
14 communications of the acm | july 2008 | vol. 51 | no. 7

news

“There have been only a few real di-
sasters due to software. But we’re walk-
ing closer and closer to the edge,” says
MIT’s Daniel Jackson.

Experts agree that flaws typically
arise not from minor bugs in code,
but during the higher-level design pro-
cess. (Security flaws, which tend to be
caused by implementation-level vul-
nerabilities, are often an exception to
this rule.) One class of problems arises
at the requirements phase: program
design requirements are often poorly
articulated, or poorly understood. An-
other class arises from insufficient hu-
man factors design, where engineers
make unwarranted assumptions about
the environment in which software or
hardware will operate. If a program
isn’t capable of handling those unfore-
seen conditions, it may fail.

But mistakes can happen at any
time. “Since humans aren’t perfect,
humans make mistakes, and mistakes
can be made in any step of the develop-
ment process,” cautions Gerard Holz-

Social | doi: 10.1145/1364782.1364788 	 Leah Hoffman

In Search of
Dependable Design
How can software and hardware developers
increase the reliability of their designs?

mann of the NASA/JPL Laboratory for
Reliable Software.

Holzmann is among a small group
of researchers who are committed
to developing tools, techniques, and
procedures for increasing design reli-
ability. Currently, most programs are
debugged and then refined by random
testing. Testing can be useful to pin-
point smaller errors, say researchers,
but inadequate when it comes to iden-
tifying structural ones. And tests de-
signed for specific scenarios may not
be able to explore combinations of be-
havior that fall outside of anticipated
patterns. The search is therefore on for
additional strategies.

One promising technique is known
as model checking. The idea is to verify
the logic behind a particular software
or hardware design by constructing
a mathematical model and using an
algorithm to make sure it satisfies
certain requirements. Though the
task can be time consuming, it forces
developers to articulate their require-
ments in a systematic, mathematical
way, thereby minimizing ambigu-
ity. More importantly, however, model
checkers automatically give diagnostic
counterexamples when mistakes are
found, helping developers pinpoint
what went wrong and catch flaws be-
fore they are coded.

“When people use the term ‘reliabil-
ity,’ they might have some probabilis-
tic notion that ‘only rarely’ do errors
crop up, whereas people in the formal
verification community mean that all
behaviors are correct against all speci-
fied criteria,” explains Allen Emerson
of the University of Texas at Austin. (In
recognition of the importance of for-
mal verification techniques, the 2007
ACM A.M. Turing Award was given to
Edmund Clarke, Allen Emerson, and
Joseph Sifakis for their pioneering
work in model checking. A Q&A with

I
n 1994, an obscure circuitry
error was discovered in In-
tel’s Pentium I micropro-
cessor. Thomas R. Nicely, a
mathematician then affiliated

with Lynchburg College in Virginia,
noticed that the chip gave incorrect an-
swers to certain floating-point division
calculations. Other researchers soon
confirmed the problem and identified
additional examples. And though Intel
initially tried to downplay the mistake,
the company eventually responded
to mounting public pressure by
offering to replace each one of the
flawed processors.

“It was the first error to make the
evening news,” recalls Edmund Clarke
of Carnegie Mellon University. The cost
to the company: around $500 million.

Nearly 15 years later, the Pentium
bug continues to serve as a sobering re-
minder of how expensive design flaws
can be. The story is no different for soft-
ware: a $170 million virtual case man-
agement system was scrapped by the
FBI in 2005 due to numerous failings,
and a flawed IRS tax-processing system
consumed billions of dollars in the late
1990s before it was finally fixed. And in
an era in which people rely on comput-
ers in practically every aspect of their
lives—in cars, cell phones, airplanes,
ATMs, and more—the cost of unreli-
able design is only getting higher. Data
is notoriously difficult to come by, but
a 2002 study conducted by the National
Institute of Standards and Technology
(NIST) estimated that faulty software
alone costs the U.S. economy as much
as $59.5 billion a year in lost informa-
tion, squandered productivity, and in-
creased repair and maintenance.

But it’s not just a matter of money—
increasingly, people’s lives are at stake.
Faulty software has plunged cockpit
displays into darkness, sunk oil rigs,
and caused missiles to malfunction.

news

july 2008 | vol. 51 | no. 7 | communications of the acm 15

Institute of Technology’s Bertrand Mey-
er and recipient of ACM’s 2006 Software
System Award, is one well-known ex-
ample; Alloy, a tool developed by Daniel
Jackson and the MIT Software Design
Group, has also shown great promise.

To supplement the new languages
and techniques, other researchers
have focused on outlining more effec-
tive procedures and methodologies for
developers to follow as they work.

“I’m not a great believer in for-
mal analysis,” says Grady Booch of
IBM Research. “Problems tend to
appear at this curious intersection
of the technological and the social.”
After monitoring 50 developers for
24 hours, for example, Booch found
that only 30% of their time was spent
coding—the rest was spent talking to

“How can you ever
hope to build a
dependable system
if you don’t know
what ‘dependable’
means?” asks MIT’s
Daniel Jackson.

other members of their team. Avoid-
ing miscommunication, he believes,
is therefore critical. Booch is perhaps
best known for developing (with Ivar
Jacobson and James Rumbaugh) the
Unified Markup Language, or UML,
a language that uses graphical nota-
tions to create an abstract model of
a software or hardware system and
helps teams communicate, explore,
and validate potential designs. More
recently, he has continued to focus on
the big picture of development with
the online Handbook of Software Ar-
chitecture, which brings together a
large collection of software-intensive
systems and presents them in a man-
ner that “exposes their essential pat-
terns and that permits comparisons
across domains and architectural
styles.” The ultimate goal, of course,
is to help developers apply that time-
tested knowledge to their own pro-
gramming projects.

“Reuse is easier at a higher level of
abstraction,” explains Booch. “So we can
reuse patterns, if not necessarily code.”

MIT’s Daniel Jackson is another
strong believer in the “big picture” ap-
proach. “The first thing we need to do
is be honest about the level of reliabil-
ity that we need,” he asserts. “The sec-
ond thing is to think about what really
cannot go wrong—about what’s mis-
sion critical and what’s not.”

Rather than starting with a typical
requirements document that outlines

the three Turing recipients can be
found on page 112.)

Model checking has proven extreme-
ly successful at verifying hardware de-
signs. In fact, Xudong Zhao, a graduate
student of Clarke’s, showed that model
checking could have found Intel’s float-
ing-point division error—and that the
company’s fix did indeed correct the
problem. Since then, Intel has been a
leading user of the technique.

But because even small programs
can have millions of different states (a
dilemma known to the discipline as
the “state explosion problem”), there
are limits to the size and complexity of
designs that model checking can verify,
and it’s been less immediately success-
ful for software. The verification of reac-
tive systems—the combination of hard-
ware and software interacting with an
external environment—also remains
problematic, due mainly to the difficul-
ty of constructing faithful models.

“We’ve come a long way in the last
28 years, and there’s a huge, huge dif-
ference in the scale of problems we can
address now as opposed to 1980,” says
Holzmann. “But of course we are more
ambitious and our applications have
gotten more complex, so there is a lot
more to be done.”

Other techniques include special-
ized programming languages and en-
vironments that facilitate the creation
of reliable, reusable software modules.
Eiffel, developed by the Swiss Federal

Outstanding Contribution
to ACM Award
Robert A. Walker,
Kent State University

Distinguished Service Award
David A. Patterson, University
of California at Berkeley

Eugene L. Lawler Award for
Humanitarian Contributions
within Computer Science
and Informatics
Randy Wang,
Microsoft Research India

Paris Kanellakis Theory
and Practice Award
Bruno Buchberger,
Johannes Kepler University

Karl V. Karlstrom Outstanding
Educator Award
Randy Pausch,
Carnegie Mellon University

Grace Murray Hopper Award
Vern Paxson, International
Computer Science Institute
and University of California at
Berkeley/Lawrence Berkeley
National Laboratory

A.M. Turing Award
Edmund M. Clarke,
Carnegie Mellon University
E. Allen Emerson,
University of Texas at Austin
Joseph Sifakis, Centre National
de la Recherche Scientifique
and Verimag Laboratory

Software System Award
David Harel, The Weizmann
Institute of Science
Hagi Lachover
Amnon Naamad, EMC Corporation
Amir Pnueli, NYU Courant
Institute of Mathematical Sciences
Michal Politi,
Tadiran Electronic Systems
Rivi Sherman, Negevtech
Mark Trakhtenbrot,
Holon Academic Institute of
Technology and The Open
University of Israel
Aron Trauring, Zotecabv

ACM – Infosys
Foundation Award
Daphne Koller, Stanford University

Doctoral Dissertation Award
Sergey Yekhanin, Princeton University

Honorable Mentions:
Benny Applebaum,
Princeton University
Vincent Conitzer, Duke University
Yan Liu, IBM

ACM-W Athena Lecturer Award
Shafi Goldwasser, MIT and The
Weizmann Institute of Science

ACM – AAAI Allen Newell Award
Leonidas J. Guibas, Stanford University

Several award winners had yet
to be announced at press time.
We’ll have more news about
the 2007 ACM award winners
in next month’s issue.

Awards

2007 ACM Award Winners

16 communications of the acm | july 2008 | vol. 51 | no. 7

news

it’s inconvenient, but it’s not a threat to
anyone’s life,” says Holzmann. Among
the approaches he and his lab—who
work to guarantee the safety of the com-
puter systems that run spacecraft—are
currently looking into is the develop-
ment of simple, yet effective, coding
standards. His recommendations
may seem somewhat draconian (in
safety-critical applications, they for-
bid the use of goto statements, setjmp
or longjmp constructs, and direct or
indirect recursion, for example), but
they are intended to increase simplic-
ity, prevent common coding mistakes,
and force developers to create more
logical architectures. Simpler pro-
grams are also easier to verify with
tools like model checkers. After over-
coming their initial reluctance, Holz-
mann says, developers often find that
the restrictions are a worthwhile trade-
off for increased safety.

A rigorous focus on simplicity can
be costly, of course, especially for
complex legacy systems that would
be prohibitively expensive to replace
but that need, nonetheless, to be up-
dated or further developed. So can
taking the time out to formally articu-
late all requirements and assump-
tions, or to verify software designs.
Yet the cost of fixing an error in the
initial stages of development is far
less than fixing it at the end—a lesson
that Intel, for one, now knows well.

“Computer science is a very young
discipline,” explains Joseph Sifakis,
research director at CNRS. “We don’t
have a theory that can guarantee sys-
tem reliability, that can tell us how to
build systems that are correct by con-
struction. We only have some recipes
about how to write good programs and
how to design good hardware. We’re
learning by a trial-and-error process.”	

Leah Hoffman is a Brooklyn-based freelance writer.

tasks in a procedural way, says Jack-
son, developers must first make sure
they understand what the system is re-
ally about. What are its essential prop-
erties? Who are its stakeholders? What
level of dependability does it need?

“How can you ever hope to build a
dependable system if you don’t know
what ‘dependable’ means?” he asks.
The task itself is abstract, but Jackson
believes that articulating all require-
ments and assumptions is crucial to
tackling it—ideally in a formal, meth-
odological way. The most important
thing, according to Jackson, is the act
of articulation itself. “When you write
things down, you often find that you
didn’t understand them nearly as well
as you thought you did.” And there’s al-
ways a temptation to jump to the solu-
tion before you’ve fully understood the
problem. “That’s not to say that auto-
mated tools and techniques like model
checking aren’t useful, of course. Tools
are an important support, but they’re
secondary,” says Jackson.

And the more safety-critical the ap-
plication, the more rigorous develop-
ers must be. “If your computer crashes,

Coming Next Month in

Communications
Scaling Massive Multiplayer
Online Game Infrastructure

Techniques for Designing
Games with a Purpose

Computer Science
and Game Theory

The Rise and Fall
of CORBA

Evaluating Methodology
for the 21st Century

Composable
Memory Transactions

Envisioning the Future
of Computing Research

CTO Roundtable

Part II of an interview
with Donald Knuth

And the latest news about game
theory, assistive technologies, and
computing and the developing world.

Simpler programs
are easier to verify
with tools like model
checkers.

Computer Science

Winning
Strategy
St. Petersburg University of
Information Technology,
Mechanics and Optics recently
won the 32nd annual ACM
International Collegiate
Programming Contest (ICPC)
World Finals, held in Branff,
Canada. It was the university’s
second ACM-ICPC world
championship in four years.

The annual programming
contest started with 6,700
teams from 1,821 universities
in 83 countries, competing at
213 sites around the world.
Through a series of regional
competitions, the field
narrowed to 100 teams. At the
World Finals, each three-person
team had one computer and five
hours to solve 11 programming
problems.

 “The main goal at the World
Finals is to solve problems,”
says Andrey Stankevich, coach
of the St. Petersburg University
of Information Technology,
Mechanics and Optics team,
who was interviewed via email.
“If you use your time to solve
problems (and not to look for
bugs in the problems already
solved, but not accepted by
the judges) you have time to
solve more. So, the way to win
the World Finals is to solve
problems in such way that
you don’t make bugs, and if
the problem is accepted,
you can immediately start
solving another one. This
requires cooperation in both
thinking about problems and
writing code.”

The winning team solved
eight problems, followed by
second-place Massachusetts
Institute of Technology, third-
place Izhevsk State Technical
University, fourth-place Lviv
National University and fifth-
place Moscow State University,
each of which solved seven
problems.

The competition at each
ACM-ICPC World Finals appears
to be stronger than the previous
one, and longtime contest
sponsor IBM believes the
global contest is good for the IT
industry. “The value proposition
for IBM is not only about the
students who go on to work for
IBM, but who go on to work for
our clients and our business
partners, or who become faculty
members,” says IBM director of
talent Margaret Ashida. “It’s a
win for everyone.”

