
Nondeterministic Available Services

Nondeterminism in

Available Services

• Nondeterministic available services
– Incomplete information on the actual behavior

– Mismatch between behavior description (which is in
terms of the environment actions) and actual behavior of
the agents/devices

• Deterministic target service

– it’s a spec of a desired service: (devilish) nondeterminism is
banned

Giuseppe De Giacomo 2

Devilish (don’t know)!

In general, devilish nondeterminism difficult to cope with
eg. nondeterminism moves AI Planning from PSPACE (classical planning) to EXPTIME
(contingent planning with full observability [Rintanen04])

Service Integration – aa 2008/09

Example: Nondeterministic

Available Services

Giuseppe De Giacomo 3

a

a

service 1

service 2

target servce

a

b

b

b

S10 S11

S20

Available services represented as nondeterministic transition systems

orchestrator

Devilish nondeterminism!

Service Integration – aa 2008/09

Example: Nondeterministic

Available Services

Giuseppe De Giacomo 4

a

a

service 1

service 2

target service

a

b

b

b

S10 S11

S20

orchestrator

Service Integration – aa 2008/09

Example: Nondeterministic

Available Services

Giuseppe De Giacomo 5

a

a

a

service 1

service 2

target service

b

b

b

S10 S11

S20

orchestrator

Service Integration – aa 2008/09

Example: Nondeterministic

Available Services

Giuseppe De Giacomo 6

a

a

a

service 1

service 2

target service

b

b

b

S10 S11

S20

orchestrator

Service Integration – aa 2008/09

Example: Nondeterministic

Available Services

Giuseppe De Giacomo 6

a

a

a

service 1

service 2

target service

b

b

b

S10 S11

S20

observe the
actual state!

orchestrator

Service Integration – aa 2008/09

Example: Nondeterministic

Available Services

Giuseppe De Giacomo 7

a

a

a

service 1

service 2

target service

b

b

b

S10 S11

S20

observe the
actual state!

orchestrator

Service Integration – aa 2008/09

Example: Nondeterministic

Available Services

Giuseppe De Giacomo 8

a

a

a

service 1

service 2

target service

b

b

b

S10 S11

S20

observe the
actual state!

orchestrator

Service Integration – aa 2008/09

An Orchestrator Program Realizing
the Target Service

Giuseppe De Giacomo 9

orchestrator

a

a

service 1

service 2

target service

a

b

b

b

S10 S11

S20

Service Integration – aa 2008/09

An Orchestrator Program Realizing
the Target Service

Giuseppe De Giacomo 9

orchestrator

a

a

service 1

service 2

target service

a

b

b

b

S10 S11

S20

orchestrator program

True? a,1

S11? b,1

S10? b,2

Service Integration – aa 2008/09

Orchestrator Programs

• Orchestrator program is any function P(h,a) = i that takes a history h
and an action a to execute and delegates a to one of the available
services i

• A history is a sequence of the form, which alternate states of the available
services with actions performed:

(s1
0,s2

0,…,sn
0) a1 (s1

1,s2
1,…,sn

1) … ak (sk
1,s2

k,…,sn
k)

• Observe that to take a decision P has full access to the past, but no
access to the future

• Problem: synthesize a orchestrator program P that realizes the target
service making use of the available services

Giuseppe De Giacomo 10

contains all the observable
information up the current situation

Service Integration – aa 2008/09

Technique1: Reduction to PDL

Basic idea:

• A orchestrator program P realizes the target service T iff at each point:

– ! transition labeled a of the target service T …

– … " an available service Bi (the one chosen by P) which can make an a-

transition …

– … and ! a-transition of Bi realize the a-transition of T

• Encoding in PDL:

– ! transition labeled a …
 use branching

– " an available service Bi …

 use underspecified predicates assigned through SAT

– ! a-transition of Bi … :

 use branching again

Giuseppe De Giacomo 11Service Integration – aa 2008/09

Technical Results: Theoretical

Thm[IJCAI’07] Checking the existence of orchestrator
program realizing the target service is EXPTIME-complete.

Thm [IJCAI’07] If a orchestrator program exists there
exists one that is finite state.

Giuseppe De Giacomo 12

EXPTIME-hardness due to Muscholl&Walukiewicz07
for deterministic services

Exploits the finite model property of PDL

Note: same results as for deterministic
services!

Service Integration – aa 2008/09

Technical Results: Practical

• Use state-of-the-art tableaux systems for OWL-DL for checking SAT
of PDL formula ! coding the composition existence

• If SAT, the tableau returns a finite model of !

• Project away irrelevant predicates from such model, and possibly
minimize

• The resulting structure is a finite orchestrator program that realizes
the target behavior

Giuseppe De Giacomo 13

Reduction to PDL provides also a practical sound and
complete technique to compute the orchestrator program
also in this case

polynomial in the size of the model

exponential in the size of the behaviors

eg, PELLET @ Univ. Maryland

Service Integration – aa 2008/09

Nondeterministic Available Services:

Technique based on

Composition via ND-Simulation

Composition via ND-Simulation

• We consider binary relations R satisfying the following co-inductive condition (ND-similarity):

 (t,(s1, .., sn)) # R implies that

– if t is final then si, with i=1, .., n, is final

– for all actions a

• If t $a t’ then " k # 1..n.

– " sk’ . sk $a sk’

– ! sk’. sk $a sk’ % (t’,(,s1,..,sk’, .., sn))# R

Note similar in the spirit to simulation relation!

But more involved, since it deals with

• the existential choice (as the simulation) of the service, and

• the universal condition on the nondeterministic branches!

• A composition realizing a target service TS TSt exists if there exists a relation R satisfying the above
condition between the initial state t0 of TSt and the initial state (s1

0, .., sn
0) of the community big TS

TSc.

• Notice if we take the union of all such relation R then we get the largest relation RR satisfying the
above condition.

• A composition realizing a target service TS T exists iff (t0 , (s1
0, .., sn

0)) # RR.
Giuseppe De Giacomo 15Service Integration – aa 2008/09

Algorithm for ND-simulation

Algorithm Compute (ND-)simulation

Input: target service T = <A, ST, t0, !T, FT> and ..

 available services Si= <A, Si, si
0, !i, Fi> , i = 1,..,n

Output: the simulated-by relation RR (the largest simulation)

Body

 R = &

 R’ = ST ' S1 '..' Sn

 while (R " R’) {

 R := R’

 R’ := R’ - {(t, s1,..,sn) | " t $a t’ in T (¬" k = 1,..,n s.t.

 (" sk $a sk’ (! sk $a s’k % (t’, s1,..,s’k,..,sn) # R’)}

 }

 return R’

End
Service Integration – aa 2008/09 Giuseppe De Giacomo 16

Composition via ND-Simulation

• Given the maximal ND-simulation RR form TSt to TSc (which includes the initial states),
we can build the orchestrator generator.

• This is an orchestrator program that can change its behavior reacting to the
information acquired at run-time.

• Def: OG = < A, [1,…,n], Sr, sr
0, !r, "r, Fr> with

– A : the actions shared by the community

– [1,…,n]: the identifiers of the available services in the community

– Sr = St' S1 '!' Sn : the states of the orchestrator program

– sr
0 = (s0

t, s
0
1, ..., s

0
m) : the initial state of the orchestrator program

– Fr) { (st , s1 , ..., sn) | st # Ft : the final states of the orchestrator program

– !r : Sr ' Ar $ [1,…,n] : the service selection function, defined as follows:

!r(t, s1,..,sn, a) = { i | TSt and TSi can do a and remain in RR}

i.e. …={i | st $a, s’t (" si’. si $a, si’ (! si’. si $a, si’ % (st’, (s1 , ..., si’ ,.., sn))# RR}

– "r) Sr ' Ar ' [1,…,n] ' Sr : the state transition relation, defined as follows:

• Let k # !r(st, s1 , ..., sk , ..., sn, a) then

 (st, s1 , ..., sk , ..., sn)$a,k (st’, s1 , ..., s’k , ..., sn) for each sk $a, s’k

Giuseppe De Giacomo 17Service Integration – aa 2008/09

Composition ND-Simulation

• Computing RR is polynomial in the size of the target service
TS and the size of the community TS…

• ... composition can be done in EXPTIME in the size of the
available services

• For generating OG we need only to compute RR and then
apply the template above

• For running the OG we need to store and access RR
(polynomial time, exponential space) …

• … and compute !r and "r at each step (polynomial time and space)

Giuseppe De Giacomo 18Service Integration – aa 2008/09

Example of Composition

Giuseppe De Giacomo 19

a

b

TS
1 b

TS
2

b
TS

t

a

 Available Services

Target Service

a

Service Integration – aa 2008/09

Example of Composition

Giuseppe De Giacomo 20

b
TS

t

a

Community TS

Target Service

Composition exists!

a

b

TSc

a b

b

Service Integration – aa 2008/09

Failures

• Available services may become unexpectedly unavailable for
various reasons. We consider four kinds of behavioral
failures:

– A service temporarily freezes; it will eventually resume in the
same state it was in;

– A service unexpectedly and arbitrarily (i.e., without respecting its
transition relation) changes its current state;

– A service dies; that is, it becomes permanently unavailable;

– A dead service unexpectedly comes alive again (this is an
opportunity more than a failure).

Service Integration – aa 2008/09 Giuseppe De Giacomo 21

Just-in-time composition

• Once we have the controller generator ...

• ... we can avoid choosing any particular composition

apriori ...

• ... and use directly !r to choose the available behavior to

which delegate the next action.

• We can be lazy and make such choice just-in-time, possibly

adapting reactively to runtime feedback.

Service Integration – aa 2008/09 Giuseppe De Giacomo 22

Parsimonious failure recovery (1)

Algorithm Computing ND-simulation - parameterized version
 Input: - target service T = <A, ST, t0, !T, FT>

 - available services Si= <A, Si, si
0, !i, Fi> , i = 1,..,n

 - relation Rraw including the simulated-by relation

 - relation Rsure included the simulated-by relation

Output: the simulated-by relation (the largest simulation)

Body
 Q = &
 Q’ = Rraw - Rsure //Note R’ = Q’ ! Rsure

 while (Q " Q’) {
 Q := Q’
 Q’ := Q’ - {(t, s1,..,sn) | " t $a t’ in T (¬" k = 1,..,n s.t.

 (" sk $a sk’ (! sk $a s’k % (t’, s1,..,s’k,..,sn) # Q’ ! Rsure)}

 }
 return Q’ ! Rsure

End
Service Integration – aa 2008/09 Giuseppe De Giacomo 23

Parsimonious failure recovery (2)

• Let [1,.., n] = W!F be the available services.

• Let RW!F be the simulated-by relation of target by services

W!F.

• Then the following holds:

! RW " #W(RW!F)

- #W(RW!F) is the projection on W of a relation: easy to compute

- Note: #W(RW!F) is not a simulation of target by services W

• RW $ F " RW!F

- RW $ F is the cartesian product of 2 relations (F is trivial): easy to
compute

- Note: RW ! F is a simulation of target by services W!F

Service Integration – aa 2008/09 Giuseppe De Giacomo 24

Extension to the Roman Model

Parsimonious failure recovery (3)

• If services F die

compute simulated-by RW with Rraw = #W(RW!F) !

• If dead services F come back

compute simulated-by RW!F with Rsure = RW $ F !

• Remember:

– RW " #W(RW!F)

– RW $ F " RW!F and RW $ F is a simulation of target by services W!F

Service Integration – aa 2008/09 Giuseppe De Giacomo 26

Extensions

• Nondeterministic (angelic) target specification
– Loose specification in client request

– Angelic (don’t care) vs devilish (don’t know) nondeterminism

– See [ICSOC’04]

• Distributing the orchestration
– Often a centralized orchestration is unrealistic: eg. services deployed on mobile devices

• too tight coordination

• too much communication

• orchestrator cannot be embodied anywhere

– Drop centralized orchestrator in favor of independent controllers on single available services
(exchanging messages)

– Under suitable conditions: a distributed orchestrator exists iff a centralized one does

– Still decidable (EXPTIME-complete)

– See [AAAI’07]

• Dealing with data
– This is the single most difficult issue to tackle

• First results: actions as DB updates, see [VLDB’05]

• Literature on Abstraction in Verification

– From finite to infinite transition systems!

• Security and trust aware composition [SWS’06]

• Automatic Workflows Composition of Mobile Services [ICWS’07]

27

See later

Service Integration – aa 2008/09 Giuseppe De Giacomo

References
[ICSOC’03] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella:

Automatic Composition of E-services That Export Their Behavior. ICSOC 2003: 43-58

[WES’03] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella: A
Foundational Vision of e-Services. WES 2003: 28-40

[TES’04] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella: : A
Tool for Automatic Composition ofServices Based on Logics of Programs. TES 2004: 80-94

[ICSOC’04] Daniela Berardi, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella, Diego Calvanese:
Synthesis of underspecified composite e-services based on automated reasoning. ICSOC 2004:
105-114

[IJCIS’05] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella:
Automatic Service Composition Based on Behavioral Descriptions. Int. J. Cooperative Inf. Syst. 14(4):
333-376 (2005)

[VLDB’05] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Richard Hull, Massimo Mecella:
Automatic Composition of Transition-based Semantic Web Services with Messaging. VLDB 2005:
613-624

[ICSOC’05] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Massimo Mecella: Composition of
Services with Nondeterministic Observable Behavior. ICSOC 2005: 520-526

[SWS’06] Fahima Cheikh, Giuseppe De Giacomo, Massimo Mecella: Automatic web services composition in
trustaware communities. Proceedings of the 3rd ACM workshop on Secure web services 2006. Pages:
43 - 52.

[AISC’06] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Massimo Mecella. Automatic Web
Service Composition: Service-tailored vs. Client-tailored Approaches. In Proc. AISC 2006, International
Workshop jointly with ECAI 2006.

[FOSSACS’07] Anca Muscholl, Igor Walukiewicz: A lower bound on web services composition. Proceedings
FOSSACS, LNCS, Springer, Volume 4423, page 274--287 - 2007.

[IJCAI’07] Giuseppe De Giacomo, Sebastian Sardiña: Automatic Synthesis of New Behaviors from a Library
of Available Behaviors. IJCAI 2007: 1866-1871

[AAAI’07] Sebastian Sardiña, Fabio Patrizi, Giuseppe De Giacomo: Automatic synthesis of a global behavior
from multiple distributed behaviors. In Proceedings of the Conference on Artificial Intelligence (AAAI),
Vancouver, Canada, July 2007.

28Service Integration – aa 2008/09 Giuseppe De Giacomo

