
Putting Services
into Practice

Massimo Mecella
mecella@dis.uniroma1.it

with slides from Damiano Pozzi and Valerio Colaianni

Seminars in Software Engineering – June 2008

Outline (1)

• Introduction to Web Service Technologies
(3 hour)

1.XML

2.WSDL

3.UDDI

4.WS-BPEL (formerly BPEL4WS)

5.How to Concretely Develop a Web Service

• AXIS 2

• JBOSS

2

Seminars in Software Engineering – June 2008

Outline (2)

• Design and Use of a Lite Composition
Tool (3 hours)

1.Representing Service Behaviors in XML

2.Practical Use

3.Design Issues on Converting Composite
Service Specifications into WS-BPEL and/or
Java Orchestration Engine

3

Introduction to
Web Services Technologies

Casati et al. – chapter 4 -- 8

Seminars in Software Engineering – June 2008

Motivations -- (naive) Business-
to-Business Integration

web server

internal infrastructure

supplier

customer

warehouse

web server

internal infrastructure

internal infrastructure

internal

procurement

requests

B2B interactions occur by

accessing Web pages,

filling Web forms, or via

email

[from ACKM04]

Seminars in Software Engineering – June 2008

Motivations -- WSs: the Evolution of
Middleware and EAI Technologies (1)

internal infrastructure

supplier

warehouse

middleware for
supplier-customer interaction

middleware for
supplier-warehouse interaction

middleware for
supplier-XYZ
interaction

m
id

d
le

w
a
re

 f
o
r

in
te

g
ra

ti
n
g

th
e
 m

id
d
le

w
a
re

customer

another party
(XYZ)

yet another party (ABC)

middleware for
supplier-ABC
interaction

supplier’s
adapters

supplier’s
adapters

supplier’s
adapters

[from ACKM04]

internal service

middleware

client

internal service

Web service

Web service
Company A
(provider)

internal service

middleware

internal service

Company B
(client)

Motivations -- WSs: the Evolution of
Middleware and EAI Technologies (2)

wide area network
(Internet)

[from ACKM04]

Seminars in Software Engineering – June 2008

Motivations -- (WS-based) Business-
to-Business Integration

internal infrastructure

supplier

customer

warehouse

internal infrastructure

internal infrastructure

internal

procurement

requests

Web service

Web service

Web service

Interactions based on

protocols redesigned for

peer to peer and B2B

settings

Standardized languages and

protocols, eliminating the need for

many different middleware

infrastructures (need only the Web

services middleware)

Internal functionality

made available as a

service
[from ACKM04]

Seminars in Software Engineering – June 2008

Motivations -- When Web Services
Should Be Applied ?

• When it is no possible to easily manage deployment so that
all requesters and providers are upgraded at once

• When components of the distributed system run on different
platforms and vendor products

• When an existing application needs to be exposed over a
network for use by unknown requesters

» Web Services Architecture,
W3C Working Group Note, 11 Feb. 2004, http://www.w3.org/
TR/ws-arch/

Seminars in Software Engineering – June 2008

OVERVIEW

10

internal service

logic
internal service

logic

Company A

(provider)

Web service interface

Logic for accessing to

internal systems

internal architecture &

middleware

Web service

client

Company D

(client)

Web serviceWeb service

Web service

Web service

Web service

external architecture &

middleware

Company B

(provider)

Company C

(provider)

Two Architectures
(and Middlewares)

[from ACKM04]

The Internal
Architecture

The External
Architecture

The External
Middleware

Seminars in Software Engineering – June 2008

XML BASICS

15

16

Extensible Markup Language

Extensible Markup Language (XML):

• Describes data objects called XML documents

• Is composed of markup language for structuring

data

• Supports custom tags for definition, transmission,

validation, and interpretation of data

• Conforms to Standard Generalized Markup

Language (SGML)

• Has become a standard way to

17

<?xml version="1.0"?>
<employees>
 <employee>
 <employee_id>120</employee_id>
 <last_name>Weiss</last_name>
 <salary>8000</salary>
 </employee>
 <employee>
 <employee_id>121</employee_id>
 <last_name>Fripp</last_name>
 <salary>8200</salary>
 </employee>
</employees>

A Simple XML Page: Example

18

XML Document Structure

An XML document contains the following parts:

1. Prologue

2. Root element

3. Epilogue

<?xml version="1.0" encoding="WINDOWS-1252"?>
<!–- this is a comment -->
<employees>
 ...
</employees>

<?gifPlayer size="100,300" ?>

1

2

3

19

The XML Declaration

XML documents must start with an XML declaration.

The XML declaration:

• Looks like a processing instruction with the xml

name. For example:

• Must contain the version attribute

• May (optionally) include:

– The encoding attribute

– The standalone attribute

• Is optional in XML 1.0, but mandatory in XML 1.1

<?xml version="1.0" encoding="WINDOWS-1252"?>
<document-root>
...
</document-root>

20

Components of an XML Document

XML documents comprise storage units containing:

• Parsed data, including the:
– Markup (elements, attributes, and entities) used to

describe the data they contain
– Character data described by markup

• Unparsed data, such as textual or binary
information (graphic and sound data), is left as
entered.

<?xml version="1.0" encoding="WINDOWS-1252"?>
<employees>
 <employee id="100">
 <name>Rachael O'Leary</name>
 </employee>
</employees>

<![CDATA[...unparsed data...]]>

21

• An XML element has:

– A start tag, end tag, and optional data content

– Case-sensitive tags (start and end tags must match)

• Empty elements:

– Do not contain any data

– May appear as a single tag

XML Elements

<employee>

</employee>

<name>Steven King</name>

Start tag

End tag

Data
content

Element

Tag name

Tag name

<initials></initial>

<initials/>

22

Markup Rules for Elements

• There is one root element, sometimes called the
top-level or document element.

• All elements:

– Must have matching start and end tags, or be a
self-closing tag (that is, an empty element)

– Can contain nested elements such that their tags do
not overlap

– Have case-sensitive tag names subject to naming
conventions (that is, they must start with a letter,
contain no spaces, and not start with the letters
xml)

– May contain white space (spaces, tabs, new lines,
and combinations of them) that is considered part
of the element data content

23

XML Attributes

An XML attribute is a name-value pair that:

• Is specified in the start tag after the tag name

• Has a case-sensitive name

• Has a case-sensitive value that must be enclosed

in matching single or double quotation marks

• Provides additional information about the XML

document or XML elements

<?xml version="1.0" encoding="WINDOWS-1252"?>
<employees>
 <employee id="100" name='Rachael O'Leary'>
 <salary>1000</salary>
 </employee>
</employees>

24

Using Elements Versus Attributes

<?xml version="1.0"?>
<employees>
 <employee id="100" last_name="King"
 salary="24000">
 <job>President</job>
 </employee>
</employees>

2

<?xml version="1.0"?>
<employees>
 <employee>
 <id>100</id>
 <last_name>King</last_name>
 <salary>24000</salary>
 </employee>
</employees>

1 Elements

Attributes

25

XML Entities

An XML entity:

• Is a unit of data storage

• Is identified by a case-sensitive name

• Is used as replacement text (substitute) when

referencing its name between an ampersand (&),

and a semicolon (;)

• Has predefined names for special XML characters:

– < for less than (<), and > for greater than (>)

– & for ampersand (&)

– " for double quotation mark (")

– ' for single quotation mark (')

<comment>Salaries must not be < 1000</comment>

26

XML Comments

XML comments:

• Start with <!--

• End with -->

• May appear anywhere in the character data of a

document, and before the root element

• Are not elements, and can occupy multiple lines

• May not appear inside a tag or another comment

<?xml version="1.0" encoding="WINDOWS-1252"?>
<!–- Comment: This document has information about
 employees in the company -->
<employees>
 <name>Steven King</name> <!-- Full name -->
</employees>

27

A Well-Formed XML Document

Every XML document must be well-formed, such that:

• An XML document must have one root element

• An element must have matching start and end tag

names, unless they are empty elements

• Elements can be nested, but cannot overlap

• All attribute values must be quoted

• Attribute names must be unique in the start tag of

an element

• Comments and processing instructions do not

appear inside tags

• The < or & special characters cannot appear in the

character data of an element or attribute value

28

Comparing XML and HTML

• XML

– Is a markup language for describing data

– Contains user-defined markup elements

– Is extensible

– Is displayed as a document list in a Web browser

– Conforms to rules for a well-formed document

• HTML

– Is a markup language for formatting data in a Web
browser

– Contains predefined markup tags

– Is not extensible

– Does not conform to well-formed document rules

29

XML Development

XML documents can be developed by using:

• A simple text editor, such as Notepad

• A specialized XML Editor, such as XMLSpy

30

What Is a Document Type Definition?

A document type definition (DTD):

• Is the grammar for an XML document

• Contains the definitions of

– Elements

– Attributes

– Entities

– Notations

• Contains specific instructions that the XML parser

interprets to check the document validity

• May be stored in a separate file (external)

• May be included within the document (internal)

31

Why Validate an XML Document

• Well-formed documents satisfy XML syntax rules,

and not the business requirements of content and

structure.

• Business rules often require validation of the

content and structure of a document.

• XML documents must satisfy structural

requirements imposed by the business model.

• A valid XML document can be reliably processed

by XML applications.

• Validations can be performed by using a DTD or an

32

General DTD Rules

A DTD:

• Must provide a declaration for items used in an

XML document, such as:

– Elements

– Attributes

– Entities

• Is case-sensitive, but spacing and indentation are

not significant

• May use XML comment syntax for documentation,

but comments cannot appear inside declarations

33

The Contents of a DTD

A DTD contains declarations (that use the syntax

shown) for:

• Elements:

• Attributes:

• Entities:

• Notations:

<!ELEMENT element-name content-model>

<!ATTLIST element-name attrib-name type default>

<!ENTITY entity-name "replacement text">

<!NOTATION notation_name SYSTEM "text">

34

Simple DTD Declaration: Example

Example of a simple DTD with element declarations:

A valid XML document based on the DTD:

Note: All child elements must be defined.

<!ELEMENT employees (employee)>
<!ELEMENT employee (name)>
<!ELEMENT name (#PCDATA)>

<?xml version="1.0"?>
<employees>
 <employee>
 <name>Steven King</name>
 </employee>
</employees>

35

Referencing the DTD

The XML document references the DTD:

• After the XML declaration and before the root, by
using:

• Externally with the SYSTEM or PUBLIC keywords:

• Internally in the <!DOCTYPE root [...]> entry:

Note: Use the root element name after <!DOCTYPE.

<!DOCTYPE employees [...]>

<!DOCTYPE employees SYSTEM "employees.dtd">

<!DOCTYPE employees PUBLIC "-//formal-public-ID">

<?xml version="1.0"?>
<!DOCTYPE employees [
 <!ELEMENT employees (#PCDATA)>
]>
<employees>Employee Data</employees>

36

Element Declarations

• Element declaration syntax:

• Four kinds of content models:

<!ELEMENT element-name content-model>

<!ELEMENT job EMPTY>

<!ELEMENT employees (employee)>
<!ELEMENT employee (employee_id,last_name,job_id)>
<!ELEMENT job_id (manager | worker)>

<!ELEMENT last_name (#PCDATA)>
<!ELEMENT hire_date (date| (day,month,year))>

<!ELEMENT employee_id ANY>

1

2

3

4

<!-- Empty -->

<!–- Elements: single, ordered list, or choice -->

<!-- Mixed -->

<!–- Any -->

37

Attribute Declarations

• The syntax for declaring an attribute is:

• Attribute declaration requires:

– An element name

– An attribute name

– An attribute type, specified as:

 CDATA, enumerated, ENTITY, ENTITIES, ID, IDREF,
IDREFS, NMTOKEN, NMTOKENS, and NOTATION

– An attribute default, specified as:

 #IMPLIED, #REQUIRED, #FIXED, or a literal value

• Example:

<!ATTLIST element-name attrib-name type default>

<!ELEMENT employee (employee_id, last_name)>
<!ATTLIST employee manager_id CDATA #IMPLIED>

38

CDATA and Enumerated Attribute Types

• CDATA: For character data values

• Enumerated: For a choice from a list of values

<!ELEMENT employee (employee_id, last_name)>
<!ATTLIST employee manager_id CDATA #IMPLIED>

<!ELEMENT employee (employee_id, last_name)>
<!ATTLIST employee gender (male|female) #IMPLIED>

<employee manager_id="102">
 <employee_id>104</employee_id>
 <last_name>Ernst</last_name>
</employee>

<employee gender="male">
 <employee_id>104</employee_id>
 <last_name>Ernst</last_name>
</employee>

<!-- XML -->

<!-- XML -->

39

NOTATION Declaration and Attribute Type

• Declaring a NOTATION:

• The NOTATION attribute type represents a name of
a NOTATION declared in the DTD:

<?xml version="1.0"?>
<!DOCTYPE photos [
<!ELEMENT photos (image+)>
<!ELEMENT image EMPTY>
<!NOTATION gif SYSTEM "image/gif">
<!NOTATION jpeg SYSTEM "image/jpeg">
<!ATTLIST image
 source CDATA #REQUIRED
 type NOTATION (gif | jpeg) #REQUIRED>
]>
<photos>
 <image source="myphoto.gif" type="gif"/>
 <image source="mypet.jpg" type="jpeg"/>
</photos>

<!NOTATION notation_name SYSTEM "text">

40

What Is an XML Namespace?

An XML namespace:

• Is identified by a case-sensitive Internationalized

Resource Identifier (IRI) reference (URL or URN)

• Provides universally unique names for a collection

of names (elements and attributes)

<employee> <departments>

<name>

<name>

<location_id>

department_id

employee_id

<salary>

http://hr.com/employees urn:hr:departments

41

Declaring XML Namespaces

Declare an XML namespace:

• With the xmlns attribute in an element start tag:

– Assigned an IRI (URL, URI, or URN) string value

– Provided with an optional namespace prefix

• With a namespace prefix after xmlns: to form

qualified element names:

• Without a prefix to form a “default namespace”:

<department xmlns="http://www.hr.com/departments">
...
</department>

<dept:department
 xmlns:dept="urn:hr:department-ns">
...
</dept:department>

42

XML Namespace Prefixes

A namespace prefix:

• May contain any XML character except a colon

• Can be declared multiple times as attributes of a

single element, each with different names whose

values can be the same or a different string

• Can be overridden in a child element by setting the

value to a different string. For example:

<?xml version="1.0"?>
<emp:employee xmlns:emp="urn:hr:employee-ns">
 <emp:last_name>King</emp:last_name>
 <emp:address xmlns:emp="urn:hr:address-ns">
 500 Oracle Parkway
 </emp:address>
</emp:employee>

Seminars in Software Engineering – June 2008

WEB SERVICE
INFRASTRUCTURE

43

44

service providerservice requestor

application object
(client)

application object
(service provider)

SOAP-based
middleware

SOAP-based
middleware

SOAP messages exchanged
on top of, HTTP, SMTP, or
other transport

converts procedure calls to/from XML
messages sent through HTTP or other
protocols.

A Minimalist Infrastructure for Web Service

45

service providerservice requestor

application object
(client)

application object
(service provider)

stub skeleton

WSDL of service
provider

WSDL compiler
(server side)

WSDL compiler
(client side)

 <operation name="orderGoods">
 <input message = "OrderMsg"/>
</operation>

SOAP-based
middleware

SOAP-based
middleware

SOAP messages

From Interfaces to Stub/Skeleton

46

Registry

47

SOAP envelope

SOAP header

header block

SOAP body

body block

SOAP (1)

48

<ProductItem>

 <name>…</name>

 <type>…</type>

 <make>…</make>

</ProductItem>

<ProductItem

 name=“…”

 type=“…”

 make=“…”

/>

<ProductItem name=“…”

 <type>…</type>

 <make>…</make>

</ProductItem>

SOAP (2)

Different
encoding styles

RPC with SOAP

The Simplest SOAP Middleware

Seminars in Software Engineering – June 2008

Web Service Definition Language
(WS-DL)

• WS-DL (v2.0) provides a framework for defining

1. Interface: operations and input/output formal parameters

2. Access specification: protocol bindings (e.g., SOAP)

3. Endpoint: the location of service

provide

Service

1..n

implement
1

Binding

Endpoint

specify (how to invoke)

1..n

support

Interface

Message

consist ofextend

consist of

Part

1..n

1..2

1..n

0..n
Operation

Service implementation
(concrete definition)

Service interface
(abstract definition)

Seminars in Software Engineering – June 2008

Message Exchange Patterns (1)

Client Service

input

in-only (no faults)

Client Service
output

out-only (no faults)

Client Service

input

robust in-only (message triggers fault)

fault

Client Service
output

robust out-only (message triggers fault)

fault

Seminars in Software Engineering – June 2008

Message Exchange Patterns (2)

in-out (fault replaces message)

Client Service

(1) input

(2) output

(2’) fault

Client Service

(2) input

(1) output

(2’) fault

out-in (fault replaces message) out-optional-in

(message triggers fault)

Client Service

(?) input

output

fault

in-optional-out

(message triggers fault)

Client Service

input

(?) output

fault

UDDI Data Structures

<tModel tModelKey=”uddi:uddi.org:v3_publication”>
 <name>uddi-org:publication_v3</name>
 <description>UDDI Publication API V3.0</description>
 <overviewDoc>
 <overviewURL useType=”wsdlInterface”>
 http://uddi.org/wsdl/uddi_api_v3_binding.wsdl#UDDI_Publication_SoapBinding
 </overviewURL>
 </overviewDoc>
 <overviewDoc>
 <overviewURL useType=”text”>
 http://uddi.org/pubs/uddi_v3.htm#PubV3
 </overviewURL>
 </overviewDoc>

 <categoryBag>
 <keyedReference keyName=”uddi-org:types:wsdl”
 keyValue="wsdlSpec"
 tModelKey="uddi:uddi.org:categorization:types”/>
 <keyedReference keyName=”uddi-org:types:soap”
 keyValue="soapSpec"
 tModelKey="uddi:uddi.org:categorization:types”/>
 <keyedReference keyName=”uddi-org:types:xml”
 keyValue="xmlSpec"
 tModelKey="uddi:uddi.org:categorization:types”/>
 <keyedReference keyName=”uddi-org:types:specification”
 keyValue="specification"
 tModelKey="uddi:uddi.org:categorization:types”/>
 </categoryBag>

</tModel>

overviewDoc
(refer to WSDL
specs and to API
specs)

classification
information
(specifies that
this tModel is
about XML,
WSDL, and
SOAP specs)

A Registry Not
a Repository

UDDI and WSDL

<?xml version="1.0"?>
<find_tModel generic="1.0" xmlns="urn:uddi-org:api">
 <categoryBag>
 <keyedReference tModelKey="UUID:C25893AF-1977-3528-36B5-4192C2AB9E2C"
 keyName="uddi-org:types" keyValue="wsdlSpec"/>
 <keyedReference tModelKey="UUID:A15019C5-AE14-236C-331C-650857AE0221"
 keyName="book pricing"
 keyValue="36611349"/>
 </categoryBag>

UDDI
API

Putting All Together

59

Advertising and Using

Server SOAP

Web Service
“WS1”

Subject 1 Registry
UDDI

WSDL

…
…

“WS1”
…

Subject 2

Client SOAP

1. advertise

2. search

3. WSDL back:
client generation

4. interation

60

Generated through
development tools
(SDK)

Overall View

Proxy
Client

WSDL definition

Client Server HTTP

Listener SOAP
Web Service

Implementation

SOAP Library

Parser XML

SOAP Library

Parser XML

ASP.NET, servlet, CGI

EJB, CORBA object,
Java, .NET

Seminars in Software Engineering – June 2008

CONCRETE DEVELOPMENT OF
A WEB SERVICE

61

JUG Sardegna – http://www.jugsardegna.org
http://www.jugsardegna.org/vqwiki/jsp/Wiki?action=action_view_attachment
 &attachment=ArticoloAxis1PerJUG.pdf

http://www.jugsardegna.org/vqwiki/jsp/Wiki?action=action_view_attachment
 &attachment=ArticoloAxis2PerJUG.pdf

http://www.jugsardegna.org/vqwiki/jsp/Wiki?action=action_view_attachment
 &attachment=ArticoloAxis3PerJUG.pdf

Dispensa del corso di Progettazione del Software 2, nuova versione (da

pubblicare a Luglio 2008)

Seminars in Software Engineering – June 2008

AXIS Development

• Axis/Axis2 is an open-source Web Service
development and runtime environment
designed as a plug-in of common Web
container
(e.g., Apache Tomcat)

1.http://ws.apache.org/axis/ and http://
ws.apache.org/axis2/

2.webapps/axis to be installed in the servlet engine

• Basically is a servlet playing the role of
SOAP Library and SOAP Listener

62

Seminars in Software Engineering – June 2008

A Simple Service (1)

package miopackage;

public class SalutoWS {
 public String saluto(String name) {
 return "Ciao “ + name + "!";
 }
}

• The class should be put in the right Axis
directory, e.g., <TOMCAT_HOME>\webapps\axis\WEB-INF\classes
\miopackage\SalutoWS.class

• Then the container should be made aware by
deploying the class as a service

1.Deployment descriptor <file>.wsdd

63

Seminars in Software Engineering – June 2008

A Simple Service (2)

<deployment
xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">
 <service name="urn:SalutoWS" provider="java:RPC">
 <parameter name="className" value="miopackage.SalutoWS"/

>
 <parameter name="allowedMethods" value=“saluto"/>
 <parameter name="scope" value="Request"/>
 </service>
</deployment>

64

Life cycle of the service –

transient (other values

Application and Session)

Seminars in Software Engineering – June 2008

A Simple Service (3)

65

Deployment through a specific tool
• java org.apache.axis.client.AdminClient <file>.wsdd

Development of a client

Seminars in Software Engineering – June 2008

A Simple Service (3)

66

Deployment through a specific tool
• java org.apache.axis.client.AdminClient <file>.wsdd

Development of a client

A Simple Service (4)

67

A Simple Service (4)

68

A More Complex Service (1) --
Serialization and (de)serialization

69

Application of the pattern
“Data Transfer Object”

A More Complex Service (2) --
Serialization and (de)serialization

70

A More Complex Service (3) --
Serialization and (de)serialization

71

Compact form for.
Use the general form if you want to
personally manage the serialization step

A More Complex Service (4) --
Serialization and (de)serialization

72

A More Complex Service (5) --
Serialization and (de)serialization

73

A More Complex Service (6) --
Serialization and (de)serialization

74

A More Complex Service (7) --
Serialization and (de)serialization

75

Cfr. with
the wsdd

A More Complex Service (8) --
Serialization and (de)serialization

76

A More Complex Service (9) --
Serialization and (de)serialization

77

A More Complex Service (10) --
Serialization and (de)serialization

78

Services and
Application Servers (1)

79

Services and
Application Servers (2)

80

Services and
Application Servers (3)

81

To deploy
-MiaClasseHome, MiaClasse and RisultatoVO into
WEB-INF\classes

-Jboss-client.jar, jboss-j2ee.jar, etc. into WEB-
INF\lib

Seminars in Software Engineering – June 2008

COMPOSITION AND WS-BPEL

82

Seminars in Software Engineering – June 2008

Composition

• Deals with the implementation of an
application (in turn offered as a service)
whose application logic involves the
invocation of operations offered by other
services

1.The new service is the composite service

2.The invoked services are the component
services

Seminars in Software Engineering – June 2008

The Composition Engine/Middleware

development
environment

composite service
execution data

schema
definitions

run-time environment
(orchestration engine)

composition
schema
designer

Orchestration: the run-time environment
executes the composite service business logic
by invoking other services (through
appropriate protocols)

Web service composition middleware

other Web Services middleware
(e.g., SOAP invocation engine)

Supplier WS

Component
services offered
by other
providers

Warehouse WS

Accounting WSComposite service provider

Through the development environment, a composition schema is
synthesized, either manually or
(semi-)automatically. A service composition model and a language
(maybe characterized by a graphical and a textual
representation) are adopted

composition schema

[from ACKM04]

Seminars in Software Engineering – June 2008

Synthesis and Orchestration

• (Composition) Synthesis: building the specification of the
composite service (i.e., the composition schema)
1. Manual

2. Automatic
• Orchestration: the run-time management of the composite

service (invoking other services, scheduling the different steps,
etc.)

1. Composition schema is the “program” to be executed
2. Similarities with WfMSs (Workflow Management Systems)

Seminars in Software Engineering – June 2008

Composition Schema

• A composition schema specifies the
“process” of the composite service

1.The “workflow” of the service

• Different clients, by interacting with the
composite service, satisfy their specific
needs (reach their goals)

1.A specific execution of the composition
schema for a given client is an orchestration
instance

Seminars in Software Engineering – June 2008

Business Process Execution Language

for Web Services (WS-BPEL)

• Allows specification of composition
schemas of Web Services

1. Business processes as
coordinated interactions of Web
Services

2. Business processes as Web
Services

• Allows abstract and executable
processes

• Influenced from

1. Traditional flow models
2. Structured programming
3. Successor of WSFL and XLANG

Activity A

Activity B

Activity C

C
lie

n
t o

f th
e
 co

m
p
o
site

 se
rv

ice

WS-BPEL Specification

• An XML document specifying
• Roles exchanging messages with the

composite service/process
• The (WSDL) interfaces supported by such

roles

The orchestration of the
process

• Variables and
data transfer

• Exception
handling

• Correlation
information

Seminars in Software Engineering – June 2008

Process Model
(Activities)

• Primitive

1.invoke: to invoke a Web Service (in-out) operation

2.receive: to wait for a message from an external source

3.reply: to reply to an external source message

4.wait: to remain idle for a given time period

5.assign: to copy data from one variable to another

6.throw: to raise exception errors

7.empty: to do nothing

• Structured
1.sequence: sequential order

2.switch: conditional routing

3.while: loop iteration

4.pick: choices based on events

5.flow: concurrent execution (synchronized by links)

6.scope: to group activities to be treated “transactionally” (managed by the
same fault handler, within the same transactional context)

A link connects exactly one source
activity S to exactly one target
activity T; T starts only after S ends.
An activity can have multiple incoming
(possibly with join conditions) and
outgoing links. Links can be guarded

Seminars in Software Engineering – June 2008

Process Model
(Data Manipulation and Exception Handling)

• Blackboard approach

1. a blackboard of variables is associated to each orchestration
instance (i.e., a shared memory within an orchestration
instance)

2. variables are not initialized at the beginning; they are modified
(read/write) by assignments and messages

3. manipulation through XPath

• Try-catch-throw approach

1. definition of fault handlers

2. … but also event handlers and compensation handlers (for
managing transactionality as in the SAGA model)

Seminars in Software Engineering – June 2008

A (NICE) EXAMPLE

91

Seminars in Software Engineering – June 2008

From a TS to WS-BPEL
(1)

<process name = “…”>

</process>

<partnerLinks>
 …
</partnerLinks>

<flow>
 <links>
 …
 </links>
 <!-- state skel. -->
 …
 <!-- state skel. -->
</flow>

<variables>
 …
</variables>

Transition
Skeletons

State
Skeletons

WS-BPEL Specification
Skeleton

Transition
System

Mapping transitions

Mapping states

Connecting state skeletons on
the basis of the graph

Seminars in Software Engineering – June 2008

From a TS to WS-BPEL
(2)

Intuition [Baina etal CAISE04, Berardi etal VLDB-TES04]

1. Each transition corresponds to a WS-BPEL pattern consisting of (i) an
<onMessage> operation (in order to wait for the input from the client of
the composite service), (ii) followed by the effective logic of the
transition, and then (iii) a final operation for returning the result to the
client. Of course both before the effective logic and before returning
the result, messages should be copied forth and back in appropriate
variables

2. All the transitions originating from the same state are collected in a
<pick> operation, having as many <onMessage> clauses as
transitions originating from the state

3. The WS-BPEL file is built visiting all the nodes of the graph, starting
from the initial state and applying the previous rules.

 N.B.: (1) and (2) works for in-out interactions (the ones shown in the following).

Simple modifications are needed for in-only, robust-in-only and in-optional-out. The
other kinds of interactions implies a proactive behaviour of the composite service,
possibly guarded by <onAlarm> blocks.

Seminars in Software Engineering – June 2008

Transition Skeletons

<onMessage … >
 <sequence>
 <assign>

 <copy>
 <from variable="input" ... />

 <to variable=“transitionData“ ... />
 </copy>

 </assign>
 < !-- logic of the transition -->

 <assign>
 <copy>
 <from variable=“transitionData" ... />

 <to variable="output" ... />
 </copy>

 </assign>
 <reply ... />

 </sequence>
 </onMessage>

Seminars in Software Engineering – June 2008

State Skeletons

• N transitions from state Si are mapped
onto:

<pick name = “Si”>
 <!-- transition #1 -->
 <onMessage … >

 <!-- transition skeleton -->

 </onMessage>
 … … …

 <!-- transition #N -->
 <onMessage … >

 <!-- transition skeleton -->

 </onMessage>

</pick>

Seminars in Software Engineering – June 2008

Mapping the TS

• All the <pick> blocks are enclosed in a

surrounding <flow>; the dependencies are

modeled as <link>s

1.<link>s are controlled by specific variables Si-

to-Sj that are set to TRUE iff the transition Si ! Sj

is executed

2.Each state skeleton has many outgoing <link>s as

states connected in output, each going to the
appropriate <pick> block

3.Transitions going back into the initial state should not
be considered, as they can be represented as the
start of a new instance

Seminars in Software Engineering – June 2008

An Example (1)

 <partnerLinks>

 <!-- The “client” role represents the requester of this composite service -->

 <partnerLink name="client"

 partnerLinkType="tns:Transition"

 myRole="MP3ServiceTypeProvider"

 partnerRole="MP3ServiceTypeRequester"/>

 <partnerLink name="service"

 partnerLinkType="nws:MP3CompositeService"

 myRole="MP3ServiceTypeRequester"

 partnerRole="MP3ServiceTypeProvider"/>

 </partnerLinks>

st

sa

l

l

start

2

1

Seminars in Software Engineering – June 2008

An Example (2)

<variables>
 <variable name="input" messageType="tns:listen_request"/>
 <variable name="output“ messageType="tns:listen_response"/>
 <variable name=“dataIn" messageType="nws:listen_request"/>

 <variable name=“dataOut" messageType="nws:listen_response"/>
</variables>

 <pick>
 <onMessage partnerLink="client"

 portType="tns:MP3ServiceType"
 operation="listen"
 variable="input">
 <sequence>
 <assign>

 <copy>
 <from variable="input" part="selectedSong"/>
 <to variable=“dataIn" part="selectedSong"/>
 </copy>
 </assign>

 … …
 <assign>
 <copy>
 <from variable=“dataOut" part="MP3FileURL"/>
 <to variable="output" part="MP3FileURL"/>

 </copy>
 </assign>
 <reply name="replyOutput"
 partnerLink="client"
 portType="tns:MP3ServiceType"

 operation="listen"
 variable="output"/>
 </sequence>
 </onMessage>
 … …

 </pick>

Seminars in Software Engineering – June 2008

An Example (3)

<process suppressJoinFailure = “no”>

 <flow>
 <links>
 <link name=“start-to-1”/>
 <link name=“start-to-2”/>
 </links>

 <pick createInstance = “yes”>
 <onMessage=“sa">
 <sequence>
 <copy>...</copy>
 … …
 <copy>...</copy>
 <reply ... />

 </sequence>
 </onMessage>
 <onMessage=“st">
 <sequence>
 <copy>...</copy>
 … …
 <copy>...</copy>
 <reply ... />
 </sequence>
 </onMessage>
 <source linkName=“start-to-1” transitionCondition = “bpws:getVariableData(‘start-to-1’) = ‘TRUE’ “ />

 <source linkName=“start-to-2” transitionCondition = “bpws:getVariableData(‘start-to-2’) = ‘TRUE’ “ />
 </pick>

The <sa> transition skeleton should
set variables:
start-to-1 = TRUE

start-to-2 = FALSE

The <st> transition skeleton should
set variables:
start-to-1 = FALSE

start-to-2 = TRUE

A new instance is created in the initial
state. This resolve also the presence of
the cycles without the need of
enclosing <while>

Seminars in Software Engineering – June 2008

An Example (4)

 <pick>
 <onMessage="l">
 <sequence>

 <copy>...</copy>
 … …
 <copy>...</copy>
 <reply ... />
 </sequence>
 </onMessage>
 <target linkName=“start-to-1” />

 </pick>
 <pick>
 <onMessage="l">
 <sequence>
 <copy>...</copy>
 … …

 <copy>...</copy>
 <reply ... />
 </sequence>
 </onMessage>
 <target linkName=“start-to-2” />
 </pick>

</process>

Seminars in Software Engineering – June 2008

WSCE
A WEB SERVICE (AUTOMATIC)

COMPOSITION TOOL

101

Seminars in Software Engineering – June 2008

Composizione Automatica

(1)

Client

Chiede un servizio alla community
specificato in termini di !

Interagisce con un servizio virtuale

Comunità di servizi:
1. ! insieme finito di azioni atomiche
2. Insieme di servizi specificato in termini di !

Servizi

Servizi che delegano proprie azioni ad altri servizi (Servizi Composti)

Servizi che non delegano proprie azioni ad altri servizi (Servizi Semplici)

Esporta le proprie azioni in termini di !

S1

COMMUNITY

Sn

Target

La community componendo
i vari servizi realizza un servizio
VIRTUALE coerente con il target

Seminars in Software Engineering – June 2008

Composizione Automatica (2)

Schema di un servizio:
Modelliamo il servizio con un transition system

Composizione basata su il BEHAVIOR di un servizio

Azione espressa in termini di !

Lo schema di un servizio :

• Permette di capire l’ordine con cui le
 azioni devo essere eseguite;

Stato iniziale e finale del servizio

Stato transiente del servizio

Estrazione dell’Orchestrator
Generator

dalla simulazione massima

Costruzione del community TS, come prodotto asincrono dei TS della community

Verifica della relazione di simulazione tra il community TS e il TS del target

TEOREMA
Esiste una relazione di simulazione tra il
community TS e il target TS se e solo se

esiste una composizione del
target rispetto agli available

community

target

Architettura Astratta del Tool

Rappresentazione dei servizi
• Rappresentazione XML
• Rappresentazione Java

Motore di composizione
• TLV

Orchestratore

Realizzazione del target

A TS is composed by: STATE and TRANSITION

A STATE has a name(primary key) and a tipology (initial-final, transient, final)

A TRANSITION has an action, and exist iff there are a source and a target state

STATE

name Tipology{initial-final,transient,final}

TRANSITION

action

source

target
1

1

1. easy to write for the user;
2. easiness to check the state of the transition system;
3. easiness to check the transitions;
4. compact: it has to show only the important things.

STATE

name Tipology{initial-final,transient,final}

TRANSITION

action

source

target
1

1

We navigate the schema from a state, through relation source, to its transitions, and

from the transitions , through relation target, to the target state reached by such transition.

REQUIREMENTS:

1. Natural view of the TS (1,2,3)
2. restrained depth of the tree of the document (4)

Web Service Transition System
Language – XML Representation of
the Behaviors

TS

S0
S1

input_french

S1
S1 S0

input_german

output_italian<TS service=“Service1”>

 …………

</TS>

S0

a

c

b

<STATE name=“SO” tipology=“initial-final”>

<TRANSITION action=“a”>

<TRANSITION action=“b”>

<TRANSITION action=“c”>

</STATE>

S0

a

S1

S2

a

<TRANSITION action=“a”>

<TARGET state=“S1”>

<TARGET state=“S2”>

</TRANSITION>

STATE

TRANSITION

TARGET

Web Service Transition System
Language – XML Representation of
the Behaviors

TS

S0
S1

input_french

S1
S1 S0

input_german

output_italian<TS service=“Service1”>

 …………

</TS>

S0

a

c

b

<STATE name=“SO” tipology=“initial-final”>

<TRANSITION action=“a”>

<TRANSITION action=“b”>

<TRANSITION action=“c”>

</STATE>

S0

a

S1

S2

a

<TRANSITION action=“a”>

<TARGET state=“S1”>

<TARGET state=“S2”>

</TRANSITION>

STATE

TRANSITION

TARGET

Seminars in Software Engineering – June 2008

WS-TSL XSD

<xsd:complexType name="TSType">

 <xsd:sequence>

 <xsd:element name="STATE" type="ns:StateType"

 minOccurs="1" maxOccurs="unbounded">

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="service" type="xsd:string"

 use="required"/>

</xsd:complexType>

110

Seminars in Software Engineering – June 2008

WS-TSL XSD

<xsd:complexType name="StateType">

 <xsd:sequence>

 <xsd:element name="TRANSITION" type="ns:TransitionType"

 maxOccurs="unbounded">

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="name" type="xsd:string"/>

 <xsd:attribute name="tipology" type="ns:StateTipology" use="required"/
>

</xsd:complexType>

<xsd:simpleType name="StateTipology">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="initial-final"/>

 <xsd:enumeration value="final"/>

 <xsd:enumeration value="transient"/>

 </xsd:restriction>

</xsd:simpleType>

111

Seminars in Software Engineering – June 2008

WS-TSL XSD

<xsd:complexType name="TransitionType">

 <xsd:sequence>

 <xsd:element name="TARGET" type="ns:Target"

 minOccurs="1" maxOccurs="unbounded">

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="action" type="xsd:string"

 use="required"/>

</xsd:complexType>

<xsd:complexType name="Target">

 <xsd:attribute name="state" type="xsd:string"

 use="required"/>

</xsd:complexType>

112

Seminars in Software Engineering – June 2008

WS-TSL XSD

<xsd:element name="TS" type="ns:TSType">

 <xsd:unique name="uniqueState">

 <xsd:selector xpath="./STATE" />

 <xsd:field xpath="@name"></xsd:field>

 </xsd:unique>

 <xsd:key name="stateKey">

 <xsd:selector xpath="./STATE" />

 <xsd:field xpath="@name"></xsd:field>

 </xsd:key>

 <xsd:keyref name="transitionTarget" refer="ns:stateKey">

 <xsd:selector xpath="./STATE/TRANSITION/TARGET" />

 <xsd:field xpath="@state"></xsd:field>

 </xsd:keyref>

</xsd:element>

113

<TS
 xmlns='http://www.dis.uniroma1.it/WS-TSL'
 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
 xsi:schemaLocation='http://www.dis.uniroma1.it/WS-TSL

 service="SearchByAuthorND">

 <STATE name="S0" tipology="initial-final">
 <TRANSITION action="SearchByAuthor">
 <TARGET state="S1"></TARGET>
 <TARGET state="S0"></TARGET>
 </TRANSITION>
 </STATE>

 <STATE name="S1" tipology="transient">
 <TRANSITION action="Listen">
 <TARGET state="S0"></TARGET>
 </TRANSITION>
 </STATE>

</TS>

Example (1)

<TS
 xmlns='http://www.dis.uniroma1.it/WS-TSL'
 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
 xsi:schemaLocation='http://www.dis.uniroma1.it/WS-TSL

 service="SearchByTitleND">

 <STATE name="S0" tipology="initial-final">
 <TRANSITION action="SearchByTitle">
 <TARGET state="S1"></TARGET>
 <TARGET state="S0"></TARGET>
 </TRANSITION>
 </STATE>

 <STATE name="S1" tipology="transient">
 <TRANSITION action="Listen">
 <TARGET state="S0"></TARGET>
 </TRANSITION>
 </STATE>

</TS>

Example (2)

<TS
 xmlns='http://www.dis.uniroma1.it/WS-TSL'
 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
 xsi:schemaLocation='http://www.dis.uniroma1.it/WS-TSL

 service=“Login">

 <STATE name="S0" tipology="initial-final">
 <TRANSITION action=“doLogin">
 <TARGET state="S1"></TARGET>
 </TRANSITION>
 </STATE>

 <STATE name="S1" tipology="transient“/>

</TS>

Example (3)

<TS
 xmlns='http://www.dis.uniroma1.it/WS-TSL'
 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
 xsi:schemaLocation='http://www.dis.uniroma1.it/WS-TSL

 service=“ListenService">

 <STATE name="S0" tipology="initial-final">
 <TRANSITION action=“Listen">
 <TARGET state="S0"></TARGET>
 </TRANSITION>
 </STATE>

</TS>

Example (4)

<TS
 xmlns='http://www.dis.uniroma1.it/WS-TSL'
 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
 xsi:schemaLocation='http://www.dis.uniroma1.it/WS-TSL

 service=“Test10">

 <STATE name="S0" tipology=“initial-final">
 <TRANSITION action=“DoLogin">
 <TARGET state="S1"></TARGET>
 </TRANSITION>
 </STATE>

 <STATE name="S1" tipology=“final">
 <TRANSITION action="SearchByAuthor">
 <TARGET state="S2"></TARGET>
 </TRANSITION>
 <TRANSITION action="SearchByTitle">
 <TARGET state="S2"></TARGET>
 </TRANSITION>
 </STATE>

 <STATE name="S2" tipology="transient">
 <TRANSITION action="Listen">
 <TARGET state="S1"></TARGET>
 </TRANSITION>
 </STATE>

</TS>

Example (5)

The domain

Models the TS

Java Details

From JGraphT project: it models
a directed graph that allows
cycles and multiple edges

between vertex

Useful methods to use a directed
Multigraph as a TS

From WSTSL to Java

Parses the states of
The TS The parsing is performed with

SAX

The need of a preparsing is
due to the nature of WSTSL
documents

Parses the TS

Details of the Engine

It wraps TLV

Dall’Orchestrator Generator estraiamo una composizione e la inseriamo in una tabella
relazionale per essere acceduta dall’orchestratore

WSTSL

SMV

TLV

Target

WSDL

Il target è il Web service d’interfaccia con il client

OG

Composition
DB

Orchestratore

Composition
DB

Targetclient

S1

COMMUNITY

Sn

1. Il client invoca un’operazione sul target
2. Il target invoca l’operazione sull’orchestratore
3. L’orchestratore chiede lo stato agli available
4. Costruisce la query per sapere chi deve effettuare
 l’operazione
5. Invoca l’available
6. Restituisce l’output al target e da questi al client

act

act, composizione

“S0”

[T=2,S1=0,…,Sn=3]

j
act

result

result

stato Sk?

il passo 3:
• Mi permette di interagire con servizi parzialmente controllabili
• Necessità di aggiungere un informazione semantica ai servizi

Ogni servizio ha un’operazione aggiuntiva, getStatus, con la quale è
possibile sapere lo stato del servizio in un certo istante t

Orchestratore

Seminars in Software Engineering – June 2008

Wrap-up

• Basic SOA needs to be modified for using
WSCE

1.Services should expose their behaviors

• WS-TLS

2.Services should offer new operations in their
interface for being observed

•getStatus()

131

