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“There have been only a few real di-
sasters due to software. But we’re walk-
ing closer and closer to the edge,” says 
MIT’s Daniel Jackson.

Experts agree that flaws typically 
arise not from minor bugs in code, 
but during the higher-level design pro-
cess. (Security flaws, which tend to be 
caused by implementation-level vul-
nerabilities, are often an exception to 
this rule.) One class of problems arises 
at the requirements phase: program 
design requirements are often poorly 
articulated, or poorly understood. An-
other class arises from insufficient hu-
man factors design, where engineers 
make unwarranted assumptions about 
the environment in which software or 
hardware will operate. If a program 
isn’t capable of handling those unfore-
seen conditions, it may fail.

But mistakes can happen at any 
time. “Since humans aren’t perfect, 
humans make mistakes, and mistakes 
can be made in any step of the develop-
ment process,” cautions Gerard Holz-
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In Search of
Dependable Design
How can software and hardware developers  
increase the reliability of their designs?

mann of the NASA/JPL Laboratory for 
Reliable Software.

Holzmann is among a small group 
of researchers who are committed 
to developing tools, techniques, and 
procedures for increasing design reli-
ability. Currently, most programs are 
debugged and then refined by random 
testing. Testing can be useful to pin-
point smaller errors, say researchers, 
but inadequate when it comes to iden-
tifying structural ones. And tests de-
signed for specific scenarios may not 
be able to explore combinations of be-
havior that fall outside of anticipated 
patterns. The search is therefore on for 
additional strategies.

One promising technique is known 
as model checking. The idea is to verify 
the logic behind a particular software 
or hardware design by constructing 
a mathematical model and using an 
algorithm to make sure it satisfies 
certain requirements. Though the 
task can be time consuming, it forces 
developers to articulate their require-
ments in a systematic, mathematical 
way, thereby minimizing ambigu-
ity. More importantly, however, model 
checkers automatically give diagnostic 
counterexamples when mistakes are 
found, helping developers pinpoint 
what went wrong and catch flaws be-
fore they are coded.

“When people use the term ‘reliabil-
ity,’ they might have some probabilis-
tic notion that ‘only rarely’ do errors 
crop up, whereas people in the formal 
verification community mean that all 
behaviors are correct against all speci-
fied criteria,” explains Allen Emerson 
of the University of Texas at Austin. (In 
recognition of the importance of for-
mal verification techniques, the 2007 
ACM A.M. Turing Award was given to 
Edmund Clarke, Allen Emerson, and 
Joseph Sifakis for their pioneering 
work in model checking. A Q&A with 

I
n 1994, an obscure circuitry  
error was discovered in In-
tel’s Pentium I micropro-
cessor. Thomas R. Nicely, a 
mathematician then affiliated 

with Lynchburg College in Virginia,  
noticed that the chip gave incorrect an-
swers to certain floating-point division  
calculations. Other researchers soon 
confirmed the problem and identified  
additional examples. And though Intel 
initially tried to downplay the mistake, 
the company eventually responded  
to mounting public pressure by  
offering to replace each one of the 
flawed processors.

“It was the first error to make the 
evening news,” recalls Edmund Clarke 
of Carnegie Mellon University. The cost 
to the company: around $500 million.

Nearly 15 years later, the Pentium 
bug continues to serve as a sobering re-
minder of how expensive design flaws 
can be. The story is no different for soft-
ware: a $170 million virtual case man-
agement system was scrapped by the 
FBI in 2005 due to numerous failings, 
and a flawed IRS tax-processing system 
consumed billions of dollars in the late 
1990s before it was finally fixed. And in 
an era in which people rely on comput-
ers in practically every aspect of their 
lives—in cars, cell phones, airplanes, 
ATMs, and more—the cost of unreli-
able design is only getting higher. Data 
is notoriously difficult to come by, but 
a 2002 study conducted by the National 
Institute of Standards and Technology 
(NIST) estimated that faulty software 
alone costs the U.S. economy as much 
as $59.5 billion a year in lost informa-
tion, squandered productivity, and in-
creased repair and maintenance.

But it’s not just a matter of money—
increasingly, people’s lives are at stake. 
Faulty software has plunged cockpit 
displays into darkness, sunk oil rigs, 
and caused missiles to malfunction.
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Institute of Technology’s Bertrand Mey-
er and recipient of ACM’s 2006 Software 
System Award, is one well-known ex-
ample; Alloy, a tool developed by Daniel 
Jackson and the MIT Software Design 
Group, has also shown great promise. 

To supplement the new languages 
and techniques, other researchers 
have focused on outlining more effec-
tive procedures and methodologies for 
developers to follow as they work.

“I’m not a great believer in for-
mal analysis,” says Grady Booch of 
IBM Research. “Problems tend to 
appear at this curious intersection 
of the technological and the social.” 
After monitoring 50 developers for 
24 hours, for example, Booch found 
that only 30% of their time was spent 
coding—the rest was spent talking to 

“How can you ever 
hope to build a 
dependable system 
if you don’t know 
what ‘dependable’ 
means?” asks MIT’s 
Daniel Jackson.

other members of their team. Avoid-
ing miscommunication, he believes, 
is therefore critical. Booch is perhaps 
best known for developing (with Ivar 
Jacobson and James Rumbaugh) the 
Unified Markup Language, or UML, 
a language that uses graphical nota-
tions to create an abstract model of 
a software or hardware system and 
helps teams communicate, explore, 
and validate potential designs. More 
recently, he has continued to focus on 
the big picture of development with 
the online Handbook of Software Ar-
chitecture, which brings together a 
large collection of software-intensive 
systems and presents them in a man-
ner that “exposes their essential pat-
terns and that permits comparisons 
across domains and architectural 
styles.” The ultimate goal, of course, 
is to help developers apply that time-
tested knowledge to their own pro-
gramming projects.

“Reuse is easier at a higher level of 
abstraction,” explains Booch. “So we can 
reuse patterns, if not necessarily code.”

MIT’s Daniel Jackson is another 
strong believer in the “big picture” ap-
proach. “The first thing we need to do 
is be honest about the level of reliabil-
ity that we need,” he asserts. “The sec-
ond thing is to think about what really 
cannot go wrong—about what’s mis-
sion critical and what’s not.”

Rather than starting with a typical 
requirements document that outlines 

the three Turing recipients can be 
found on page 112.)

Model checking has proven extreme-
ly successful at verifying hardware de-
signs. In fact, Xudong Zhao, a graduate 
student of Clarke’s, showed that model 
checking could have found Intel’s float-
ing-point division error—and that the 
company’s fix did indeed correct the 
problem. Since then, Intel has been a 
leading user of the technique. 

But because even small programs 
can have millions of different states (a 
dilemma known to the discipline as 
the “state explosion problem”), there 
are limits to the size and complexity of 
designs that model checking can verify, 
and it’s been less immediately success-
ful for software. The verification of reac-
tive systems—the combination of hard-
ware and software interacting with an 
external environment—also remains 
problematic, due mainly to the difficul-
ty of constructing faithful models.

“We’ve come a long way in the last 
28 years, and there’s a huge, huge dif-
ference in the scale of problems we can 
address now as opposed to 1980,” says 
Holzmann. “But of course we are more 
ambitious and our applications have 
gotten more complex, so there is a lot 
more to be done.”

Other techniques include special-
ized programming languages and en-
vironments that facilitate the creation 
of reliable, reusable software modules. 
Eiffel, developed by the Swiss Federal 
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to be announced at press time. 
We’ll have more news about  
the 2007 ACM award winners  
in next month’s issue.
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it’s inconvenient, but it’s not a threat to 
anyone’s life,” says Holzmann. Among 
the approaches he and his lab—who 
work to guarantee the safety of the com-
puter systems that run spacecraft—are 
currently looking into is the develop-
ment of simple, yet effective, coding 
standards. His recommendations 
may seem somewhat draconian (in 
safety-critical applications, they for-
bid the use of goto statements, setjmp 
or longjmp constructs, and direct or 
indirect recursion, for example), but 
they are intended to increase simplic-
ity, prevent common coding mistakes, 
and force developers to create more 
logical architectures. Simpler pro-
grams are also easier to verify with 
tools like model checkers. After over-
coming their initial reluctance, Holz-
mann says, developers often find that 
the restrictions are a worthwhile trade-
off for increased safety.

A rigorous focus on simplicity can 
be costly, of course, especially for 
complex legacy systems that would  
be prohibitively expensive to replace 
but that need, nonetheless, to be up-
dated or further developed. So can 
taking the time out to formally articu-
late all requirements and assump-
tions, or to verify software designs. 
Yet the cost of fixing an error in the 
initial stages of development is far 
less than fixing it at the end—a lesson 
that Intel, for one, now knows well.

“Computer science is a very young 
discipline,” explains Joseph Sifakis, 
research director at CNRS. “We don’t 
have a theory that can guarantee sys-
tem reliability, that can tell us how to 
build systems that are correct by con-
struction. We only have some recipes 
about how to write good programs and 
how to design good hardware. We’re 
learning by a trial-and-error process.”	

Leah Hoffman is a Brooklyn-based freelance writer.

tasks in a procedural way, says Jack-
son, developers must first make sure 
they understand what the system is re-
ally about. What are its essential prop-
erties? Who are its stakeholders? What 
level of dependability does it need?

“How can you ever hope to build a 
dependable system if you don’t know 
what ‘dependable’ means?” he asks. 
The task itself is abstract, but Jackson 
believes that articulating all require-
ments and assumptions is crucial to 
tackling it—ideally in a formal, meth-
odological way. The most important 
thing, according to Jackson, is the act 
of articulation itself. “When you write 
things down, you often find that you 
didn’t understand them nearly as well 
as you thought you did.” And there’s al-
ways a temptation to jump to the solu-
tion before you’ve fully understood the 
problem. “That’s not to say that auto-
mated tools and techniques like model 
checking aren’t useful, of course. Tools 
are an important support, but they’re 
secondary,” says Jackson.

And the more safety-critical the ap-
plication, the more rigorous develop-
ers must be. “If your computer crashes, 
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Simpler programs 
are easier to verify 
with tools like model 
checkers.
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Winning 
Strategy
St. Petersburg University of 
Information Technology, 
Mechanics and Optics recently 
won the 32nd annual ACM 
International Collegiate 
Programming Contest (ICPC) 
World Finals, held in Branff, 
Canada. It was the university’s 
second ACM-ICPC world 
championship in four years.

The annual programming 
contest started with 6,700 
teams from 1,821 universities 
in 83 countries, competing at 
213 sites around the world. 
Through a series of regional 
competitions, the field 
narrowed to 100 teams. At the 
World Finals, each three-person 
team had one computer  and five 
hours to solve 11 programming 
problems. 

 “The main goal at the World 
Finals is to solve problems,” 
says Andrey Stankevich, coach 
of the St. Petersburg University 
of Information Technology, 
Mechanics and Optics team, 
who was interviewed via email. 
“If you use your time to solve 
problems (and not to look for 
bugs in the problems already 
solved, but not accepted by 
the judges) you have time to 
solve more. So, the way to win 
the World Finals is to solve 
problems in such way that  
you don’t make bugs, and if  
the problem is accepted,  
you can immediately start 
solving another one. This 
requires cooperation in both 
thinking about problems and 
writing code.”

The winning team solved 
eight problems, followed by 
second-place Massachusetts 
Institute of Technology, third-
place Izhevsk State Technical 
University, fourth-place Lviv 
National University and fifth-
place Moscow State University, 
each of which solved seven 
problems.

The competition at each 
ACM-ICPC World Finals appears 
to be stronger than the previous 
one, and longtime contest 
sponsor IBM believes the 
global contest is good for the IT 
industry. “The value proposition 
for IBM is not only about the 
students who go on to work for 
IBM, but who go on to work for 
our clients and our business 
partners, or who become faculty 
members,” says IBM director of 
talent Margaret Ashida. “It’s a 
win for everyone.”




