
Putting Services
into Practice

Massimo Mecella
mecella@dis.uniroma1.it

http://www.dis.uniroma1.it/
~mecella/ricevimento.htm

Elective in Software & Service - Section "Service Integration" --
Appendix to the lesson of 30 Nov. 2009

XML BASICS

2

3

Extensible Markup Language

Extensible Markup Language (XML):
• Describes data objects called XML documents
• Is composed of markup language for structuring

data
• Supports custom tags for definition, transmission,

validation, and interpretation of data
• Conforms to Standard Generalized Markup

Language (SGML)
• Has become a standard way to

4

<?xml version="1.0"?>
<employees>
 <employee>
 <employee_id>120</employee_id>
 <last_name>Weiss</last_name>
 <salary>8000</salary>
 </employee>
 <employee>
 <employee_id>121</employee_id>
 <last_name>Fripp</last_name>
 <salary>8200</salary>
 </employee>
</employees>

A Simple XML Page: Example

5

XML Document Structure

An XML document contains the following parts:
1. Prologue
2. Root element
3. Epilogue

<?xml version="1.0" encoding="WINDOWS-1252"?>
<!–- this is a comment -->
<employees>
 ...
</employees>

<?gifPlayer size="100,300" ?>

1

2

3

6

The XML Declaration

XML documents must start with an XML declaration.
The XML declaration:
• Looks like a processing instruction with the xml

name. For example:

• Must contain the version attribute
• May (optionally) include:

– The encoding attribute
– The standalone attribute

• Is optional in XML 1.0, but mandatory in XML 1.1

<?xml version="1.0" encoding="WINDOWS-1252"?>
<document-root>
...
</document-root>

7

Components of an XML Document

XML documents comprise storage units containing:
• Parsed data, including the:

– Markup (elements, attributes, and entities) used to
describe the data they contain

– Character data described by markup

• Unparsed data, such as textual or binary
information (graphic and sound data), is left as
entered.

<?xml version="1.0" encoding="WINDOWS-1252"?>
<employees>
 <employee id="100">
 <name>Rachael O'Leary</name>
 </employee>
</employees>

<![CDATA[...unparsed data...]]>

8

• An XML element has:
– A start tag, end tag, and optional data content
– Case-sensitive tags (start and end tags must match)

• Empty elements:
– Do not contain any data
– May appear as a single tag

XML Elements

<employee>

</employee>

<name>Steven King</name>

Start tag

End tag

Data
contentElement

Tag name

Tag name

<initials></initial>

<initials/>

9

Markup Rules for Elements

• There is one root element, sometimes called the
top-level or document element.

• All elements:
– Must have matching start and end tags, or be a

self-closing tag (that is, an empty element)
– Can contain nested elements such that their tags do

not overlap
– Have case-sensitive tag names subject to naming

conventions (that is, they must start with a letter,
contain no spaces, and not start with the letters
xml)

– May contain white space (spaces, tabs, new lines,
and combinations of them) that is considered part
of the element data content

10

XML Attributes

An XML attribute is a name-value pair that:
• Is specified in the start tag after the tag name

• Has a case-sensitive name
• Has a case-sensitive value that must be enclosed

in matching single or double quotation marks
• Provides additional information about the XML

document or XML elements

<?xml version="1.0" encoding="WINDOWS-1252"?>
<employees>
 <employee id="100" name='Rachael O'Leary'>
 <salary>1000</salary>
 </employee>
</employees>

11

Using Elements Versus Attributes

<?xml version="1.0"?>
<employees>
 <employee id="100" last_name="King"
 salary="24000">
 <job>President</job>
 </employee>
</employees>

2

<?xml version="1.0"?>
<employees>
 <employee>
 <id>100</id>
 <last_name>King</last_name>
 <salary>24000</salary>
 </employee>
</employees>

1 Elements

Attributes

12

XML Entities

An XML entity:
• Is a unit of data storage
• Is identified by a case-sensitive name
• Is used as replacement text (substitute) when

referencing its name between an ampersand (&),
and a semicolon (;)

• Has predefined names for special XML characters:
– < for less than (<), and > for greater than (>)
– & for ampersand (&)
– " for double quotation mark (")
– ' for single quotation mark (')

<comment>Salaries must not be < 1000</comment>

13

XML Comments

XML comments:
• Start with <!--
• End with -->
• May appear anywhere in the character data of a

document, and before the root element
• Are not elements, and can occupy multiple lines
• May not appear inside a tag or another comment
<?xml version="1.0" encoding="WINDOWS-1252"?>
<!–- Comment: This document has information about
 employees in the company -->
<employees>
 <name>Steven King</name> <!-- Full name -->
</employees>

14

A Well-Formed XML Document

Every XML document must be well-formed, such that:
• An XML document must have one root element
• An element must have matching start and end tag

names, unless they are empty elements
• Elements can be nested, but cannot overlap
• All attribute values must be quoted
• Attribute names must be unique in the start tag of

an element
• Comments and processing instructions do not

appear inside tags
• The < or & special characters cannot appear in the

character data of an element or attribute value

15

Comparing XML and HTML

• XML
– Is a markup language for describing data
– Contains user-defined markup elements
– Is extensible
– Is displayed as a document list in a Web browser
– Conforms to rules for a well-formed document

• HTML
– Is a markup language for formatting data in a Web

browser
– Contains predefined markup tags
– Is not extensible
– Does not conform to well-formed document rules

16

XML Development

XML documents can be developed by using:
• A simple text editor, such as Notepad
• A specialized XML Editor, such as XMLSpy

17

What Is a Document Type Definition?

A document type definition (DTD):
• Is the grammar for an XML document
• Contains the definitions of

– Elements
– Attributes
– Entities
– Notations

• Contains specific instructions that the XML parser
interprets to check the document validity

• May be stored in a separate file (external)
• May be included within the document (internal)

18

Why Validate an XML Document

• Well-formed documents satisfy XML syntax rules,
and not the business requirements of content and
structure.

• Business rules often require validation of the
content and structure of a document.

• XML documents must satisfy structural
requirements imposed by the business model.

• A valid XML document can be reliably processed
by XML applications.

• Validations can be performed by using a DTD or an

19

General DTD Rules

A DTD:
• Must provide a declaration for items used in an

XML document, such as:
– Elements
– Attributes
– Entities

• Is case-sensitive, but spacing and indentation are
not significant

• May use XML comment syntax for documentation,
but comments cannot appear inside declarations

20

The Contents of a DTD

A DTD contains declarations (that use the syntax
shown) for:
• Elements:

• Attributes:

• Entities:

• Notations:

<!ELEMENT element-name content-model>

<!ATTLIST element-name attrib-name type default>

<!ENTITY entity-name "replacement text">

<!NOTATION notation_name SYSTEM "text">

21

Simple DTD Declaration: Example

Example of a simple DTD with element declarations:

A valid XML document based on the DTD:

Note: All child elements must be defined.

<!ELEMENT employees (employee)>
<!ELEMENT employee (name)>
<!ELEMENT name (#PCDATA)>

<?xml version="1.0"?>
<employees>
 <employee>
 <name>Steven King</name>
 </employee>
</employees>

22

Referencing the DTD

The XML document references the DTD:
• After the XML declaration and before the root, by

using:

• Externally with the SYSTEM or PUBLIC keywords:

• Internally in the <!DOCTYPE root [...]> entry:

Note: Use the root element name after <!DOCTYPE.

<!DOCTYPE employees [...]>

<!DOCTYPE employees SYSTEM "employees.dtd">

<!DOCTYPE employees PUBLIC "-//formal-public-ID">

<?xml version="1.0"?>
<!DOCTYPE employees [
 <!ELEMENT employees (#PCDATA)>
]>
<employees>Employee Data</employees>

23

Element Declarations

• Element declaration syntax:

• Four kinds of content models:
<!ELEMENT element-name content-model>

<!ELEMENT job EMPTY>

<!ELEMENT employees (employee)>
<!ELEMENT employee (employee_id,last_name,job_id)>
<!ELEMENT job_id (manager | worker)>

<!ELEMENT last_name (#PCDATA)>
<!ELEMENT hire_date (date| (day,month,year))>

<!ELEMENT employee_id ANY>

1

2

3

4

<!-- Empty -->

<!–- Elements: single, ordered list, or choice -->

<!-- Mixed -->

<!–- Any -->

24

Attribute Declarations

• The syntax for declaring an attribute is:

• Attribute declaration requires:
– An element name
– An attribute name
– An attribute type, specified as:
 CDATA, enumerated, ENTITY, ENTITIES, ID, IDREF,

IDREFS, NMTOKEN, NMTOKENS, and NOTATION
– An attribute default, specified as:
 #IMPLIED, #REQUIRED, #FIXED, or a literal value

• Example:

<!ATTLIST element-name attrib-name type default>

<!ELEMENT employee (employee_id, last_name)>
<!ATTLIST employee manager_id CDATA #IMPLIED>

25

CDATA and Enumerated Attribute Types

• CDATA: For character data values

• Enumerated: For a choice from a list of values

<!ELEMENT employee (employee_id, last_name)>
<!ATTLIST employee manager_id CDATA #IMPLIED>

<!ELEMENT employee (employee_id, last_name)>
<!ATTLIST employee gender (male|female) #IMPLIED>

<employee manager_id="102">
 <employee_id>104</employee_id>
 <last_name>Ernst</last_name>
</employee>

<employee gender="male">
 <employee_id>104</employee_id>
 <last_name>Ernst</last_name>
</employee>

<!-- XML -->

<!-- XML -->

26

NOTATION Declaration and Attribute Type

• Declaring a NOTATION:

• The NOTATION attribute type represents a name of
a NOTATION declared in the DTD:

<?xml version="1.0"?>
<!DOCTYPE photos [
<!ELEMENT photos (image+)>
<!ELEMENT image EMPTY>
<!NOTATION gif SYSTEM "image/gif">
<!NOTATION jpeg SYSTEM "image/jpeg">
<!ATTLIST image
 source CDATA #REQUIRED
 type NOTATION (gif | jpeg) #REQUIRED>
]>
<photos>
 <image source="myphoto.gif" type="gif"/>
 <image source="mypet.jpg" type="jpeg"/>
</photos>

<!NOTATION notation_name SYSTEM "text">

27

What Is an XML Namespace?

An XML namespace:
• Is identified by a case-sensitive Internationalized

Resource Identifier (IRI) reference (URL or URN)
• Provides universally unique names for a collection

of names (elements and attributes)

<employee> <departments>

<name>

<name>

<location_id>

department_id

employee_id

<salary>

http://hr.com/employees urn:hr:departments

28

Declaring XML Namespaces

Declare an XML namespace:
• With the xmlns attribute in an element start tag:

– Assigned an IRI (URL, URI, or URN) string value
– Provided with an optional namespace prefix

• With a namespace prefix after xmlns: to form
qualified element names:

• Without a prefix to form a “default namespace”:
<department xmlns="http://www.hr.com/departments">
...
</department>

<dept:department
 xmlns:dept="urn:hr:department-ns">
...
</dept:department>

29

XML Namespace Prefixes

A namespace prefix:
• May contain any XML character except a colon
• Can be declared multiple times as attributes of a

single element, each with different names whose
values can be the same or a different string

• Can be overridden in a child element by setting the
value to a different string. For example:

<?xml version="1.0"?>
<emp:employee xmlns:emp="urn:hr:employee-ns">
 <emp:last_name>King</emp:last_name>
 <emp:address xmlns:emp="urn:hr:address-ns">
 500 Oracle Parkway
 </emp:address>
</emp:employee>

Elective in Software & Service - Section "Service Integration" --
Appendix to the lesson of 30 Nov. 2009

CONCRETE DEVELOPMENT OF
A WEB SERVICE

30

JUG Sardegna – http://www.jugsardegna.org
http://www.jugsardegna.org/vqwiki/jsp/Wiki?action=action_view_attachment
 &attachment=ArticoloAxis1PerJUG.pdf

http://www.jugsardegna.org/vqwiki/jsp/Wiki?action=action_view_attachment
 &attachment=ArticoloAxis2PerJUG.pdf

http://www.jugsardegna.org/vqwiki/jsp/Wiki?action=action_view_attachment
 &attachment=ArticoloAxis3PerJUG.pdf

Dispensa del corso di Architetture Software orientate ai Servizi

Elective in Software & Service - Section "Service Integration" --
Appendix to the lesson of 30 Nov. 2009

AXIS Development

• Axis/Axis2 is an open-source Web Service
development and runtime environment
designed as a plug-in of common Web
container
(e.g., Apache Tomcat)
– http://ws.apache.org/axis/ and http://
ws.apache.org/axis2/

– webapps/axis to be installed in the servlet engine

• Basically is a servlet playing the role of
SOAP Library and SOAP Listener

31

Elective in Software & Service - Section "Service Integration" --
Appendix to the lesson of 30 Nov. 2009

A Simple Service (1)

package miopackage;

public class SalutoWS {
 public String saluto(String name) {
 return "Ciao “ + name + "!";
 }
}

• The class should be put in the right Axis
directory, e.g., <TOMCAT_HOME>\webapps\axis\WEB-INF\classes
\miopackage\SalutoWS.class

• Then the container should be made aware by
deploying the class as a service
– Deployment descriptor <file>.wsdd

32

Elective in Software & Service - Section "Service Integration" --
Appendix to the lesson of 30 Nov. 2009

A Simple Service (2)

<deployment
xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">
 <service name="urn:SalutoWS" provider="java:RPC">
 <parameter name="className" value="miopackage.SalutoWS"/

>
 <parameter name="allowedMethods" value=“saluto"/>
 <parameter name="scope" value="Request"/>
 </service>
</deployment>

33

Life cycle of the service –
transient (other values
Application and Session)

Elective in Software & Service - Section "Service Integration" --
Appendix to the lesson of 30 Nov. 2009

A Simple Service (3)

34

Deployment through a specific tool
• java org.apache.axis.client.AdminClient <file>.wsdd

Development of a client

Elective in Software & Service - Section "Service Integration" --
Appendix to the lesson of 30 Nov. 2009

A Simple Service (3)

35

Deployment through a specific tool
• java org.apache.axis.client.AdminClient <file>.wsdd

Development of a client

Elective in Software & Service - Section "Service Integration" --
Appendix to the lesson of 30 Nov. 2009

A Simple Service (3)

35

Deployment through a specific tool
• java org.apache.axis.client.AdminClient <file>.wsdd

Development of a client

Elective in Software & Service - Section "Service Integration" --
Appendix to the lesson of 30 Nov. 2009

A Simple Service (4)

36

Elective in Software & Service - Section "Service Integration" --
Appendix to the lesson of 30 Nov. 2009

A Simple Service (4)

37

Elective in Software & Service - Section "Service Integration" --
Appendix to the lesson of 30 Nov. 2009

A Simple Service (4)

37

Elective in Software & Service - Section "Service Integration" --
Appendix to the lesson of 30 Nov. 2009

A More Complex Service (1) --
Serialization and (de)serialization

38

Application of the pattern
“Data Transfer Object”

Elective in Software & Service - Section "Service Integration" --
Appendix to the lesson of 30 Nov. 2009

A More Complex Service (2) --
Serialization and (de)serialization

39

Elective in Software & Service - Section "Service Integration" --
Appendix to the lesson of 30 Nov. 2009

A More Complex Service (3) --
Serialization and (de)serialization

40

Compact form for.
Use the general form if you want to
personally manage the serialization step

Elective in Software & Service - Section "Service Integration" --
Appendix to the lesson of 30 Nov. 2009

A More Complex Service (4) --
Serialization and (de)serialization

41

Elective in Software & Service - Section "Service Integration" --
Appendix to the lesson of 30 Nov. 2009

A More Complex Service (5) --
Serialization and (de)serialization

42

Elective in Software & Service - Section "Service Integration" --
Appendix to the lesson of 30 Nov. 2009

A More Complex Service (6) --
Serialization and (de)serialization

43

Elective in Software & Service - Section "Service Integration" --
Appendix to the lesson of 30 Nov. 2009

A More Complex Service (7) --
Serialization and (de)serialization

44

Cfr. with
the wsdd

Elective in Software & Service - Section "Service Integration" --
Appendix to the lesson of 30 Nov. 2009

A More Complex Service (8) --
Serialization and (de)serialization

45

Elective in Software & Service - Section "Service Integration" --
Appendix to the lesson of 30 Nov. 2009

A More Complex Service (9) --
Serialization and (de)serialization

46

Elective in Software & Service - Section "Service Integration" --
Appendix to the lesson of 30 Nov. 2009

A More Complex Service (10) --
Serialization and (de)serialization

47

Elective in Software & Service - Section "Service Integration" --
Appendix to the lesson of 30 Nov. 2009

Services and
Application Servers (1)

48

Elective in Software & Service - Section "Service Integration" --
Appendix to the lesson of 30 Nov. 2009

Services and
Application Servers (2)

49

Elective in Software & Service - Section "Service Integration" --
Appendix to the lesson of 30 Nov. 2009

Services and
Application Servers (3)

50

To deploy
-MiaClasseHome, MiaClasse and RisultatoVO into
WEB-INF\classes
-Jboss-client.jar, jboss-j2ee.jar, etc. into WEB-
INF\lib

