

•  A binary relation R is a bisimulation iff:

 (s,t) 2 R implies that
–  s is final iff t is final
–  for all actions a

•  if s !a s’ then 9 t’ . t !a t’ and (s’,t’)2 R
•  if t !a t’ then 9 s’ . s !a s’ and (s’,t’)2 R

•  A state s0 of transition system S is bisimilar, or simply equivalent, to a
state t0 of transition system T iff there exists a bisimulation between the
initial states s0 and t0.

•  Notably
–  bisimilarity is a bisimulation
–  bisimilarity is the largest bisimulation

Note it is a co-inductive definition!

Giuseppe De Giacomo 2 Service Integration – aa 2008/09

Algorithm ComputingBisimulation
Input: transition system TSS = < A, S, S0, δS, FS> and
 transition system TST = < A, T, T0, δT, FT>
Output: the bisimilarity relation (the largest bisimulation)

Body
 R = ;
 R’ = S £ T - {(s,t) | ¬(s 2 FS ´ t 2 FT)}
 while (R ≠ R’) {
 R := R’
 R’ := R’ - ({(s,t) | 9 s’,a. s !a s’ ^Æ ¬9 t’ . t !a t’ ^Æ (s’,t’) 2 R’ }

 {(s,t) | 9 t’,a. t !a t’ ^Æ ¬9 s’ . s !a s’ ^Æ (s’,t’) 2 R’ })
 }
 return R’

Ydob

Giuseppe De Giacomo 3 Service Integration – aa 2008/09

•  A binary relation R is a simulation iff:

 (s,t) 2 R implies that
–  s is final implies that t is final
–  for all actions a

•  if s !a s’ then 9 t’ . t !a t’ and (s’,t’)2 R

•  A state s0 of transition system S is simulated by a state t0 of transition
system T iff there exists a simulation between the initial states s0 and t0.

•  Notably
–  simulated-by is a simulation
–  simulated-by is the largest simulation

Note it is a co-inductive definition!

•  NB: A simulation is just one of the two directions of a bisimulation

Giuseppe De Giacomo 4 Service Integration – aa 2008/09

Algorithm ComputingSimulation
Input: transition system TSS = < A, S, S0, δS, FS> and
 transition system TST = < A, T, T0, δT, FT>
Output: the simulated-by relation (the largest simulation)

Body
 R = S £ T
 R’ = S £ T - {(s,t) | s 2 FS ^Æ ¬(t 2 FT)}
 while (R ≠ R’) {
 R := R’
 R’ := R’ - {(s,t) | 9 s’,a. s !a s’ ^Æ ¬9 t’ . t !a t’ ^Æ (s’,t’) 2 R’ }
 }
 return R’

Ydob

Giuseppe De Giacomo 5 Service Integration – aa 2008/09

6

c	

b	

a	

a	
 c	

b	

TS2	

a	

c	

b	

TS1	

TS2’s behavior “includes” TS1’s

Giuseppe De Giacomo 6 Service Integration – aa 2008/09

•  The potential behavior of the whole community is obtained by executing
concurrently all TSs allowing for all possible interleaving (no
synchronization).

•  Formally we need to do the asynchronous product of the TSs.

•  Let TS1,  ,TSn be the TSs of the component services. The asynchronous
product of TS1,  ,TSn, (also called the Community TS) is defined as:
TSc = < A, Sc, Sc

0, δc, Fc> where
–  A is the set of actions
–  Sc = S1 ££ Sn
–  Sc

0 = {(s0
1,, s0

n)}
–  F µ F1 ££ Fn
–  δc µ Sc £ A £ Sc is defined as follows:

 (s1, , sn) !a (s’1, , s’n) iff
1.  9 i. si !a s’i 2 δi
2.  8 j≠i. s’j = sj

Giuseppe De Giacomo 7 Service Integration – aa 2008/09

Giuseppe De Giacomo 8

a

c
TS1

b

c
TS2

b
c

TS0

a

Service Integration – aa 2008/09

Giuseppe De Giacomo 9

a

c

TSc

b
c

TS0

a

b

c

c

a

b

c

Composition exists!
Service Integration – aa 2008/09

•  Thm[IJFCS08]
A composition realizing a target service TS TSt exists if there exists a
simulation relation between the initial state st

0 of TSt and the initial state
(s1

0, .., sn
0) of the community TS TSc.

•  Notice if we take the union of all simulation relations then we get the largest
simulation relation S, still satisfying the above condition.

•  Corollary[IJFCS08]
A composition realizing a target service TS TSt exists
iff (st

0 , (s1
0, .., sn

0)) 2 S.

•  Thm[IJFCS08]
Computing the largest simulation S is polynomial in the size of the
target service TS and the size of the community TS…

•  ... hence it is EXPTIME in the size of the available services.

Giuseppe De Giacomo 10 Service Integration – aa 2008/09

Giuseppe De Giacomo 11 Service Integration – aa 2008/09

•  For generating OG we need only to compute S and then
apply the template above

•  For running an orchestrator from the OG we need to store
and access S (polynomial time, exponential space) …

•  … and compute ωr and δr at each step (polynomial time and space)

Giuseppe De Giacomo 12 Service Integration – aa 2008/09

•  A Community of services over a shared alphabet A
•  A (Virtual) Goal service over A

Community	

Goal	
 Service	

Community	

X	

Asynchronous	
 product	

Target	
 Service	

Compute	

Simula=on	
 	

(if	
 any)	

Largest	
 Simula=on	
 Rela=on	

Orchestrator	
 Generator	
 • 	
 ALL	
 orchestrators	
 	

• 	
 Just-­‐in-­‐=me	
 composi=on	

• 	
 Can	
 deal	
 with	
 failures	

Community	

Largest	
 Simula=on	
 Rela=on	

