
Behavior Composition in

the Presence of Failure

Sebastian Sardina
 RMIT University, Melbourne, Australia

Fabio Patrizi & Giuseppe De Giacomo

 Sapienza Univ. Roma, Italy

KR’08, Sept. 2008, Sydney Australia

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.:

AAAAAAA

Introduction

There are at least two kinds of games. One could

be called finite, the other infinite.

A finite game is played for the purpose of

winning ...

... an infinite game for the purpose of continuing

the play.

Finite and Infinite Games

J. P. Carse

Behavior composition vs Planning

Planning

• Operators: atomic

• Goal: desired state of affair

• Finite game: compose operator

sequentially so as to reach the

goal

• Playing strategy: plan

Behavior composition

• “Operators”: available transition

systems

• “Goal”: target transition system

• Infinite game: compose

available transition systems

concurrently so as to play the

target transition systems

• Playing strategy: composition

controller

4

Given:

- a set of available behaviors B
1
,…,Bn

- a target behavior T

we want to realize T by delegating actions to B
1
,…,Bn

i.e.: control the concurrent execution of B
1
,…,Bn so as

to mimic T over time

Behavior composition: synthesis of the controller

Behavior composition

v

b

q1 q2

a

a

b

c

s1 s2

a

b

5

B1:

B2:

B3:

Example

t1 t2
a

c

t3 t4
b c

b

s1q1

s2q2s1q2

s2q1

c,2

b,3

a,2

b,1

a,1

b,2

a,1

b,1

c,2 b,2

b,3

a,2

 b,3
b,3

a,2a,2

T:

C :

v

b

q1 q2

a

a

b

c

s1 s2

a

b

6

B1:

B2:

B3:

Example

t1 t2
a

c

t3 t4
b c

b

s1q1

s2q2s1q2

s2q1

c,2

b,3

a,2

b,1

a,1

b,2

a,1

b,1

c,2 b,2

b,3

a,2

 b,3
b,3

a,2a,2

T:

C :

v

b

q1 q2

a

a

b

c

s1 s2

a

b

7

B1:

B2:

B3:

Example

t1 t2
a

c

t3 t4
b c

b

s1q1

s2q2s1q2

s2q1

c,2

b,3

a,2

b,1

a,1

b,2

a,1

b,1

c,2 b,2

b,3

a,2

 b,3
b,3

a,2a,2

T:

C :

8

Techniques for computing compositions:

• Reduction to PDL SAT [IJCAI07, AAAI07, VLDB05, ICSOC03]

• Simulation-based

• LTL synthesis as model checking of game

structure [ICAPS08]

All techniques are for finite state behaviors

Synthesizing a composition

9

Simulation-based technique

Directly based on

 “ ... control the concurrent execution of B
1
,…,Bn so as to

mimic T ”

Note this is possible ...

.... if the concurrent execution of B
1
,…,Bn can mimic T

Thm: this is possible iff

 ... the asynchronous (Cartesian) product C of B
1
,…,Bn can

(ND-)simulate T

Simulation relation

• Given two transition systems T = < A,ST, t0, !T> and

C = < A, SC, sC
0, !C> a (ND-)simulation is a relation R between the

states t ! T an (s1,..,sn) of C such that:

• (t, s1,..,sn) ! R implies that

• for all t "a t’ exists a Bi ! C s.t.

• # si "a s’i in Bi

• $ si "a s’i in Bi % (t’, s1,..,s’i,..,sn) ! R

• If exists a simulation relation R such that (t0, sC
0) ! R,

then we say that T is simulated by C.

• Simulated-by is (i) a simulation;

 (ii) the largest simulation.

Simulated-by is a coinductive definition

v

b

q1 q2

a

a

b

c

s1 s2

a

b

11

B1:

B2:

B3:

Example

t1 t2
a

c

t3 t4
b c

b

s1q1

s2q2s1q2

s2q1

c,2

b,3

a,2

b,1

a,1

b,2

a,1

b,1

c,2 b,2

b,3

a,2

 b,3
b,3

a,2a,2

T:

C :

Algorithm Compute (ND-)simulation

Input: target behavior T = <A, ST, t0, !T, FT> and

 (Cart. prod. of) available behaviors C= <A, SC, sC
0, !C, FC>

Output: the simulated-by relation (the largest simulation)

Body

 R = &

 R’ = ST ' SC

 while (R " R’) {

 R := R’

 R’ := R’ - {(t, s1,..,sn) | # t "a t’ in T (

 $ Bi . ¬# s "a s’ in Bi) # si "a s’i in Bi ((t’, s1,..s’i,..sn) *! R’ }

 }

 return R’

End

Simulation relation (cont.)

13

Given the largest simulation R of T by C, we can build every

composition through the controller generator (CG).

 CG = < A, [1,…,n], Sr, sr
0, !, #> with

• A : the actions shared by the behaviors

• [1,…,n]: the identifiers of the available behaviors

• Sr = ST' S1 '...' Sn : the states of the controller generator

• sr
0 = (t0, s0

1, ..., s0
n) : the initial state of the controller generator

• #: Sr ' A " 2[1,…,n] : the output function, defined as follows:

!(t, s1,..,sn, a) = { i | Bi can do a and remain in R}

• ! + Sr ' A ' [1,…,n] " Sr : the state transition function, defined as follows

(t, s1,..,si,..,sn)"a,i (t’, s1,..,s’i,..,sn) iff i ! #(t, s1,..,si,..,sn, a)

Using simulation for composition

s1q1

s2q2s1q2

s2q1

c,2

b,3

a,2

b,1

a,1

b,2

a,1

b,1

c,2 b,2

b,3

a,2

 b,3
b,3

a,2a,2

v

b

q1 q2

a

a

b

c

s1 s2

a

b

14

B1:

B2:

B3:

Example

t1 t2
a

c

t3 t4
b c

b

T:

C :

t1
W(t1,s1q1,a) = {1,2}
W(t1,s2q1,a) = {2}

W(t1,s1q1,c) = {2}
W(t1,s2q1,c) = {2}

t2
W(t2,s1q1,b) = {3}
W(t2,s1q2,b) = {2}
W(t2,s2q1,b) = {1,3}
W(t2,s2q2,b) = {2}

t3
W(t3,s1q1,b) = {2}
W(t3,s2q1,b) = {2}

t4
W(t4,s1q1,b) = {3}
W(t4,s1q2,b) = {2}
W(t4,s2q1,b) = {1,3}
W(t4,s2q2,b) = {2}

15

Thm: Choosing at each point any value in ! gives us a

correct controller for the composition.

Thm: Every controller that is a composition can be obtained

by choosing, at each point, a suitable value in !.

Thm: Computing the controller generator is EXPTIME

(composition is EXPTIME-complete [IJCAI07]) where the exponential

depends only on the number (not the size) of the available

behaviors.

Results for simulation

Behavior failures

Components may become unexpectedly unavailable for

various reasons.

We consider four kinds of behavior failures:

• A behavior temporarily freezes; it will eventually resume

in the same state it was in;

• A behavior (or the environment) unexpectedly and

arbitrarily (i.e., without respecting its transition relation)

changes its current state;

• A behavior dies - it becomes permanently unavailable.

• A dead behavior unexpectedly comes alive again

(this is an opportunity more than a failure).

17

Once we have the controller generator ...

 ... we can avoid choosing any particular composition

apriori ...

 ... and use directly ! to choose the available behavior to

which delegate the next action.

We can be lazy and make such choice just-in-time,

possibly adapting reactively to runtime feedback.

Just-in-time composition

18

CG already solves:

• Temporary freezing of an available behavior Bi

- In principle: wait for Bi

- But with CG: stop selecting Bi until it comes back!

• Unexpected behavior (environment) state change

- In principle: recompute CG / simulated-by from new

initial state ...

- ... but CG / simulated-by independent from initial state!

- Hence: simply use old CG / simulated-by from the new

state!!

Reactive failure recovery with CG

19

Algorithm Computing (ND-)simulation - parametrized version

Input: transition system T = <A, T, t0, !T, FT> and

 transition system C= <A, S, sC
0, !C, FC>

 relation Rraw including the simulated-by relation

 relation Rsure included the simulated-by relation

Output: the simulated-by relation (the largest simulation)

Body

 Q = &

 Q’ = Rraw - Rsure //Note R’ = (Q’ ! Rsure)
 while (Q " Q’) {

 Q := Q’

 Q’ := Q’ - {(t, s1,..,sn) | # t "a t’ in T (

 $ Bi . ¬# s "a s’ in Bi) # si "a s’i in Bi ((t’, s1,..s’i,..sn) *! Q’ ! Rsure }

}

return Q’ ! Rsure

End

Parsimonious failure recovery

20

Let [1,.., n] = W ! F be the available behaviors.

Let R = RW!F be the simulated-by relation of target by behaviors W ! F.
Then the following hold:

• RW " !W(RW!F)

- !W(RW!F) is not a simulation in general

- Behaviors F die: compute RW with Rraw = !W(RW!F) !

• RW " F " RW!F

- RW " F is a simulation of target by behaviors W ! F

- Dead behaviors F come back: compute RW!F with Rsure = RW " F !

Parsimonious failure recovery (cont.)

21

• Computing simulation is a well-studied problem (related to

bisimulation, a key notion in process algebra).

Tools, like the Edinburgh Concurrency Workbench and its

clones, can be adapted to compute composition via

simulation.

• Also LTL-based syntesis tools, like TLV, can be used for

(indirectly) computing composition via simulation [Patrizi

PhD08]

We are currently focussing on the second approach.

Tools for computing composition

based on simulation

22

• Behavior composition: an infinite game.

• Simulation based composition techniques allow for failure

tolerance!

• It realies on a controller generator: kind of stateful universal

plan generator for composition.

• Full observability of available behavior’ states is crucial for

CG to work properly. But ...

Partial observability addressable by manipulating knowledge

states! [work in progress]

• All techniques are for finite states. What about dealing with

infinite states? Very difficult, but also crucial when mixing

processes and data!

Conclusion

