invalid or
(

(!TargetMoved ­> (Replayed and !Error and LastTargetMoved))
and
(TargetMoved ­> !LastTargetMoved)

));
end Formulae



  

Conclusions

Neither cMocha nor MCMASv0.9.6.2  provide 
witnesses and we are not currently able to 
synthesize an orchestrator for the composition 
problem expressed in ATL.

For this reason our work has been concluded 
providing extensive examples.
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