

Formal Models of Service Behaviors

Transition Systems and Bisimulation

Giuseppe De Giacomo

Service Integration

Transition Systems

Concentrating on behaviors: SUM two integers

- Consider a program for computing the sum of two integers.
- Such a program has essentially two states
 - the state S0 of the memory before the computation: including the two number to sum
 - the state S1 of the memory after the computation: including the result of the computation
- Only one action, i.e. "sum", can be performed

Service Integration

```
Giuseppe De Giacomo 3
```

Concentrating on behaviors: CheckValidity

- Consider a program for computing the validity of a FOL formula:
- Also such a program has essentially two states
 - the state S_1 of the memory before the computation: including the formula to be checked
 - the state S₂ of the memory after the computation: including "yes", "no", "time-out"
- Only one action, i.e. "checkValidity", can be performed

Concentrating on behaviors

- The programs SUM and CheckValidity are very different from a computational point of view.
 - SUM is trivial
 - CheckValidity is a theorem prover hence very complex
- However they are equally trivial from a behavioral point of view:
 - two states S_1 and S_2
 - a single action α causing the transition

Service Integration

Concentrating on behaviors: RockPaperScissor

5

Giuseppe De Giacomo

- Consider the program RockPaperScissor that allows to play two players the the well-known game.
- The behavior of this program is not trivial:

Concentrating on behaviors: RockPaperScissor (automatic)

- Consider a variant of the program RockPaperScissor that allows one players to play against the computer.
- The behavior of this program is now nondeterministic:

Concentrating on behaviors: WebPage

7

Giuseppe De Giacomo

http://www.informatik.uni-trier.de/~ley/db/ ni trior.de

A web page can have a complex behavior!

dblp.uni-trier.de

COMPUTER SCIENCE BIBLIOGRAPHY

UNIVERSITÄT TRIER

maintained by Michael Ley - Welcome - FAQ Mirvors: ACM SIGMOD - VLDB Endow, - SunSITE Central Europe

Search

뎎

· Author - Title - Advanced - New: Faceted search (L38 Research Center, U. Hannover)

Bibliographies

- Conferences SIGMOD, VLDB, PODS, ER, EDBT, ICDE, POPL, ...
 Journals: CACM, TODS, TOIS, TOPLAS, DKE, VLDB J, Inf. Systems, TPLP, TCS, ...
 Series: LNCS/LNAL IFIP
 Books: Collections DB Textbooks
 By Subject: Database Systems, Lopic Prog., IR, ...

Full Text: ACM SIGMOD Anthology

Links

- Computer Science Organiz, (DL), IEEE Xplore, IFIP, aizations: ACM (DL / SIGMOD / SIGIR), IEEE Computer Society.
- es: CiteSeer, CS BibTeX, io-port.net, CoRR, NZ-DL, Zentralblatt MATH. Erdis Number Proj. Math.Generalogy.Proj., BibSonomy. ... d Servi

Concentrating on behaviors: Vending Machine

Service Integration

Giuseppe De Giacomo 9

Concentrating on behaviors: Another Vending Machine

Concentrating on behaviors: Vending Machine with Tilt

Service Integration

Giuseppe De Giacomo 11

Sapienza

TS may describe (legal) nonterminating processes

Nondereminisic transitions express choice that is not under the control of clients

Service Integration

Giuseppe De Giacomo 13

Example (Vending Machine - Variant 1)

Service Integration

Service Integration

Giuseppe De Giacomo 15

Transition Systems

- A transition system TS is a tuple $T = \langle A, S, S^0, \delta, F \rangle$ where:
 - A is the set of actions
 - S is the set of states
 - $S^0 \subseteq S$ is the set of initial states
 - $\delta \subseteq S \times A \times S$ is the transition relation
 - $F \subseteq S$ is the set of final states
- Variants:
 - No initial states
 - Single initial state
 - Deterministic actions
 - States labeled by propositions other than Final/¬Final

(c.f. Kripke Structure)

- TS may have infinite states e.g., this happens when generated by process algebras involving iterated concurrency
- However we have good formal tools to deal only with finite states TS

Service Integration

Giuseppe De Giacomo 17

Inductive vs Coinductive Definitions: Reachability, Bisimilarity, ...

Reachability

• A binary relation R is a **reachability-like relation** iff:

- (s,s) ∈ R - if ∃ a, s'. s →_a s' ∧ (s',s'') ∈ R then (s,s'')∈ R

- A state s₀ of transition system S reaches a state s_f iff for all a reachability-like relations R we have (s₀, s_f)∈ R.
- Notably that
 - reaches is a reachability-like relation itself
 - reaches is the smallest reachability-like relation

Note it is a inductive definition!

Service Integration

Giuseppe De Giacomo 19

```
Computing Reachability on
Finite Transition Systems
```


Algorithm ComputingReachability

Input: transition system TS **Output:** the **reachable-from** relation (the smallest reachability-like relation)

```
Body

R = Ø

R' = {(s,s) | s ∈ S}

while (R ≠ R') {

R := R'

R' := R' ∪ {(s,s'') | ∃ s',a. s →<sub>a</sub> s' ∧ (s',s'')∈ R }

}

return R'

YdoB
```

Bisimulation

- A binary relation *R* is a **bisimulation** iff:
 - $(s,t) \in R$ implies that
 - s is final iff t is final
 - for all actions a
 - if $s \rightarrow_a s'$ then $\exists t' \cdot t \rightarrow_a t'$ and $(s',t') \in R$
 - if $t \rightarrow_a t'$ then $\exists s' . s \rightarrow_a s'$ and $(s',t') \in R$
- A state s₀ of transition system S is **bisimilar**, or simply **equivalent**, to a state t₀ of transition system T iff there **exists** a **bisimulation** between the initial states s₀ and t₀.
- Notably
 - bisimilarity is a bisimulation
 - **bisimilarity** is the largest bisimulation

Note it is a co-inductive definition!

Service Integration

Computing Bisimilarity on Finite Transition Systems

21

Giuseppe De Giacomo

Algorithm ComputingBisimulation **Input:** transition system $TS_S = \langle A, S, S^0, \delta_S, F_S \rangle$ and transition system $TS_T = \langle A, T, T^0, \delta_T, F_T \rangle$ **Output:** the **bisimilarity** relation (the largest bisimulation)

Body

```
 \begin{array}{l} R = S \times T \\ R' = S \times T - \{(s,t) \mid \neg (s \in F_S \ \equiv \ t \in \ F_T)\} \\ \text{while } (R \neq R') \{ \\ R := R' \\ R' := R' - (\{(s,t) \mid \exists \ s', a. \ s \rightarrow_a \ s' \ \land \neg \exists \ t' \ . \ t \rightarrow_a \ t' \ \land (s', t') \in R' \ \} \\ \quad \{(s,t) \mid \exists \ t', a. \ t \rightarrow_a \ t' \ \land \neg \exists \ s' \ . \ s \rightarrow_a \ s' \ \land (s', t') \in R' \ \} ) \\ \} \\ \text{return } R' \end{array}
```


Service Integration

Example of Bisimulation

nto di a e Sistemistica Ruberti''

Automata vs. Transition Systems

- Automata
 - define sets of runs (or traces or strings): (finite) length sequences of actions
- TSs
 - ... but I can be interested also in the alternatives "encountered" during runs, as they represent client's "choice points"

