
Service Composition and Safety Games∗

(Lecture Notes for Elective in Software and Services)

Fabio Patrizi

Dipartimento di Informatica e Sistemistica

Sapienza Università di Roma

fabio.patrizi@dis.uniroma1.it

December, 2008

This notes are an excerpt from author’s Ph.D. thesis. They have been
revisited so to reduce missing references –nonetheless there are still some–
and to make them as much self-contained as possible. However, it is assumed
that the reader is familiar with the notions of: service composition problem,
simulation and ND-simulation relations, and all basic notions related to the
framework for service composition usually known as “Roman Model”.

1 Simulation and Safety Games

In this Section, we show how a service composition problem instance can
be encoded into an equivalent game automaton and, correspondingly, how
searching for a composition is equivalent to searching for a winning strategy
(cf. [2, 3, 8]). The main motivation behind this approach is the availability
of software systems, such as tlv [9], Lily [4], Anzu [5] or Mocha [1], which
provide (i) efficient procedures for strategy computation and (ii) convenient
languages for representing the problem instance in a modular, intuitive and
pretty straightforward way.

1.1 Safety-Game structures

Here, we specialize the game structures introduced in [8], used to represent
and solve reactive system synthesis problems with invariant properties, to
cope with our problem. Even though game structures have been studied
also in other work (cf., e.g., [2, 3]), in this context we refer to [8] because the
formalism introduced allows for a straightforward understanding of the im-
plementation we will present later on. After introducing the specialization,
we show how game structures can be used to describe a service composition
problem.

∗Excerpted from [7].

1

Definition 1.1 A safety-game structure (or 2-game structure or 2-GS, for
short) is a tuple G = 〈V,X ,Y,Θ, ρe, ρs,2ϕ〉, where:

• V = {v1, . . . , vn} is a finite set of state variables, ranging over finite
domains V1, . . . , Vn, respectively. A valuation of all variables in V is
a tuple u = 〈u1, . . . , un〉 ∈ V = V1 × . . . × Vn, associating value ui to
variable vi (i = 1, . . . , n).

• X ⊆ V is the set of environment variables. Without loss of generality,
we assume that X = {v1, . . . , vm} (m ≤ n). An environment state is
a valuation of the variables in X , that is, a tuple ~x = 〈x1, . . . , xm〉 ∈
X = V1 × . . . × Vm, associating value xi to environment variable vi

(i = 1, . . . ,m).

• Y = V/X is the set of system variables. Without loss of generality,
we assume that Y = {vm+1, . . . , vn}. A system state is a valuation of
the variables in Y, that is, a tuple ~y = 〈ym+1, . . . , yn〉 ∈ Y = Vm+1 ×
. . .× Vn, associating value yi to system variable vi (i = m + 1, . . . , n).

• Θ is a formula representing the initial game states, where a game
state is a tuple ~s = 〈~x, ~y〉 ∈ X × Y = V . In details, Θ is a boolean
formula without negation symbols, whose atoms are expressions of the
form (vk = u), where k ∈ {1, . . . , n}, vk ∈ V and u ∈ Vk. Given a
state ~s = 〈~x, ~y〉 ∈ V , we write ~s |= Θ (~s satisfies Θ) if and only if Θ
evaluates to ⊤, once each of its atoms (vk = u) is replaced by (i) ⊤, if
k-th component of ~s assumes value u, and (ii) ⊥, otherwise.

• ρe ⊆ X ×Y ×X is the environment transition relation which relates a
current game state to a possible next environment state. In particular,
if 〈~x, ~y, ~x′〉 ∈ ρe, or, equivalently, ρe(~x, ~y, ~x′), then 〈~x, ~y〉 is referred to
as the current game state and ~x′ as the next environment state.

• ρs ⊆ X × Y × X × Y is the system transition relation, which relates
a current game state and a (next) environment state to a possible
next system state. If 〈~x, ~y, ~x′, ~y′〉 ∈ ρs, or, equivalently, ρs(~x, ~y, ~x′, ~y′),
then 〈~x, ~y〉 is referred to as the current game state, ~x′ as the next
environment state and ~y′ as the next system state;

• 2ϕ is a formula that represents the invariant property to be guaranteed.
In particular, ϕ has the same form as Θ and satisfaction definition is
as above.

Intuitively, safety-game structures represent a game played by two adver-
saries: system and environment. A round is composed of two moves: an
environment’s followed by a system’s, the former being a valuation of state
variables and the latter being a valuation of system variables. Observe

2

that, since state variables are, in fact, partitioned into system’s and envi-
ronment’s, at the end of each round a game state is fully defined. Moreover,
as state variables range over finite domains, game states are finite. Initially,
the game can be in any (initial) state that satisfies Θ, according to above
Definition 1.1. Players are not allowed to choose all possible valuations, but,
assuming that, when a round starts, the game is in state ~s = 〈~x, ~y〉, must
respect the following constraints:

• environment can choose any valuation ~x′ ∈ X of environment variables
such that ρe(~x, ~y, ~x′) holds;

• system can choose any valuation ~y′ ∈ Y of system variables such that
ρs(~x, ~y, ~x′, ~y′) holds, provided ~x′ corresponds to current round environ-
ment’s move.

This is formalized by defining when a game state is a successor of another
game state.

Definition 1.2 A game state 〈~x′, ~y′〉 is a successor of 〈~x, ~y〉, or, equivalently
〈~x, ~y〉 −→ 〈~x′, ~y′〉, if and only if both ρe(~x, ~y, ~x′) and ρs(~x, ~y, ~x′, ~y′) hold.

System goal is to keep the game going while maintaining ϕ satisfied, whereas
environment goal is to lead the game to a state such that ϕ is not satisfied.
Notice that the system can observe environment’s move before performing
its move.
Let us rephrase such intuition by means of formal notions.

Definition 1.3 Given a 2-GS G as above, a play of G is a maximal se-
quence of G states η = 〈~x0, ~y0〉〈~x1, ~y1〉 · · · such that:

• 〈~x0, ~y0〉 |= Θ, and

• 〈~xj , ~yj〉 −→ 〈~xj+1, ~yj+1〉, for each j ≥ 0.

As it comes out from Definition 1.2, a play is, informally, a sequence of game
states compliant with the “rules of the game”. We remark that, in general,
there are many, though finite, initial states, namely all those that satisfy Θ.
The notion of play can be generalized to represent sequences of moves that
start from any state:

Definition 1.4 Given a 2-GS G and a game state 〈~x, ~y〉 ∈ V , a 〈~x, ~y〉-play
of G is a maximal sequence of G states η = 〈~x, ~y〉〈~x1, ~y1〉 · · · such that
〈~x, ~y〉 −→ 〈~x1, ~y1〉 and 〈~xj , ~yj〉 −→ 〈~xj+1, ~yj+1〉, for j ≥ 1.

Finally, we define when a play is winning for the environment and for the
system.

Definition 1.5 Let G be a 2-GS as above. A (〈~x, ~y〉-)play
η = 〈~x, ~y〉〈~x1, ~y1〉 · · · is said to be winning for the system if and only
if:

3

• it is infinite, and

• satisfies the winning condition 2ϕ, that is, 〈~x, ~y〉 |= ϕ and 〈~xj , ~yj〉 |=
ϕ, for each j ≥ 1.

Otherwise, it is winning for the environment.

A fundamental question about safety games is whether, given a game struc-
ture, the system has a winning strategy, that is, if, no matter how the envi-
ronment plays, it is always able to keep the game going while satisfying ϕ.
The following definitions provide a formalization of this notion.

Definition 1.6 Let G be a 2-GS as above. A strategy for the system is a
partial function f : (X × Y)+ × X → Y such that if λ = 〈~x0, ~y0〉 · · · 〈~xn, ~yn〉
is a finite sequence of game states then for all ~x′ such that ρe(~xn, ~yn, ~x′),
f(λ, ~x′) is defined and ρs(~xn, ~yn, ~x′, f(λ, ~x′)).

Definition 1.7 Let G be a 2-GS and f() a strategy for the system. A
(〈~x0, ~y0〉-)play η = 〈~x0, ~y0〉〈~x1, ~y1〉 · · · is said to be compliant with f() if and
only if, for all i ≥ 0, f(〈~x0, ~y0〉 · · · 〈~xi, ~yi〉, ~xi+1) = ~yi+1.

Definition 1.8 Given a 2-GS G as above, a (system) strategy f() is win-
ning for the system from state 〈~x, ~y〉, if and only if all 〈~x, ~y〉-plays compliant
with f() are so.

If, from a state 〈~x, ~y〉, there exists a strategy f winning for the system,
then we expect that, from all possible successors 〈~x′, ~y′〉 obtained through
f(), a winning strategy for the system exists. This observation suggests the
following co-inductive definition:

Definition 1.9 Let G be a 2-GS as above. A set W̃ ⊆ V of game states is
said to be winning (for the system) if and only if for each state 〈~x, ~y〉 ∈ W̃ :

1. 〈~x, ~y〉 |= ϕ;

2. for each ~x′ ∈ X such that ρe(~x, ~y, ~x′) there exists a ~y′ ∈ Y such that:

• ρs(~x, ~y, ~x′, ~y′);

• 〈~x′, ~y′〉 ∈ W̃ .

Definition 1.10 Given a 2-GS G, a game state is winning (for the system)
if and only if it is contained in some winning set.

Let W ⊆ V be the set of all winning states for a 2-game G. Clearly, W is
itself a winning set and, in particular, is the largest winning set of G.

Definition 1.11 A 2-GS is said to be winning for the system if all initial
states are so. Otherwise, it is said to be winning for the environment.

4

Next, we show how, given a generic 2-GS, the set of all and only states that
are winning for the system can be computed. To this end, we introduce the
following operator (cf. [2, 8]):

Definition 1.12 Let G = 〈V,X ,Y,Θ, ρe, ρs,2ϕ〉 be a 2-GS as above.
Given a set P ⊆ V of game states, the set of P ’s controllable predeces-
sors is

π(P)
.
= {〈~x, ~y〉 ∈ V | ∀ ~x′ρe(~x, ~y, ~x′) → ∃ ~y′ρs(~x, ~y, ~x′, ~y′) ∧ 〈~x′, ~y′〉 ∈ P}

Intuitively, π(P) is the set of states from which the system can force the
game to reach a state in P , no matter how the environment evolves. Clearly,
π(π(P)) is the set of states from which the system can force the game to
reach a state in P after two moves, and so on for π(π(· · · π(P) · · ·)): by
iteratively applying operator π, one computes the set of game states from
which the system can force the game to reach a state in P in a finite set
of moves. This procedure is the intuition behind Algorithm 1 which, as
Theorem 1.2 shows, computes the maximal set of system winning states for
the system, in a given 2-GS G = 〈V,X ,Y,Θ, ρe, ρs,2ϕ〉.

Algorithm 1 MAX WIN – Computes the maximal set of winning states
for the system, in a 2-GS

1: W := {〈~x, ~y〉 ∈ V | 〈~x, ~y〉 |= ϕ}
2: repeat

3: W ′ := W ;
4: W := W ∩ π(W);
5: until (W ′ = W)
6: return W

Theorem 1.1 Let G = 〈V,X ,Y,Θ, ρe, ρs,2ϕ〉 be a 2-GS as above. Al-
gorithm 1 terminates in a finite number of steps and returns the maximal
winning set W for G.

The following fundamental result holds:

Theorem 1.2 Let G = 〈V,X ,Y,Θ, ρe, ρs,2ϕ〉 be a 2-GS as above and W
obtained as in Algorithm 1. Given a state 〈~x0, ~y0〉 ∈ V , a winning strategy
f() for the system, starting from 〈~x0, ~y0〉, exists if and only if 〈~x0, ~y0〉 ∈ W .

We report the If Part of the proof, which shows a procedure to come up
with an actual strategy, given W .

Proof:

(If Part.) By Theorem 1.1, W ⊆ π(W). So, by Definition 1.12: (†) for each
〈~x, ~y〉 ∈ W and for each ~x′ ∈ X such that ρe(~x, ~y, ~x′), there exists a ~y′ ∈ Y

5

such that ρs(~x, ~y, ~x′, ~y′) and 〈~x′, ~y′〉 ∈ W . Moreover, by construction of W
in Algorithm 1: (‡) for each 〈~x, ~y〉 ∈ W , 〈~x, ~y〉 |= ϕ.
Now, let Λi ⊆ (X × Y)i+1, for i ≥ 0. We define, by induction, a function
f : (X × Y)+ × X −→ Y and sets Λi as follows:

• Λ0 = {〈~x0, ~y0〉}. By hypothesis, 〈~x0, ~y0〉 ∈ W ;

• for each λ ∈ Λℓ, λ = 〈x0, y0〉 · · · 〈xℓ, yℓ〉 (ℓ ≥ 0), assume that 〈xℓ, yℓ〉 ∈
W , then, for each ~xℓ+1 ∈ X such that ρe(~xℓ, ~yℓ, ~xℓ+1), choose one ~y′

among those as in (†) and let:

– ~yℓ+1 = f(λ, ~xℓ+1) = ~y′;

– λ′ = 〈x0, y0〉 · · · 〈xℓ, yℓ〉〈xℓ+1, yℓ+1〉 ∈ Λℓ+1.

Since, by (†), 〈xℓ+1, yℓ+1〉 ∈ W , function f() is well founded.

Due to this definition, if a 〈~x0, ~y0〉-play η = 〈~x0, ~y0〉〈~x1, ~y1〉 · · · is compliant
with f() then it is infinite and 〈~xi, ~yi〉 ∈ W for all i ≥ 0, so, by (‡), 〈~xi, ~yi〉 |=
ϕ. Therefore η is winning for the system. 2

As a consequence of the theorem, we get the following result:

Theorem 1.3 Let G = 〈V,X ,Y,Θ, ρe, ρs,2ϕ〉 be a 2-GS as above and W
obtained as result of Algorithm 1. G is winning for the system if and only
if all of its initial states belong to W .

Proof: Direct consequence of Theorem 1.2. 2

Hence, given a 2-GS G, in order to check whether G is winning for the
system and, if so, compute a winning strategy, one can adopt the following
procedure:

• execute Algorithm 1 and compute W ;

• check whether (†) all initial states are in W ;

• if (†) holds then compute a winning strategy for the system by follow-
ing the construction provided in If Part of Theorem 1.2;

• otherwise, notify that G is winning for the environment.

1.2 From Composition Problem to Safety Games

We introduce our approach for reducing a composition problem instance to
a 2-GS from a high-level perspective. Recall that the service composition
problem consists in finding an orchestrator able to coordinate a commu-
nity so that the obtained system can always satisfy the requests of a client
compliant with a given deterministic target service.

6

In order to encode the composition problem as a safety-game structure,
we need first to individuate which place each component, e.g., target, avail-
able services, data box, will occupy in the game representation. To this end,
some remarks are worth making:

• given the target service, all and only legal client evolutions result in
all possible target service executions;

• the target service is a virtual entity whose operations are to be actu-
ally executed by one available service, subject to its current state and
capabilities. Therefore, when composing services, both the (virtual)
target service and the (actual) community can be soundly thought as
evolving synchronously, the latter executing exactly what the former
is supposed to;

• our framework prescribes community services to be mutually asyn-
chronous, i.e., exactly one moves at each step, yet synchronous with
the data box;

• among all the entities involved in the setting, the only one that needs
to be synthesized is the orchestrator: it is an automaton which, syn-
chronously with both the target service and the community, outputs,
depending on the current community state and the target service evo-
lution that is being composed, an identifier used to delegate the re-
quested operation to one available service.

Conceptually, our goal is to refine an unconstrained orchestrator –that is,
an automaton capable of selecting, at each step, one among all the available
services– in a way such that the community is always able to satisfy target
service requests 1. This suggests to identify, in the game structure:

• the orchestrator with the system, which is the game player we want to
synthesize a winning strategy for and, consequently,

• community services, target service and data box, properly combined,
with the environment, of course guaranteeing that all synchronization
requirements are met.

Finally, once the game players are described, a winning condition needs to be
encoded. Recall that system’s goal amounts to guaranteeing that the game
goes on while keeping the winning condition verified. In our composition
framework, we require that an orchestrator delegates operations, requested
by the target service, so that

1Here and in the following, we blur the notions of client and target service as, like
we said before, all client evolutions yield all target executions, so one can see a target
execution as an alternative representation of some client’s evolution.

7

• if the target service is in a final state, all community services do, as
well;

• the service selected by the orchestrator is able to perform the operation
currently requested by the target service.

The winning condition will be formally encoded as conjunction of the above
high-level properties, in addition to a third one needed to deal with a single
(artificial) initial state, rather than many.

Now, we can show how to derive, given a composition problem instance, a
2-GS.

1.2.1 Formal Reduction to Safety-Game Structure

Before providing technical details, let us address an important issue about
TS modeling. As we saw, a game is winning for a system if all plays starting
from an initial state are winning. To be such, in particular, a play needs
to be infinite. In the reduction we propose next, the composition problem
is encoded as a safety game, so that each winning strategy for the system
corresponds to a composition and viceversa. To do so, we require that the
target service has only infinite runs, otherwise finite plays are allowed and
thus, as it will be clear soon, there might be loss of solutions. So, given a
service composition problem instance, we preliminarily apply the following
transformations, aimed at extending all finite runs that are possibly finite:

• if all target service states have at least one successor state (according
to transition function), then nothing changes;

• otherwise:

– a special operation, say nop, not already present in O, is added
to O;

– for each state s with no successor, a (looping) transition s
⊤,nop
−→ s

is added to the (functional) transition relation ̺t;

– for all available services and the data box, a loop as above is
added for each of their states.

Intuitively, we require that, after a finite run has been traversed, the target
service can only decide to remain still, that each available service can be
delegated, at any time, to execute such operation, and that no available
service or the data box is affected by nop. In other words, we are explicitly
representing the fact that the whole system remains still over time. From
now on, we assume to deal only with infinite-run target services, possibly
obtained by applying the above manipulation. Therefore, each community
and target service state admit always a successor state (possibly itself).

8

Now, let C = {S1, . . . ,Sn} be a community and St a target service, where

Si = 〈O, Si, si0, ̺i, S
f
i 〉 (i = t, 1 . . . , n). From C and St, we derive a 2-GS

G = 〈V,X ,Y,Θ, ρe, ρc,2ϕ〉, as follows:

• V = {st, s1, . . . , sn, o, ind}, where:

– si ranges over Ŝi
.
= Si ∪ {init} (i = t, 1, . . . , n);

– o ranges over Ô
.
= O ∪ {init};

– ind ranges over {1, . . . , n} ∪ {init};

with an intuitive semantics: each complete valuation of V represents
(i) the current state of community (variables s1, . . . , sn,) and target
service (variable st), (ii) the operation to be performed next (variable
o) and (iii) the available service selected to perform it (variable ind).
Special value init has been introduced for convenience, so to have a
single initial state;

• X = {st, s1, . . . , sn, o} is the set of environment variables;

• Y = {ind} is the (singleton) set of system variables;

• Θ = (
∧

i=t,0,...,n(si = init))∧ (o = init)∧ (ind = init), represents a full
assignment to state variables, which identifies the initial state;

• Let SG = Ŝt × Ŝ1 × . . . × Ŝn be the set of G’s environment states.
ρe ⊆ SG × {1, . . . , n, init} × SG is defined as follows:

– 〈〈init, . . . , init〉, init, 〈st, s1, . . . , sn, o〉〉 ∈ ρe if and only if:

1. si = si0, for i = t, 1, . . . , n;

2. there exists a transition st0
o

−→ s′t in St;

– if si 6= init, for i = t, 1, . . . , n, o 6= init and ind 6= init then
〈〈st, s1, . . . , sn, o〉, ind, 〈s′t, s

′
1, . . . , s

′
n, o′〉〉 ∈ ρe if and only if the

following holds:

1. there exists a transition st
o

−→ s′t in St;

2. there exists a transition sind
o

−→ s′ind in Sind;

3. s′i = si, for all i = 1, . . . , n such that i 6= ind;

4. there exists a transition s′t
o′
−→ s′′t in St;

• ρs ⊆ SG × {1, . . . , n, init} × SG × {1, . . . , n, init} is defined as follows:
〈〈st, s1, . . . , sn, o〉, ind, 〈s′t, s

′
1, . . . , s

′
n, o′〉, ind′〉 ∈ ρs if and only if:

– ρe(〈st, s1, . . . , sn, o〉, ind, 〈s′t, s
′
1, . . . , s

′
n, o′〉), and

– ind′ ∈ {1, . . . , n};

9

• Formula ϕ is defined depending on current service states st, s1, . . . , sn,
operation o and service selection ind, as follows (for succinctness, vari-
ables that each term depends on are omitted, e.g., we write faili in-
stead of faili(si, o, ind)):

ϕ
.
= Θ ∨ (

n∧

i=1

¬faili) ∧ (finalt →
n∧

i=1

finali),

where:

– Θ is defined as above;

– faili
.
= (ind = i) ∧ (

∧
〈s,op,s′〉∈̺i

(si 6= s ∨ o 6= op)), encodes the
fact that service i has been selected but, in its current state, no
transition can take place which executes the requested operation;

– finali
.
=

∨
s∈S

f
i

(si = s) encodes the fact that service i =

t, 1, . . . , n is currently in one of its final states.

Observe how, since game structures do not allow for transition labeling, the
operation requested by a client appears as a state variable, in the game rep-
resentation. This transformation is similar, in the spirit, to the procedure
usually adopted to transform a Mealy into a Moore machine. As for the
winning condition, it is an invariant property that needs to be always satis-
fied, in order for the system to win or, rephrased from service composition
viewpoint, in order for an orchestrator to be a composition. It should be
intuitively clear that each game play essentially reproduces a synchronous
execution of the target service and the community, when sequences of opera-
tions compliant with target service specification are executed. Analogously,
the converse holds. Such intuitions will be formally addressed later on in
this chapter.

The basic idea behind the reduction to a safety-game structure is that,
once the service composition problem is encoded as a 2-GS, from the maxi-
mal winning set, computed as in Algorithm 1, one can extract a NCG, thus
a composition which solves the original problem.

1.2.2 Technical Results

We can now show how the obtained game structure allows for computing a
composition generator. Recall that, in order to define the NCG, one needs
to build an ND-simulation. The following Theorem shows that this can be
equivalently done by computing the maximal set of winning states for the
system.

Theorem 1.4 Let C = {S1, . . . ,Sn} be a community and St a target service

where, as usual, Si = 〈O, Si, si0, ̺i, S
f
i 〉 (i = 1 . . . , n, t). From C and St

10

derive a 2-GS G = 〈V,X ,Y,Θ, ρe, ρs,2ϕ〉, as shown above, and let W ⊆ V
be the maximal set of winning states for the system. Then, 〈init, . . . , init〉 ∈
W if and only if st0 � sC0.

Based upon this result, the following theorem provides an actual procedure
to build an ND composition generator and, from this, all possible composi-
tions.

Theorem 1.5 Let C = {S1, . . . ,Sn}, St and G = 〈V,X ,Y,Θ, ρe, ρs,2ϕ〉
be as in Theorem 1.4 above. In addition, let W be the winning set for
the system. If 〈init, . . . , init〉 ∈ W , then the ND composition generator
NCG = 〈O, {1, . . . , n}, Sg, sg0, ωg, δg〉 of C for St can be built from W , as
follows:

• O is the usual set of operations and {1, . . . , n} the set of available
services’ indexes;

• Sg ⊆ St × SC is such that 〈st, 〈s1, . . . , sn〉〉 ∈ Sg if and only if there
exists a game state 〈st, s1, . . . , sn, o, ind〉 ∈ W , for some o ∈ O and
ind ∈ {1, . . . , n};

• sg0 = 〈st0, 〈s10, . . . , sn0〉〉 is NCG’s initial state;

• ωg : Sg × O −→ 2{1,...,n} is defined as ωg(〈st, 〈s1, . . . , sn〉〉, o) = {i ∈
{1, . . . , n} | 〈st, s1, . . . , sn, o, i〉 ∈ W};

• δg ⊆ (Sg × O × {1, . . . , n} × Sg) is such that
〈〈st, 〈s1, . . . , sn〉〉, o, k, 〈s′t, 〈s

′
1, . . . , s

′
n〉〉〉 ∈ δg if and only if

〈st, s1, . . . , sn, o, k〉 ∈ W and there exist o′ ∈ O and k′ ∈ {1, . . . , n}
such that 〈〈s1, . . . , sn, st, o〉, k, 〈s′1, . . . , s

′
n, s′t, o

′〉, k′〉 ∈ ρs.

Above theorems show how one can exploit tools from system synthesis for
computing all compositions of a given target service. In details, starting from
C = {S1, . . . ,Sn} and St, one can build the corresponding game structure G
as shown above, then compute the set W through the use of some available
tool and, if it contains G’s initial state, use such set to generate the NCG.
In fact, this last step is not really needed. Indeed, it is not hard to convince
oneself that given a current state 〈st, s1, . . . , sn〉 and an operation to be
executed o ∈ O a service selection ind is ”good” (i.e, the selected service can
actually execute the operation and the whole community can still simulate
the target service) if and only if W contains a tuple 〈st, s1, . . . , sn, o, ind〉,
for some ind ∈ {1, . . . , n}. Consequently, at each step, on the basis of
the current state st of the target service, the states s1, . . . , sn of available
services and the requested operation o requested, one can select a tuple from
W , extract the ind component, and use this for next service selection.

11

Finally, observe that time complexity of Algorithm 1 is polynomial in
|V |, that is the size of input 2-GS’ state space. Since in our encoding |V | is
polynomial in |S1|, . . . , |Sn|, |St| and exponential in n, we get the following
result.

Theorem 1.6 Let C = {S1, . . . ,Sn} be a community and St a target service
over DB. Checking the existence of compositions by reduction to safety
games can be done in polynomial time with respect to |S1|, . . . , |Sn|, |St| and
exponential time with respect to n.

That is, the technique is actually optimal wrt worst-case time complexity,
the composition problem being EXPTIME-hard [6].

References

[1] Alur, R., Henzinger, T. A., Mang, F. Y. C., Qadeer, S., Raja-

mani, S. K., and Tasiran, S. MOCHA: Modularity in model checking.
In Proc. of CAV 1998 (1998), pp. 521–525.

[2] Asarin, E., Maler, O., and Pnueli, A. Symbolic controller synthesis
for discrete and timed systems. In Hybrid Systems II (1995), Springer-
Verlag, pp. 1–20.

[3] Asarin, E., Maler, O., Pnueli, A., and Sifakis, J. Controller
synthesis for timed automata. In IFAC Symposium on System Structure
and Control (1998), Elsevier, pp. 469–474.

[4] Jobstmann, B., and Bloem, R. Optimizations for LTL synthesis.
In FMCAD ’06: Proceedings of the Formal Methods in Computer Aided
Design (Washington, DC, USA, 2006), IEEE Computer Society, pp. 117–
124.

[5] Jobstmann, B., Galler, S., Weiglhofer, M., and Bloem, R.

Anzu: A tool for property synthesis. In Proc. of CAV 2007 (2007),
pp. 258–262.

[6] Muscholl, A., and Walukiewicz, I. A lower bound on web services
composition. In Proc. of the 10th Int. Conf. on Foundations of Software
Science and Computation Structures (FoSSaCS 2007) (2007), vol. 4423
of LNCS, Springer.

[7] Patrizi, F. Simulation-based Techniques for Automated Service Com-
position. PhD thesis, Sapienza Università di Roma, 2008.

[8] Piterman, N., Pnueli, A., and Sa’ar, Y. Synthesis of reactive(1)
designs. In VMCAI (2006), pp. 364–380.

12

[9] Pnueli, A., and Shahar, E. The TLV system and its applications.
Technical report, Weizmann Institute, 1996.

13

