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Introduction 

•  The promise of Service Computing is to use services fundamental 
elements for realizing distributed applications/solutions.  

•  Services are processes that export their abstract specification 

•  When no available service satisfies a desired specification, one might 
check whether (parts of) available services can be composed and 
orchestrated in order to realize the specification.   

•  Working at an abstract level enable us to exploit results from automatic 
verification and synthesis to verify and compose services. 

•  The problem of automatic composition becomes especially interesting in 
the presence of stateful (conversational) services.  

•  Among the various frameworks proposed in the literature, here we 
concentrate on the so called ``Roman Model’’ (name by Rick Hull). 
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Service integration/composition: 
The Roman way 
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The Roman Model: basics 
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Roman Model’s main ingredients 
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Transition systems 
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Service composition 
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Service composition as a game 

There are at least two kinds of games. One could be called 
finite, the other infinite. 

A finite game is played for the purpose of winning ... 
... an infinite game for the purpose of continuing the play. 

Finite and Infinite Games 
J. P. Carse, philosopher  
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Service composition as a game: 
 Service composition vs Planning 

Stateless service 
composition 

Roman model 
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Nondeterminism in  
Available Services Devilish (don’t know)! 

In general, devilish nondeterminism difficult to cope with 
eg. nondeterminism moves AI Planning from PSPACE (classical planning) to EXPTIME (contingent 
planning with full observability [Rintanen04]) 
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Simple example of service composition 

a  

a  

service 1 

service 2 

target service 

a  

b  

b  

b  

orchestrator 

Devilish nondeterminism!   

For simplicity we don’t consider environment. 
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Simple example of service composition 
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•  Orchestrator program is any function P(h,a) = i 
that takes a history h and an action a to execute 
and delegates a to one of the available services i 

•  A history is a sequence that alternates states of 
the available services with actions performed: 

(s1
0,s2

0,…,sn
0) a1 (s1

1,s2
1,…,sn

1) … ak (sk
1,s2

k,…,sn
k) 

•  Observe that to take a decision P has full access 
to the past, but no access to the future 

b  
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• Techniques for computing compositions: 

• Reduction to PDL SAT 

• Simulation-based 

• LTL synthesis as model checking of game structure  

(all techniques are for finite state services) 

Synthesizing compositions 
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Simulation-based technique 

Directly based on 

  ... controlling the concurrent execution of available services 
B1,…,Bn  so as to mimic the target service T  

Thm: Composition exists iff the asynchronous (Cartesian) 
product C of B1,…,Bn can (ND-)simulate T 
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Example of composition by simulation 

B1: 

B2: 

B3: 

T: 

Given from available and 
target service … 
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Computing composition via simulation 
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B1: 

B2: 

B3: 

Example of composition by simulation 

C : 

… consider the asynchronous product 
of the available services … 
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Simulation relation 
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Algorithm Compute (ND-)simulation  

Input: target behavior T and (async. prod. of) available services C 

Output: the simulated-by  relation (the largest simulation) 

Body 
 R = ! 
 R’ = ST " S1 ".." Sn - {(t, s1,..,sn) | t ∈ FT # si ∉ Fi  for some i} 
 while (R ! R’) { 
  R := R’ 
  R’ := R’   -   {(t, s1,..,sn) | $ t %a t’ in T #  

           ¬ ($ si %a s’i in Bi  # & si %a s’i in Bi ' (t’,  s1,..s’i,..sn) ( R’ )} 
 } 
 return R’ 

End 

Simulation relation (cont.) 
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B1: 

B2: 

B3: 

Example of composition by simulation 

T: 

C : 

… compute ND-simulation 
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•  Given the largest simulation R of T  by C, we can build every 
composition through the orchestrator generator (OG). 

•  OG = < A, [1,…,n], Sr, sr0, "r, #r,> with 
•  A : the actions shared by the behaviors 
•  [1,…,n]: the identifiers of the available services in the community 
•  Sr =  ST" S1 "..." Sn : the states of the orchestrator generator  
•  sr0 = (t0, s01, ..., s0n) : the initial state of the orchestrator generator  
•  #: Sr " Ar % 2[1,…,n] : the output function, defined as follows: 

!(t, s1,..,sn, a) =  
     { i | $ t %a, t’  in T  # $ si %a, si’ in Bi # (t’,  s1,..,s’i ,..,sn )( R} 

•  " ) Sr " A " [1,…,n] % Sr : the state transition function,  defined as follows 

(t, s1 , ..., si , ..., sn)%a,i (t’, s1 , ..., s’i , ..., sn) iff i ( #(t, s1 , .., si , .., sn, a)  

Using simulation for composition 
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B1: 

B2: 

B3: 

Example of composition by simulation 

T: 

C : 

Orchestrator Generator 

W(t1,s1q1,a) = {1,2}  
W(t1,s1q1,c) = {2} 
W(t1,s2q1,a) = {2} 
W(t1,s2q1,c) = {2} 

W(t2,s1q1,b) = {3} 
W(t2,s1q2,b) = {2} 
W(t2,s2q1,b) = {1,3} 
W(t2,s2q2,b) = {2} 

W(t3,s1q1,b) = {2} 
W(t3,s2q1,b) = {2} 

W(t4,s1q1,b) = {3} 
W(t4,s1q2,b) = {2} 
W(t4,s2q1,b) = {1,3} 
W(t4,s2q2,b) = {2} 

… compute the orchestrator generator 
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•  Thm: choosing at each point any value in returned by the orchestrator 
generator gives us a composition. 

•  Thm: every composition can be obtained by choosing, at each point a 
suitable value among those returned by the orchestrator generator. 

Note: there infinitely many compositions but  
only one orchestrator generator that captures them all 

•  Thm: computing the orchestrator generator is EXPTIME, and in fact 
exponential only in the number (and not the size) of the available behaviors. 

Composition in the Roman Model was shown to be EXPTIME-hard 
[Muscholl&Walukiewicz07] 

Results 
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•  Once we have the orchestrator generator ... 

•      ... we can avoid choosing any particular 
composition a priori ...  

•      ... and use directly ! to choose the available behavior to 
which delegate the next action.  

•  We can be lazy and make such choice just-in-time, 
possibly adapting reactively to runtime feedback. 

Just-in-time composition 

Just-in-time compositions can be used to 
reactively act upon failures [KR08]! 
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Parsimonious failure recovery (1)  

Algorithm Computing ND-simulation - parameterized version  

   Input: - target service T = <A, ST, t0, "T, FT>  

              - available services Si= <A, Si, si
0, "i, Fi> , i = 1,..,n 

              - relation Rraw  including the simulated-by relation 

              - relation Rsure included the simulated-by relation 

Output: the simulated-by  relation (the largest simulation) 

Body 
 Q = ! 
 Q’ = Rraw - Rsure     //Note  R’ = Q’ ∪ Rsure 

  while (Q ! Q’) { 
      Q := Q’ 

        Q’ := Q’  -  {(t, s1,..,sn) | $ t %a t’ in T #  ¬$ k = 1,..,n  s.t. 

              ($ sk %a sk’ # & sk %a s’k  * (t’,  s1,..,s’k,..,sn) ( Q’ ∪ Rsure)} 
 }  
 return Q’ ∪ Rsure 

End 
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Parsimonious failure recovery (2) 
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Parsimonious failure recovery (3) 
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•  Computing simulation is a well-studied problem (related to 
computing bisimulation a key notion in process algebra).   
Tools, like the Edinburgh Concurrency Workbench and its 
clones, can be adapted to compute composition via 
simulation.  

•  Also LTL-based synthesis tools, like TLV, can be used for 
(indirectly) computing composition via simulation [Patrizi 
PhD09]  

We are currently focusing on the second approach. 

Tools for computing composition based on 
simulation 
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Adding data to the Roman Model 

Adding data is crucial in certain contexts: 
•  Data -  rich description of the static information of interest. 
•  Behaviors - rich description of the dynamics of the process 

But makes the approach extremely challenging: 
•  We get to work with infinite transition systems 
•  Simulation can still be used for capturing composition 

•  But it cannot be computed explicitly anymore. 

We present two orthogonal approaches to deal with them. 
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The Roman Model: American tweak 

Actual available processes 

… 

Key points 

No available process for 
the target service 

Must realize target 
service by delegating 
actual actions to 
available services 

Available services are 
stateful, hence must 
realize the  target  
using fragments of their 
computations 

with Rick Hull + Jianwen Su 
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Data-Aware Service Composition 

38 •  Also actions may be messages between services 

Store 
Ware- 
House 

Bank 

•  Actions may impact “real world” – modeled as FOL relations 

Services act on an integrated view of the world … 

“Real World” 

Client 
(human or machine) 

[BCDHM-VLDB05] 
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Service behavior of as abstract finite state machines 
that query and act on the infinite state world …  

?requestOrder
(       payBy,cartNu
m, 
addr,price) 

(payBy == PREPAID) ! (price ! 10) / 
charge(cartNum; paymentOK) 

(payBy == CC) " (price > 10) / 
! requestCCCheck(cartNum) 

?replyCCCheck
( approved) 

? requestShipStatus(oid) 

! shipStatus
( oid,date,status) 

checkShipStatus
( oid; 
date,status) 

paymentOK == T / 
requestShip(wh,addr; 
oid,date,status) 

approved == F / 
! replyOrder(“fail”) 

paymentOK == F / 
! replyOrder(“fail”) 

! shipStatus
( oid,date,status) approved == T / 

requestShip
(   wh,addr; 
oid,date,status) 

[BCDHM-VLDB05] 
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The Roman Model: Australian/Canadian tweak 

Actual available processes 

… 

Key points 

No available process for 
the target service 

Must realize target 
service by delegating 
actual actions to 
available services 

Available services are 
stateful, hence must 
realize the  target  
using fragments of their 
computations 

with Sebastian Sardina  
RMIT/UOT! 
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Composition of ConGolog Programs 

42 

Mixing data and service integration:  
 A real challenge for the whole CS 

Artifact-centric approach 
promising! 
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The Roman Model: Italian dream 

Actual available processes 

… 

Key points 

No available process for 
the target service 

Must realize target 
service by delegating 
actual actions to 
available services 

Available services are 
stateful, hence must 
realize the  target  
using fragments of their 
computations 

Very preliminary ideas in DL07 
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