
1

Service Composition and Synthesis
The Roman Model (including nondeterministic services)

Giuseppe De Giacomo
SAPIENZA Università di Roma, Italy

2

Introduction

•  The promise of Service Computing is to use services fundamental
elements for realizing distributed applications/solutions.

•  Services are processes that export their abstract specification

•  When no available service satisfies a desired specification, one might
check whether (parts of) available services can be composed and
orchestrated in order to realize the specification.

•  Working at an abstract level enable us to exploit results from automatic
verification and synthesis to verify and compose services.

•  The problem of automatic composition becomes especially interesting in
the presence of stateful (conversational) services.

•  Among the various frameworks proposed in the literature, here we
concentrate on the so called ``Roman Model’’ (name by Rick Hull).

3

Data Integration

Global view
or

domain ontology

Client

Client’s query

Mapping2 Mappingn

Key points

query over
the

express
their information in terms of a
query over the

The
answers the by
reformulating/rewriting it in
terms of the information in
the

Source1 Source2 Sourcen

Mapping1

… … …

4

Service integration/composition:
The Roman way

Actual available processes

…

Key points

No available process for
the target service

Must realize target
service by delegating
actual actions to
available services

Available services are
stateful, hence must
realize the target
using fragments of their
computations

5

The Roman Model: basics

Actual available processes

…

Key points

No available process for
the target service

Must realize target
service by delegating
actual actions to
available services

Available services are
stateful, hence must
realize the target
using fragments of their
computations

6

Roman Model’s main ingredients

7

Transition systems

8

Service composition

9

Service composition as a game

There are at least two kinds of games. One could be called
finite, the other infinite.

A finite game is played for the purpose of winning ...
... an infinite game for the purpose of continuing the play.

Finite and Infinite Games
J. P. Carse, philosopher

10

Service composition as a game:
 Service composition vs Planning

Stateless service
composition

Roman model

11

Nondeterminism in
Available Services Devilish (don’t know)!

In general, devilish nondeterminism difficult to cope with
eg. nondeterminism moves AI Planning from PSPACE (classical planning) to EXPTIME (contingent
planning with full observability [Rintanen04])

12

Simple example of service composition

a

a

service 1

service 2

target service

a

b

b

b

orchestrator

Devilish nondeterminism!

For simplicity we don’t consider environment.

13

Simple example of service composition

a

a

service 1

service 2

target service

a

b

b

orchestrator

b

14

Simple example of service composition

a

a

a

service 1

service 2

target service

b

b

orchestrator

b

15

Simple example of service composition

a

a

a

service 1

service 2

target service

b

b

orchestrator

b

16

Simple example of service composition

a

a

a

service 1

service 2

target service

b

b

orchestrator

b

17

Simple example of service composition

a

a

a

service 1

service 2

target service

b

b

b

orchestrator

b

18

Simple example of service composition

orchestrator

a

a

service 1

service 2

target service

a

b

b

•  Orchestrator program is any function P(h,a) = i
that takes a history h and an action a to execute
and delegates a to one of the available services i

•  A history is a sequence that alternates states of
the available services with actions performed:

(s1
0,s2

0,…,sn
0) a1 (s1

1,s2
1,…,sn

1) … ak (sk
1,s2

k,…,sn
k)

•  Observe that to take a decision P has full access
to the past, but no access to the future

b

19

• Techniques for computing compositions:

• Reduction to PDL SAT

• Simulation-based

• LTL synthesis as model checking of game structure

(all techniques are for finite state services)

Synthesizing compositions

20

Simulation-based technique

Directly based on

 ... controlling the concurrent execution of available services
B1,…,Bn so as to mimic the target service T

Thm: Composition exists iff the asynchronous (Cartesian)
product C of B1,…,Bn can (ND-)simulate T

21

Example of composition by simulation

B1:

B2:

B3:

T:

Given from available and
target service …

22

Computing composition via simulation

23
23

B1:

B2:

B3:

Example of composition by simulation

C :

… consider the asynchronous product
of the available services …

24

Simulation relation

25

Algorithm Compute (ND-)simulation

Input: target behavior T and (async. prod. of) available services C

Output: the simulated-by relation (the largest simulation)

Body
 R = !
 R’ = ST " S1 ".." Sn - {(t, s1,..,sn) | t ∈ FT # si ∉ Fi for some i}
 while (R ! R’) {
 R := R’
 R’ := R’ - {(t, s1,..,sn) | $ t %a t’ in T #

 ¬ ($ si %a s’i in Bi # & si %a s’i in Bi ' (t’, s1,..s’i,..sn) (R’)}
 }
 return R’

End

Simulation relation (cont.)

26
26

B1:

B2:

B3:

Example of composition by simulation

T:

C :

… compute ND-simulation

27

•  Given the largest simulation R of T by C, we can build every
composition through the orchestrator generator (OG).

•  OG = < A, [1,…,n], Sr, sr0, "r, #r,> with
•  A : the actions shared by the behaviors
•  [1,…,n]: the identifiers of the available services in the community
•  Sr = ST" S1 "..." Sn : the states of the orchestrator generator
•  sr0 = (t0, s01, ..., s0n) : the initial state of the orchestrator generator
•  #: Sr " Ar % 2[1,…,n] : the output function, defined as follows:

!(t, s1,..,sn, a) =
 { i | $ t %a, t’ in T # $ si %a, si’ in Bi # (t’, s1,..,s’i ,..,sn)(R}

•  ") Sr " A " [1,…,n] % Sr : the state transition function, defined as follows

(t, s1 , ..., si , ..., sn)%a,i (t’, s1 , ..., s’i , ..., sn) iff i (#(t, s1 , .., si , .., sn, a)

Using simulation for composition

28

B1:

B2:

B3:

Example of composition by simulation

T:

C :

Orchestrator Generator

W(t1,s1q1,a) = {1,2}
W(t1,s1q1,c) = {2}
W(t1,s2q1,a) = {2}
W(t1,s2q1,c) = {2}

W(t2,s1q1,b) = {3}
W(t2,s1q2,b) = {2}
W(t2,s2q1,b) = {1,3}
W(t2,s2q2,b) = {2}

W(t3,s1q1,b) = {2}
W(t3,s2q1,b) = {2}

W(t4,s1q1,b) = {3}
W(t4,s1q2,b) = {2}
W(t4,s2q1,b) = {1,3}
W(t4,s2q2,b) = {2}

… compute the orchestrator generator

29

•  Thm: choosing at each point any value in returned by the orchestrator
generator gives us a composition.

•  Thm: every composition can be obtained by choosing, at each point a
suitable value among those returned by the orchestrator generator.

Note: there infinitely many compositions but
only one orchestrator generator that captures them all

•  Thm: computing the orchestrator generator is EXPTIME, and in fact
exponential only in the number (and not the size) of the available behaviors.

Composition in the Roman Model was shown to be EXPTIME-hard
[Muscholl&Walukiewicz07]

Results

30

•  Once we have the orchestrator generator ...

•  ... we can avoid choosing any particular
composition a priori ...

•  ... and use directly ! to choose the available behavior to
which delegate the next action.

•  We can be lazy and make such choice just-in-time,
possibly adapting reactively to runtime feedback.

Just-in-time composition

Just-in-time compositions can be used to
reactively act upon failures [KR08]!

31

Parsimonious failure recovery (1)

Algorithm Computing ND-simulation - parameterized version

 Input: - target service T = <A, ST, t0, "T, FT>

 - available services Si= <A, Si, si
0, "i, Fi> , i = 1,..,n

 - relation Rraw including the simulated-by relation

 - relation Rsure included the simulated-by relation

Output: the simulated-by relation (the largest simulation)

Body
 Q = !
 Q’ = Rraw - Rsure //Note R’ = Q’ ∪ Rsure

 while (Q ! Q’) {
 Q := Q’

 Q’ := Q’ - {(t, s1,..,sn) | $ t %a t’ in T # ¬$ k = 1,..,n s.t.

 ($ sk %a sk’ # & sk %a s’k * (t’, s1,..,s’k,..,sn) (Q’ ∪ Rsure)}
 }
 return Q’ ∪ Rsure

End

32

Parsimonious failure recovery (2)

33

Parsimonious failure recovery (3)

34

•  Computing simulation is a well-studied problem (related to
computing bisimulation a key notion in process algebra).
Tools, like the Edinburgh Concurrency Workbench and its
clones, can be adapted to compute composition via
simulation.

•  Also LTL-based synthesis tools, like TLV, can be used for
(indirectly) computing composition via simulation [Patrizi
PhD09]

We are currently focusing on the second approach.

Tools for computing composition based on
simulation

35

Adding data to the Roman Model

Adding data is crucial in certain contexts:
•  Data - rich description of the static information of interest.
•  Behaviors - rich description of the dynamics of the process

But makes the approach extremely challenging:
•  We get to work with infinite transition systems
•  Simulation can still be used for capturing composition

•  But it cannot be computed explicitly anymore.

We present two orthogonal approaches to deal with them.

36

The Roman Model: American tweak

Actual available processes

…

Key points

No available process for
the target service

Must realize target
service by delegating
actual actions to
available services

Available services are
stateful, hence must
realize the target
using fragments of their
computations

with Rick Hull + Jianwen Su

37

Data-Aware Service Composition

38 •  Also actions may be messages between services

Store
Ware-
House

Bank

•  Actions may impact “real world” – modeled as FOL relations

Services act on an integrated view of the world …

“Real World”

Client
(human or machine)

[BCDHM-VLDB05]

39

Service behavior of as abstract finite state machines
that query and act on the infinite state world …

?requestOrder
(payBy,cartNu
m,
addr,price)

(payBy == PREPAID) ! (price ! 10) /
charge(cartNum; paymentOK)

(payBy == CC) " (price > 10) /
! requestCCCheck(cartNum)

?replyCCCheck
(approved)

? requestShipStatus(oid)

! shipStatus
(oid,date,status)

checkShipStatus
(oid;
date,status)

paymentOK == T /
requestShip(wh,addr;
oid,date,status)

approved == F /
! replyOrder(“fail”)

paymentOK == F /
! replyOrder(“fail”)

! shipStatus
(oid,date,status) approved == T /

requestShip
(wh,addr;
oid,date,status)

[BCDHM-VLDB05]

40

The Roman Model: Australian/Canadian tweak

Actual available processes

…

Key points

No available process for
the target service

Must realize target
service by delegating
actual actions to
available services

Available services are
stateful, hence must
realize the target
using fragments of their
computations

with Sebastian Sardina
RMIT/UOT!

41

Composition of ConGolog Programs

42

Mixing data and service integration:
 A real challenge for the whole CS

Artifact-centric approach
promising!

43

The Roman Model: Italian dream

Actual available processes

…

Key points

No available process for
the target service

Must realize target
service by delegating
actual actions to
available services

Available services are
stateful, hence must
realize the target
using fragments of their
computations

Very preliminary ideas in DL07

44

References
[ICSOC’03] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella: Automatic Composition of E-

services That Export Their Behavior. ICSOC 2003
[WES’03] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella: A Foundational Vision of e-

Services. WES 2003
[TES’04] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella: : A Tool for Automatic

Composition ofServices Based on Logics of Programs. TES 2004
[ICSOC’04] Daniela Berardi, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella, Diego Calvanese: Synthesis of underspecified

composite e-services based on automated reasoning. ICSOC 2004
[IJCIS’05] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella: Automatic Service Composition

Based on Behavioral Descriptions. Int. J. Cooperative Inf. Syst. 14(4): 333-376 (2005)
[VLDB’05] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Richard Hull, Massimo Mecella: Automatic Composition of Transition-

based Semantic Web Services with Messaging. VLDB 2005
[ICSOC’05] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Massimo Mecella: Composition of Services with Nondeterministic

Observable Behavior. ICSOC 2005
[SWS’06] Fahima Cheikh, Giuseppe De Giacomo, Massimo Mecella: Automatic web services composition in trustaware communities.

Proceedings of the 3rd ACM workshop on Secure web services 2006.
[AISC’06] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Massimo Mecella. Automatic Web Service Composition: Service-

tailored vs. Client-tailored Approaches. In Proc. AISC 2006, International Workshop jointly with ECAI 2006.
[FOSSACS’07] Anca Muscholl, Igor Walukiewicz: A lower bound on web services composition. Proceedings FOSSACS, LNCS, Springer,

Volume 4423, page 274--287 - 2007.
[ICWS07] Giuseppe De Giacomo, Massimiliano De Leoni, Massimo Mecella, Fabio Patrizi.. Automatic Workflows Composition of Mobile

Services. ICWS 2007.
[IJCAI’07] Giuseppe De Giacomo, Sebastian Sardiña: Automatic Synthesis of New Behaviors from a Library of Available Behaviors. IJCAI

2007.
[AAAI’07] Sebastian Sardiña, Fabio Patrizi, Giuseppe De Giacomo: Automatic synthesis of a global behavior from multiple distributed

behaviors. AAAI 2007.
[DL07] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Riccardo Rosati. Actions and programs over description logic

ontologies. DL 2007.
[IJFCS08] Daniela Berardi, Fahima Cheikh, Giuseppe De Giacomo, Fabio Patrizi: Automatic Service Composition via Simulation. IJFCS,

2008
[KR08] Sebastian Sardiña, Fabio Patrizi, Giuseppe De Giacomo: Behavior composition in the presence of failure. KR 2008.
[ICAPS08] Sebastian Sardiña, Giuseppe De Giacomo: Realizing Multiple Autonomous Agents through Scheduling of Shared Devices.

ICAPS 2008.
[IEEEBul08] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella, Fabio Patrizi. Automatic service composition

and synthesis: the Roman Model. Bull. of the IEEE Computer Society Technical Committee on Data Engineering, 31(3):18-22, 2008.

