Dipartimento di
Informatica e Sistemistica
"Antonio Ruberti"

@ SApiENZA

#/ UNIVERSITA DI ROMA

Logics of Programs

Dipartimento di
Informatica e Sistemistica
"Antonio Ruberti"

Logics of Programs @ SaAPiENZA

& UNIVERSITA DI ROMA

e Are modal logics that allow to describe properties of
transition systems

e Examples:
- HennesyMilner Logic
- Propositional Dynamic Logics
- Modal (Propositional) Mu-calculus

e Perfectly suited for describing transition systems: they can
tell apart transition systems modulo bisimulation

Service Integration — aa 2008/09 Giuseppe De Giacomo 2

Dipartimento di
Informatica e Sistemistica
"Antonio Ruberti"

HennessyMilner Logic @ sarEnza

#/ UNIVERSITA DI ROMA

HM Logic aka (multi) modal logic Ki

e Syntax:
® := Final | P (atomic propositions)
[a]® | <a>d (modal operators)

P | P, AND, | Dy VD, true| false (closed under booleans)

e Propositions are used to denote final states and other TS atomic
properties

e <a>® means there exists an a-transition that leads to a state where
® holds; i.e., expresses the capability of executing action a bringing
about @

e [a]® means that all a-transitions lead to states where ® holds; i.e.,
express that executing action a brings about @

Service Integration — aa 2008/09 Giuseppe De Giacomo 3

Dipartimento di

Informatica e Sistemistica
"Antonio Ruberti"

HennessyMilner Logic @ Sarienza

#/ UNIVERSITA DI ROMA

e Semantics: assigns meaning to the formulas.

e GivenaTST=<A,S, 59 5, F>, astates €S, and a formula
@, we define (by structural induction) the “truth relation”

T,sE®
- T,s E Final ifseF (similarly T,sEP ifs € P);
- T,sE[a]® if for all s’ such that s —_ s” we have T,s’ F @;
- T,s E<a® if exists s’ such that s —_,s"and T,s" F ®;
- T,sE® if it is not the case that T,s F ®;

- TsE®, vd, ifT,sE®, orT,skF®,;
- TSE®, Ad®, ifT,sE®P andTskE D, ;
- T,s E true always;

- T,s E false never.

Service Integration — aa 2008/09 Giuseppe De Giacomo 4

Dipartimento di
Informatica e Sistemistica
"Antonio Ruberti"

HennessyMilner Logic @ sarEnza

#/ UNIVERSITA DI ROMA

e Another way to give the same semantics to formulas:
formulas extension in a transition system assigns meaning to
the formulas.

e GivenaTST=<A,S, 59 §, F> “the extension of a formula
®in T”, denote by (®)T, is defined as follows:

- (Final)T = F (similarly PT = {s | s € P});

- ([a]®)T = {s|Vs'.s —,s impliess" € (®)" };

- ((@@)T = {s|3s’.s—»,s" and s’ € (D)7},

- (2®)T = S-(o)";

- (@ v)T = (@)U (@) ;

- (@) A D)7 = (@7 N (D)7

- (true)T = S;

- (false)T = 0.
e Note: T,s E"®"tf6W Wtitten as s e ()7 Clsppe b Gcome
Model Checking @ SAPiENZA

e Given a TS T, one of its states s, and a formula ® verify whether the
formula holds in s. Formally:

TsE® or sec (o)

e Examples (TS is our vending machine):

- Sy F Final

- Sy E <10c>true capability of performing action 10c
- S, E [big]false inability of performing action big

- Sy F[10c][big]false after 10c cannot execute big

e Model checking variant (aka “query answering”):
- Givena TS T .. - the database
- ... compute the extension of ® - the query

Service Inte seppe De

Formally: compute the set (#)T which is equal to {s | T, @1

Dipartimento di
Informatica e Sistemistica
"Antonio Ruberti"

Satisfiability @ SApiENZA

#/ UNIVERSITA DI ROMA

e Satisfiability: given a formula ® verify whether there exists a (finite/
infinite) TS T and a state of T such that the formula holds in s.

SAT: check the existance of T,s such that T,s F @

e Validity: given a formula @ verify whether in every (finite/infinite)
TS T and in every state of T the formula holds in s.

VAL: check the non existance of T,s such that T,s F = ®

Note: VAL = non SAT

Examples: check the satifiability / validity of the following formulas:
- <10p><small><collect,>Final

- Final —
Service Integration — aa 2008/09 Giuseppe De Giacomo 7
HennessyMilner Logic and e Rlbert
ici : @ SAPiENZA
Bisimulation ® NN

e Considertwo TS, T = (A,S,sy,9, F) and T' = (A,S",t,,9, F').
e Let L be the language formed by all HennessyMilner Logic formulas.

o We define:
- ~_=A{(s,t) | for all ® of L we have T,;s F ®iff T,s F @}

- ~ = {(s,t) | exists a bisimulation R s.t., R(s,t)}

e Theorem: s ~ tiffs~t

e Proof: we show that
- s ~ timplies s ~ t by structural induction on formulas of L.

- s~ timplies s ~ t by coinduction showing that s ~ tis a bisimulation.

This theorem says that HennessyMilner Logic has exactly the same
distinguishing power of bisimulation.

So L is the right logic to predicate on transition systems.

Service Integration — aa 2008/09 Giuseppe De Giacomo 8

Dipartimento di
Informatica e Sistemistica
"Antonio Ruberti"

Examples @ SApiENZA

UNIVERSITA DI ROMA

o Usefull abbreviation (let actions A = {a; a,}):
<any> @ stands for <a;>® Vv :-- vV <a,>®

[any] ® stands for [a,]® A -+ A [a,]®
<any - a,> @ stands for <a,>® Vv --- vV <a,>®

[any —a,] ® stands for [a,]® A --- A [a,]P

e Examples:
<a>true cabability of performing action a
[a]false inability of performing action a
—Final A <any>true A [any-a]false

necessity/inevitability of performing action a

(i.e., action a is the only action

possible)
—-Final A [any]false deadlock!

Service Integration — aa 2008/09 Giuseppe De Giacomo 9

Dipartimento di
Informatica e Sistemistica

“Antonio Ruberti"

Propositional Dynamic Logic @ SAPiENZA
o & :=P| (atomic propositions)
20| D AD, | Dy VD, (closed under boolean operators)
[r]® | <r>® (modal operators)
r:=ajlry+r,rgrr*|P? (complex actions as regular expressions)

e Essentially add the capability of expressing partial correctness assertions via
formulas of the form

- O, —=[r]o, under the conditions ®, all possible executions of r that terminate
reach a state of the TS where ®, holds

e Also add the ability of asserting that a property holds in all nodes of the
transition system
- [(a,+ - +a)*]® in every reachable state of the TS ® holds

e Useful abbereviations:
- any stands for (a,+ --- + a,) Note that + can be expressed also in HM Logic

- u stands for any* This is the so called master/universal modality

Service Integration — aa 2008/09 Giuseppe De Giacomo 10

Dipartimento di
Informatica e Sistemistica
"Antonio Ruberti"

—
Modal Mu-Calculus @ SNz
o o =P \ (atomic propositions)
- P | D, N D, ‘ D,V D, ‘ (closed under boolean operators)
[rl® | <r>® (modal operators)
w X.0(X) | v X.®(X) (fixpoint operators)

e It is the most expressive logic of the family of logics of programs.
e It subsumes

PDL (modalities involving complex actions are translated into fomulas involving fixpoints)
LTL (linear time temporal logic),
CTS, CTS* (branching time temporal logics)

e Examples:
e [any*]® can be expressed as v X. ® A [any]X

e uX. ®VJ[any]X along all runs eventually ®
e uX. ®V<any>X along some run eventually ®
e v X.[al(uY. <any>true A [any-b]Y) A X

every run that that contains a contains

later b

Service Integration — aa 2008/09 Giuseppe De Giacomo 11

Dipartimento di
Informatica e Sistemistica
"Antonio Ruberti"

Examples of Modal Mu-Calculus [Fhana

UNTVERSITA DI ROMA

e Examples (TS is our vending machine):

S, F Final

Sy F <10c>true capability of performing action 10c
S, E [big]false inability of performing action big
S, F [10c][big]false after 10c cannot execute big

S; E u X. Final v [any] X eventually a final state is reached

SoF v Z. (u X. Final v [any] X) A [any] Z or equivalently
S, F [any*](u X. Final v [any] X) from everywhere eventually final

Service Integration — aa 2008/09 Giuseppe De Giacomo 12

Dipartimento di
Informatica e Sistemistica
"Antonio Ruberti"

Model Checking/Satisfiability @ SApiENZA

UNIVERSITA DI ROMA

e Model checking is polynomial in the size of the TS for
- HennessyMilner Logic
- PDL
- Modal Mu-Calculus
e Also model checking is wrt the formula
- Polynomial for HennessyMiner Logic
- Polynomial for PDL
- Polynomial for Modal Mu-Calculus with bounded alternation of
fixpoints and NPNcoNP in general
e Satisfiability is decidable for the three logics, and the
complexity (in the size of the formula) is as follows:
- HennessyMilner Logic: PSPACE-complete
- PDL: EXPTIME-complete
- Modal Mu-Calculus: EXPTIME-complete

Service Integration — aa 2008/09 Giuseppe De Giacomo 13

Dipartimento di

Informatica e Sistemistica
"Antonio Ruberti"

AI Planning as Model Checking [Fina

UNTVERSITA DI ROMA

e Build the TS of the domain:

- Consider the set of states formed all possible truth value of the
propositions (this works only for propositional setting).

- Use Pre’s and Post of actions for determining the transitions
Note: the TS is exponential in the size od the description.

e Write the goal in a logic of program

- typically a single least fixpoint formula of Mu-Calculus (compute
reachable states intersection states where goal true)

¢ Planning:
- model check the formula on the TS starting from the given initial state.
- ulse the path (paths) used in the above model checking for returning the
plan.

e This basic technique works only when we have complete information (or at least total
observability on state):
- Sequiential plans if initial state known and actions are deterministic
- Conditional plans if many possible initial states and/or actions are nondeterministic

Service Integration — aa 2008/09 Giuseppe De Giacomo 14

Dipartimento di
Informatica e Sistemistica
"Antonio Ruberti"

Example @ SApiENZA

#/ UNIVERSITA DI ROMA

e Operators (Services + Mappings)
- Registered A —FlightBooked — [S,:bookFlight] FlightBooked
- -—Registered — [S;:register] Registered
- -—HotelBooked — [S,:bookHotel] HotelBooked

e Additional constraints (Community Ontology):

- TravelSettledUp =
FlightBooked A HotelBooked A EventBooked

e Goals (Client Service Requests):

Service Integration — aa 2008/09 Giuseppe De Giacomo 15

Dipartimento di
Informatica e Sistemistica
"Antonio Ruberti"

Example @ SaAPiENZA

& UNIVERSITA DI ROMA

Plan:
S,;:bookFlight;
S,:bookHotel

Starting from the state

Registered A - FlightBooked A — HotelBooked A — EventBooked

check

<any*>TravelSettledUp

Service Integration — aa 2008/09 Giuseppe De Giacomo 16

Dipartimento di
Informatica e Sistemistica
"Antonio Ruberti"

@ SAPIENZA

#/ UNIVERSITA DI ROMA

Plan:
if(—Registered) {
S,:register;

b
_ S, :bookFlight;
Starting from all states where S,:bookHotel

- FlightBooked A - HotelBooked A — EventBooked

check

<any*>TravelSettledU

Service Integration — aa 2008/09 Giuseppe De Giacomo 17

Dipartimento di
Informatica e Sistemistica
"Antonio Ruberti"

Satisfiability @ SaAPiENZA

/ UNIVERSITA DI ROMA

e Observe that a formula ® may be used to select among all TS
T those such that for a given state s we have that T,sF @

e SATISFIABILITY: Given a formula ® verify whether there
exists a TS T and a state s such that. Formally:

check whether exists T, s such that T,s E ®
o Satisfiability is:
- PSPACE for HennesyMilner Logic

- EXPTIME for PDL
— EXPTIME for Mu-Calculus

Service Integration — aa 2008/09 Giuseppe De Giacomo 18

Dipartimento di
Informatica e Sistemistica
"Antonio Ruberti"

References @ SApiENZA

UNIVERSITA DI ROMA

[Stirling Banffo6] C. Stirling: Modal and temporal logics for processes. Banff Higher Order
Workshop LNCS 1043, 149-237, Springer 1996

[Bradfield&Stirling HPAO1] J. Bradfield, C. Stirling: Modal logics and mu-calculi. Handbook
of Process Algebra, 293-332, Elsevier, 2001.

[Stirling 2001] C. Stirling: Modal and Temporal Properties of Processes. Texts in Computer
Science, Springer 2001

[Kozen&Tiuryn HTCS90] D. Kozen, J. Tiuryn: Logics of programs. Handbook of Theoretical
Computer Science, Vol. B, 789-840. North Holland, 1990.

[HKT2000] D. Harel, D. Kozen, J. Tiuryn: Dynamic Logic. MIT Press, 2000.

[Clarke& Schlingloff HARO1] E. M. Clarke, B. Schlingloff: Model Checking. Handbook of
Automated Reasoning 2001: 1635-1790

[CGP 2000] E.M. Clarke, O. Grumberg, D. Peled: Model Checking. MIT Press, 2000.

[Emerson HTCS90] E. A. Emerson. Temporal and Modal Logic. Handbook of Theoretical
Computer Science, Vol B: 995-1072. North Holland, 1990.

[Emerson Banff96] E. A. Emerson. Automated Temporal Reasoning about Reactive Systems.
Banff Higher Order Workshop, LNCS 1043, 111-120, Springer 1996

[Vardi CST] M. Vardi: Alternating automata and pro%/ram verification. Computer Science
Today -Recent Trends and Developments, LNCS Vol. 1000, Springer, 1995.

[Vardi etal CAV94] M. Vardi, O. Kupferman and P. Wolper: An Automata-Theoretic Approach
to Branching-Time Model Checking (full version of CAV'94 paper).

[Schneider 2004] K. Schenider: Verification of Reactive Systems, Springer 2004.

Service Integration — aa 2008/09 Giuseppe De Giacomo 19

