

Logics of Programs

Service Integration – aa 2010/11

Giuseppe De Giacomo 1

Logics of Programs

- Are modal logics that allow to describe properties of transition systems
- Examples:
 - HennesyMilner Logic
 - Propositional Dynamic Logics
 - Modal (Propositional) Mu-calculus
- Perfectly suited for describing transition systems: they can tell apart transition systems modulo bisimulation

HennessyMilner Logic

HM Logic aka (multi) modal logic Ki

• Syntax:

 $\Phi := Final | P$ $[a]\Phi | <a>\Phi$ $\neg \Phi \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid \text{ true} \mid \text{ false } (\textit{closed under booleans})$

(atomic propositions) (modal operators)

- Propositions are used to denote final states and other TS atomic properties
- $<a>\Phi$ means there exists an a-transition that leads to a state where Φ holds; i.e., expresses the capability of executing action a bringing about Φ
- $[a]\Phi$ means that all a-transitions lead to states where Φ holds; i.e., express that executing action a brings about Φ

Service Integration – aa 2010/11

HennessyMilner Logic

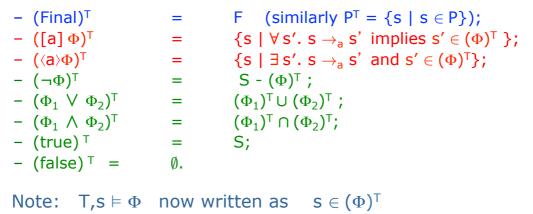
Giuseppe De Giacomo 3

- Semantics: assigns meaning to the formulas.
- Given a TS T = $\langle A, S, S^0, \delta, F \rangle$, a state s \in S, and a formula Φ , we define (by structural induction) the "truth relation"

– T,s ⊨ Final if $s \in F$ (similarly $T, s \models P$ if $s \in P$); $\begin{array}{ll} - \ T,s \vDash [a] \Phi & \quad \mbox{if for all } s' \ \mbox{such that } s \rightarrow_a s' \ \mbox{we have } T,s' \\ - \ T,s \vDash \langle a \rangle \Phi & \quad \mbox{if exists } s' \ \mbox{such that } s \rightarrow_a s' \ \mbox{and } T,s' \vDash \Phi; \\ - \ T,s \vDash \neg \Phi & \quad \mbox{if it is not the case that } T,s \vDash \Phi; \end{array}$ if **for all** s' such that $s \rightarrow_a s'$ we have $T,s' \models \Phi$; - T, $s \models \Phi_1 \lor \Phi_2$ if T, $s \models \Phi_1$ or T, $s \models \Phi_2$; - $T_{,s} \models \Phi_1 \land \Phi_2$ if $T, s \models \Phi_1$ and $T, s \models \Phi_2$; − T,s \models true always; - T,s \models false never.

HennessyMilner Logic

- Another way to give the same semantics to formulas: formulas extension in a transition system assigns meaning to the formulas.
- Given a TS T = < A, S, S⁰, δ , F> "the extension of a formula Φ in T", denote by $(\Phi)^{\dagger}$, is defined as follows:



Service Integration – aa 2010/11

5

Giuseppe De Giacomo

Model Checking

• Given a TS T, one of its states s, and a formula Φ verify whether the formula holds in s. Formally:

 $\mathsf{T},\mathsf{s} \models \Phi$ or $\mathsf{s} \in (\Phi)^{\mathsf{T}}$

• Examples (TS is our vending machine):

```
- S_0 \models Final
```

$-$ S ₀ \models <100	>true	capability of	[;] performing	action 10c
-----------------------------------	-------	---------------	-------------------------	------------

- $S_2 \models [big]$ false inability of performing action big
- $S_0 \models [10c][big]false$ after 10c cannot execute big
- Model checking variant (aka "query answering"):
 - the database – Given a TS T ... – ... compute the extension of Φ - the query

Formally: compute the set $(\Phi)^{\mathsf{T}}$ which is equal to $\{\mathsf{s} \mid \mathsf{T}, \mathsf{s} \models \Phi\}$ Service Integration – aa 2010/11 Giuseppe De Giacomo 6

Satisfiability

• Satisfiability: given a formula Φ verify whether there exists a (finite/infinite) TS T and a state of T such that the formula holds in s.

SAT: check the existence of T,s such that T,s $\models \Phi$

• Validity: given a formula Φ verify whether in every (finite/infinite) TS T and in every state of T the formula holds in s.

VAL: check the non existence of T,s such that T,s $\vDash \neg \Phi$

Note: VAL = non SAT

Examples: check the satifiability / validity of the following formulas:

- $<10p><small><collect_s>Final$
- Final →
- $((<10p><small><collect_s>Final) \land (<20p><big><collect_b>Final))$
- <10p><small><collect_s>Final \land [10p]false

Service Integration – aa 2010/11

HennessyMilner Logic and Bisimulation

Giuseppe De Giacomo

- Consider two TS, T = (A,S,s₀, δ , F) and T' = (A,S',t₀, δ ', F').
- Let L be the language formed by all HennessyMilner Logic formulas.
- We define:
 - $\sim_{\mathsf{L}} = \{(\mathsf{s},\mathsf{t}) \mid \mathsf{for all } \Phi \mathsf{ of } \mathsf{L} \mathsf{ we have } \mathsf{T},\mathsf{s} \vDash \Phi \mathsf{ iff } \mathsf{T}',\mathsf{t} \vDash \Phi \}$

- ~ = {(s,t) | exists a bisimulation R s.t., R(s,t)}

- Theorem: s ~_L t iff s ~ t
- Proof: we show that
 - s ~ t implies s ~_L t by structural induction on formulas of L.
 - s \sim_{L} t implies s \sim t by coinduction showing that s \sim_{L} t is a bisimulation.

This theorem says that HennessyMilner Logic has exactly the same distinguishing power of bisimulation. So L is the right logic to predicate on transition systems.

An same results holds also for the PDL and Modal Mu-Calculus introduced below. Giuseppe De Giacomo 8

Examples

- Usefull abbreviation (let actions A = {a₁,..., a_n}):
 - $\langle any \rangle \Phi$ stands for $\langle a_1 \rangle \Phi \lor \cdots \lor \langle a_n \rangle \Phi$
 - [any] Φ stands for $[a_1]\Phi \wedge \cdots \wedge [a_n]\Phi$
 - $\langle any a_1 \rangle \Phi$ stands for $\langle a_2 \rangle \Phi \lor \cdots \lor \langle a_n \rangle \Phi$
 - $[any -a_1] \Phi$ stands for $[a_2] \Phi \land \cdots \land [a_n] \Phi$
- Examples:
 - <a>true capability of performing action a
 - [a]false inability of performing action a
 - \neg Final \land <any>true \land [any-a]false
 - necessity/inevitability of performing action a (i.e., action a is the only action

possible)

 \neg Final \land [any]false *deadlock!*

Service Integration - aa 2010/11

(atomic propositions) (closed under boolean operators)

(modal operators)

(complex actions as regular expressions)

Essentially add the capability of expressing partial correctness assertions via formulas of the form under the conditions Φ_1 all possible executions of r that terminate $- \Phi_1 \rightarrow [r] \Phi_2$

reach a state of the TS where Φ_2 holds

- Also add the ability of asserting that a property holds in all nodes of the transition system $- [(a_1 + \cdots + a_n)^*]\Phi$ in every reachable state of the TS Φ holds
- Useful abbereviations:

Service Integration – aa 2010/11

- any stands for $(a_1 + \cdots + a_y)$ u stands for any*

Note that + can be expressed also in HM Logic This is the so called master/universal modality

$\Phi := P$

Propositional Dynamic Logic

 $\neg \ \Phi \ | \ \Phi_1 \land \Phi_2 \ | \ \Phi_1 \lor \Phi_2 \ | \\$ $[r]\Phi | < r > \Phi$

 $r := a | r_1 + r_2 | r_1; r_2 | r^* | P?$

Giuseppe De Giacomo

9

Giuseppe De Giacomo

Modal Mu-Calculus

 $\Phi := P \mid$ $[r]\Phi | < r > \Phi$

(atomic propositions) $\neg \Phi \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid \qquad \textit{(closed under boolean operators)}$ (modal operators)

 $\mu X.\Phi(X) \mid v X.\Phi(X)$

- It is the most expressive logic of the family of logics of programs. .
- It subsumes
 - PDL (modalities involving complex actions are translated into formulas involving fixpoints)

(fixpoint operators)

- LTL (linear time temporal logic),
- CTS, CTS* (branching time temporal logics)
- Examples: .
- $[any^*]\Phi$ can be expressed as v X. $\Phi \land [any]X$ •
- μ X. $\Phi \vee$ [any]X
- μ X. $Φ \lor <any>X$

- along all runs eventually Φ along some run eventually Φ
- v X. [a](μ Y. <any>true \wedge [any-b]Y) \wedge X

every run that contains a contains later b

Service Integration - aa 2010/11

Giuseppe De Giacomo 11

Modal Mu-Calculus

- To understand fixpoint operators one has to consider them as fixpoint of equations:
- Namely given $\mu X.\Phi(X)$ and $\nu X.\Phi(X)$ consider the equation

$$\mathsf{X} \equiv \Phi(\mathsf{X})$$

Then:

- $\mu X.\Phi(X)$ stands for the smallest predicate X such that $X \equiv \Phi(X)$ or $\Phi(X) \to X$
- vX. $\Phi(X)$ stands for the largest predicate X such that $X \equiv \Phi(X)$ or $X \to \Phi(X)$

Notice:

- $\mu X.\Phi(X)$ is defined by induction and computed by least fixpoint algorithm over the TS
- $vX.\Phi(X)$ is defined by coinduction and computed by greatest fixpoint algorithm over the TS
- Examples:
 - gfp of lfp of v X. $\Phi \wedge [any]X$ $X \equiv \Phi \land [any]X$
 - $X \equiv \Phi \vee [any]X$ $\mu X. \Phi \vee [any]X$ - lfp of
 - μ X. $\Phi \lor \langle any \rangle X$ $X \equiv \Phi \lor \langle any \rangle X$ _ v X. [a](μ Y. <any>true \land [any-b]Y) \land X
 - Ifp of y \equiv <any>true \land [any-b]Y
 - gfp of $X \equiv [a](Ifp above) \land X$

- Examples (TS is our vending machine):
 - $S_0 \models Final$

- $S_2 \models [big]$ false

- $S_0 \models <10c>true$ capability of performing action 10c
 - inability of performing action big
- $S_0 \models [10c][big]$ false after 10c cannot execute big
- $S_i \models \mu X$. Final \lor [any] X eventually a final state is reached
- $\begin{array}{ll} & S_0 \vDash \nu \ Z. \ (\mu \ X. \ Final \ \lor \ [any] \ X) \ \land \ [any] \ Z & or \ equivalently \\ & S_0 \vDash [any^*](\mu \ X. \ Final \ \lor \ [any] \ X) & from \ everywhere \ eventually \ final \end{array}$

Service Integration – aa 2010/11

Giuseppe De Giacomo 13

Model Checking/Satisfiability

- Dipartimento di Informatica e Sistemistica "Antonio Ruberti" SAPIENZA UNIVERSITÀ DI ROMA
- Model checking is polynomial in the size of the TS for
 - HennessyMilner Logic
 - PDL
 - Modal Mu-Calculus
- Also model checking is wrt the formula
 - Polynomial for HennessyMiner Logic
 - Polynomial for PDL
 - Polynomial for Modal Mu-Calculus with bounded alternation of nested fixpoints, and NP∩coNP in general
- Satisfiability is decidable for the three logics, and the complexity (in the size of the formula) is as follows:
 - HennessyMilner Logic: PSPACE-complete
 - PDL: EXPTIME-complete
 - Modal Mu-Calculus: EXPTIME-complete

AI Planning as Model Checking

- Build the TS of the domain:
 - Consider the set of states formed all possible truth value of the propositions (this works only for propositional setting).
 - Use Pre's and Post of actions for determining the transitions

Note: the TS is exponential in the size od the description.

- Write the goal in a logic of program
 - typically a single least fixpoint formula of Mu-Calculus (compute reachable states intersection states where goal true)
- Planning:
 - model check the formula on the TS starting from the given initial state.
 - use the path (paths) used in the above model checking for returning the plan.
- This basic technique works only when we have complete information (or at least total observability on state):
 - Sequential plans if initial state known and actions are deterministic
 - Conditional plans if many possible initial states and/or actions are nondeterministic

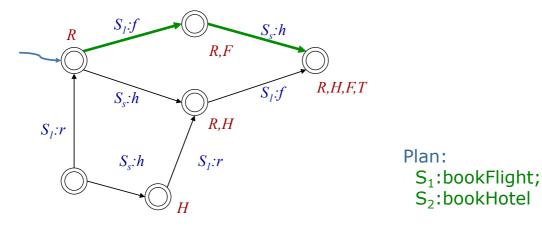
Service Integration – aa 2010/11

Giuseppe De Giacomo 15

- Example
- Operators (Services + Mappings)
 - Registered $\land \neg$ FlightBooked \rightarrow [S₁:bookFlight] FlightBooked
 - \neg Registered \rightarrow [S₁:register] Registered
 - \neg HotelBooked \rightarrow [S₂:bookHotel] HotelBooked
- Additional constraints (Community Ontology):
 - TravelSettledUp \equiv
 - FlightBooked HotelBooked EventBooked
- Goals (Client Service Requests):
 - Starting from *the* state Registered ∧ ¬FlightBooked ∧ ¬ HotelBooked ∧ ¬EventBooked check <any*>TravelSettedUp
 - Starting from *all* states such that

 ¬FlightBooked ∧ ¬ HotelBooked ∧ ¬EventBooked
 check <any*>TravelSettledUp

Example



Starting from the state

Registered $\land \neg$ FlightBooked $\land \neg$ HotelBooked $\land \neg$ EventBooked

check

Service Integration – aa 2010/11

Example

Giuseppe De Giacomo 17

 S_1 : f $S_s:h$ R R,FR,H,F,T S_1 : f $S_s:h$ R,H $S_1:r$ Plan: if(¬Registered) { $S_1:r$ $S_s:h$ S₁:register; } S₁:bookFlight; Starting from all states where S₂:bookHotel

 \neg FlightBooked $\land \neg$ HotelBooked $\land \neg$ EventBooked

check

<any*>TravelSettledUp

Satisfiability

- Observe that a formula Φ may be used to select among all TS T those such that for a given state s we have that $T, s \models \Phi$
- SATISFIABILITY: Given a formula Φ verify whether there exists a TS T and a state s such that. Formally:

check whether exists T, s such that T, $s \models \Phi$

- Satisfiability is:
 - PSPACE for HennesyMilner Logic
 - EXPTIME for PDL
 - EXPTIME for Mu-Calculus

Service Integration - aa 2010/11

References

[Stirling Banff96] C. Stirling: Modal and temporal logics for processes. Banff Higher Order Workshop LNCS 1043, 149-237, Springer 1996
 [Bradfield&Stirling HPA01] J. Bradfield, C. Stirling: Modal logics and mu-calculi. Handbook of Process Algebra, 293-332, Elsevier, 2001.

[Stirling 2001] C. Stirling: Modal and Temporal Properties of Processes. Texts in Computer Science, Springer 2001

[Kozen&Tiuryn HTCS90] D. Kozen, J. Tiuryn: Logics of programs. Handbook of Theoretical Computer Science, Vol. B, 789–840. North Holland, 1990.

[HKT2000] D. Harel, D. Kozen, J. Tiuryn: Dynamic Logic. MIT Press, 2000.

[Clarke& Schlingloff HAR01] E. M. Clarke, B. Schlingloff: Model Checking. Handbook of Automated Reasoning 2001: 1635-1790

[CGP 2000] E.M. Clarke, O. Grumberg, D. Peled: Model Checking. MIT Press, 2000.

[Emerson HTCS90] E. A. Emerson. Temporal and Modal Logic. Handbook of Theoretical Computer Science, Vol B: 995-1072. North Holland, 1990.
 [Emerson Banff96] E. A. Emerson. Automated Temporal Reasoning about Reactive Systems. Banff Higher Order Workshop, LNCS 1043, 111-120, Springer 1996

[Vardi CST] M. Vardi: Alternating automata and program verification. Computer Science Today -Recent Trends and Developments, LNCS Vol. 1000, Springer, 1995.

[Vardi etal CAV94] M. Vardi, O. Kupferman and P. Wolper: An Automata-Theoretic Approach to Branching-Time Model Checking (full version of CAV'94 paper). [Schneider 2004] K. Schenider: Verification of Reactive Systems, Springer 2004.

19

Giuseppe De Giacomo

