


•  A binary relation R is a bisimulation iff: 

     (s,t) 2 R implies that  
–  s is final   iff   t is final 
–  for all actions a 

•  if s !a s’  then 9 t’ . t !a t’  and (s’,t’)2 R  
•  if t !a t’  then 9 s’ . s !a s’  and (s’,t’)2 R 

•  A state s0 of transition system S is bisimilar, or simply equivalent, to a 
state t0 of transition system T iff there exists a bisimulation between  the 
initial states s0 and t0. 

•  Notably  
–  bisimilarity is a bisimulation 
–  bisimilarity is the largest bisimulation 

Note it is a co-inductive definition! 
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Algorithm ComputingBisimulation 
Input: transition system TSS = < A, S, S0, δS, FS> and   
           transition system TST = < A, T, T0, δT, FT>  
Output: the bisimilarity relation (the largest bisimulation) 

Body 
 R = ; 
 R’ = S £ T - {(s,t) | ¬(s 2 FS  ´  t 2  FT)} 
 while (R ≠ R’) { 
  R := R’ 
  R’ := R’ - ({(s,t) | 9 s’,a. s !a s’  ^Æ ¬9 t’ . t !a t’ ^Æ (s’,t’) 2 R’ } 

                               {(s,t) | 9 t’,a. t !a t’  ^Æ ¬9 s’ . s !a s’ ^Æ (s’,t’) 2 R’ }) 
 } 
 return R’ 

Ydob 
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•  A binary relation R is a simulation iff: 

     (s,t) 2 R implies that  
–  s is final  implies that  t is final 
–  for all actions a 

•  if s !a s’  then 9 t’ . t !a t’  and (s’,t’)2 R  

•  A state s0 of transition system S is simulated by a state t0 of transition 
system T iff there exists a simulation between  the initial states s0 and t0. 

•  Notably  
–  simulated-by is a simulation 
–  simulated-by is the largest simulation 

Note it is a co-inductive definition! 

•  NB: A simulation is just one of the two directions of a bisimulation 
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Algorithm ComputingSimulation 
Input: transition system TSS = < A, S, S0, δS, FS> and   
           transition system TST = < A, T, T0, δT, FT>  
Output: the simulated-by  relation (the largest simulation) 

Body 
 R = S £ T  
 R’ = S £ T - {(s,t) | s 2 FS ^Æ ¬(t 2  FT)} 
 while (R ≠ R’) { 
  R := R’ 
  R’ := R’ - {(s,t) | 9 s’,a. s !a s’  ^Æ ¬9 t’ . t !a t’ ^Æ (s’,t’) 2 R’ } 
 } 
 return R’ 

Ydob 
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TS2’s behavior “includes” TS1’s  
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•  The potential behavior of the whole community is obtained by executing 
concurrently all TSs allowing for all possible interleaving (no 
synchronization).  

•  Formally we need to do the asynchronous product of the TSs.  

•  Let TS1,  ,TSn be the TSs of the component services. The asynchronous 
product of TS1,  ,TSn, (also called the Community TS) is defined as: 
TSc = < A, Sc, Sc

0, δc, Fc> where 
–   A is the set of actions 
–   Sc = S1 ££ Sn 
–   Sc

0 = {(s0
1,, s0

n)}  
–   F µ F1 ££ Fn 
–   δc µ Sc £ A £ Sc is defined as follows: 

 (s1, , sn) !a (s’1, , s’n) iff   
1.   9 i. si !a s’i  2 δi 
2.   8 j≠i. s’j = sj  
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Composition exists! 
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•  Thm[IJFCS08]  
A composition realizing a target service TS TSt exists if there exists a 
simulation relation between the initial state st

0 of TSt and the initial state 
(s1

0, .., sn
0) of the community TS TSc. 

•  Notice if we take the union of all simulation relations  then we get the largest 
simulation relation S, still satisfying the above condition. 

•  Corollary[IJFCS08] 
A composition realizing a target service TS TSt exists 
iff (st

0 , (s1
0, .., sn

0)) 2 S. 

•  Thm[IJFCS08] 
Computing the largest simulation S is polynomial in the size of the 
target service TS and the size of the community TS… 

•  ... hence it is EXPTIME in the size of the available services. 

Giuseppe De Giacomo 10 Service Integration – aa 2008/09 



Giuseppe De Giacomo 11 Service Integration – aa 2008/09 



•  For generating OG we need only to compute S and then 
apply the template above 

•  For running an orchestrator from the OG we need to store 
and access S (polynomial time, exponential space) … 

•  … and compute ωr and δr at each step (polynomial time and space) 
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•  A Community of services over a shared alphabet A     
•  A (Virtual) Goal service over A 
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