Formal Models of Service Behaviors

Transition Systems and Bisimulation

Giuseppe De Giacomo
Service Integration

Transition Systems

Concentrating on behaviors: SUM two integers

- Consider a program for computing the sum of two integers.
- Such a program has essentially two states
- the state S0 of the memory before the computation: including the two number to sum
- the state S1 of the memory after the computation: including the result of the computation
- Only one action, i.e. "sum", can be performed

Concentrating on behaviors: CheckValidity

- Consider a program for computing the validity of a FOL formula:
- Also such a program has essentially two states
- the state S_{1} of the memory before the computation: including the formula to be checked
- the state S_{2} of the memory after the computation: including "yes", "no", "time-out"
- Only one action, i.e. "checkValidity", can be performed

Concentrating on behaviors

- The programs SUM and CheckValidity are very different from a computational point of view.
- SUM is trivial
- CheckValidity is a theorem prover hence very complex
- However they are equally trivial from a behavioral point of view:
- two states S_{1} and S_{2}
- a single action α causing the transition

Concentrating on behaviors: RockPaperScissor

- Consider the program RockPaperScissor that allows to play two players the the well-known game.
- The behavior of this program is not trivial:

Concentrating on behaviors: RockPaperScissor (automatic)

- Consider a variant of the program RockPaperScissor that allows one players to play against the computer.
- The behavior of this program is now nondeterministic:

Concentrating on behaviors: WebPage

http://www.informatik.uni-trier.de/~ley/db/

A web page can have a complex behavior!
dblp.uni-trier. $d e$

COMPUTER SCIENCE BIBLIOGRAPHY

UNIVERSITÄT TRIER
maintaised by Misharl ley-Weloome-EAO
Mirrors ACM SJGMoD - VLDB Endow, SunsITE Central Eanope

Search

- Avtios-Title - Advabsed - New: Faceled search (L38 Research Cemter, U. Hamoven)

Bibliographies

* Gonfrocoses SIGMOD YTDR PODS ER EDBI ICDE POPI. ..
- Iommals CACM TODS TOIS TOPLAS DKE VIDR 1 Inf. systems THLE TCS -
- Scries LNCS/LNAL 1 FIP
- Books: Collectiona DB Texthooks

Full Text: ACM SIGMOD Anthology

Links

Concentrating on behaviors: Vending Machine

Concentrating on behaviors: Another Vending Machine

Concentrating on behaviors: Vending Machine with Tilt

Example (Clock)

TS may describe (legal) nonterminating processes

Example (Slot Machine)

Nondereminisic transitions express
choice that is not under the control of clients

Example
 (Vending Machine - Variant 2)

Transition Systems

- A transition system TS is a tuple $\left.T=<A, S, S^{0}, \delta, F\right\rangle$ where:
- A is the set of actions
- S is the set of states
- $S^{0} \subseteq S$ is the set of initial states
- $\delta \subseteq \mathrm{S} \times \mathrm{A} \times \mathrm{S}$ is the transition relation
- $F \subseteq S$ is the set of final states
- Variants:
- No initial states
- Single initial state
- Deterministic actions
- States labeled by propositions other than Final/ \neg Final

Process Algebras are Formalisms for Describing TS

- Trans (a la CCS)
- Ven = 20c.Ven ${ }_{b}+10 c \cdot$ Ven $_{s}$
- Ven $_{b}=$ big.collect .Ven
- Ven $=$ small.collect ${ }_{\text {s }}$.Ven
- Final
- $\sqrt{ }$ Ven

- TS may have infinite states - e.g., this happens when generated by $\begin{gathered}\text { process algebras involving iterated concurrency }\end{gathered}$
- However we have good formal tools to deal only with finite states TS

Inductive vs Coinductive Definitions: Reachability, Bisimilarity, ...

Reachability

- A binary relation R is a reachability-like relation iff:
- $(s, s) \in R$
- if $\exists \mathrm{a}, \mathrm{s}^{\prime} . \mathrm{s} \rightarrow_{\mathrm{a}} \mathrm{s}^{\prime} \wedge\left(\mathrm{s}^{\prime}, \mathrm{s}^{\prime \prime}\right) \in R$ then $\left(\mathrm{s}, \mathrm{s}^{\prime}\right) \in \mathrm{R}$
- A state s_{0} of transition system S reaches a state $\mathrm{s}_{\mathrm{f}} \mathrm{iff}$ for all a reachability-like relations R we have $\left(s_{0}, s_{f}\right) \in R$.
- Notably that
- reaches is a reachability-like relation itself
- reaches is the smallest reachability-like relation

Note it is a inductive definition!

Computing Reachability on Finite Transition Systems

Algorithm ComputingReachability

Input: transition system TS
Output: the reachable-from relation (the smallest reachability-like relation)

```
Body
    \(\mathrm{R}=\emptyset\)
    \(R^{\prime}=\{(s, s) \mid s \in S\}\)
    while ( \(R \neq R^{\prime}\) ) \{
        \(R:=R^{\prime}\)
        \(R^{\prime}:=R^{\prime} \cup\left\{\left(s, s^{\prime}\right) \mid \exists s^{\prime}, a . s \rightarrow_{a} s^{\prime} \wedge\left(s^{\prime}, s^{\prime}\right) \in R\right\}\)
    \}
    return R'
YdoB
```


Bisimulation

- A binary relation R is a bisimulation iff:
(s, t) $\in R$ implies that
- s is final iff t is final
- for all actions a
- if $\mathrm{s} \rightarrow_{\mathrm{a}} \mathrm{s}^{\prime}$ then $\exists \mathrm{t}^{\prime} . \mathrm{t} \rightarrow_{\mathrm{a}} \mathrm{t}^{\prime}$ and $\left(\mathrm{s}^{\prime}, \mathrm{t}^{\prime}\right) \in R$
- if $\mathrm{t} \rightarrow_{\mathrm{a}} \mathrm{t}^{\prime}$ then $\exists \mathrm{s}$. $\mathrm{s} \rightarrow_{\mathrm{a}} \mathrm{s}^{\prime}$ and $\left(\mathrm{s}^{\prime}, \mathrm{t}^{\prime}\right) \in R$
- A state s_{0} of transition system S is bisimilar, or simply equivalent, to a state t_{0} of transition system T iff there exists a bisimulation between the initial states s_{0} and t_{0}.
- Notably
- bisimilarity is a bisimulation
- bisimilarity is the largest bisimulation

Note it is a co-inductive definition!

Computing Bisimilarity on Finite Transition Systems

```
Algorithm ComputingBisimulation
Input: transition system TS }\mp@subsup{\textrm{T}}{\textrm{S}}{}=<\textrm{A},\textrm{S},\mp@subsup{\textrm{S}}{}{0},\mp@subsup{\delta}{\textrm{S}}{\prime},\mp@subsup{\textrm{F}}{\textrm{S}}{}>>\mathrm{ and
    transition system TS T}=\langleA,T,T0,\mp@subsup{\delta}{T}{},\mp@subsup{F}{T}{}
Output: the bisimilarity relation (the largest bisimulation)
Body
    R=S < T
```



```
    while (R\not= R') {
        R:= R'
        R' := R' - ({(s,t)|\exists s',a.s }\mp@subsup{->}{\textrm{a}}{}\mp@subsup{\textrm{s}}{}{\prime}\wedge\neg\exists\exists\mp@subsup{t}{}{\prime}.t\mp@subsup{->}{\textrm{a}}{}\mp@subsup{\textrm{t}}{}{\prime}\wedge(\mp@subsup{s}{}{\prime},\mp@subsup{t}{}{\prime})\in\mp@subsup{R}{}{\prime}
                        {(s,t)|\exists\mp@subsup{t}{}{\prime},a.t }\mp@subsup{->}{\textrm{a}}{\textrm{a}}\mp@subsup{\textrm{t}}{}{\prime}\wedge\neg\exists\mp@subsup{\textrm{s}}{}{\prime}.\textrm{s}\mp@subsup{->}{\textrm{a}}{}\mp@subsup{\textrm{s}}{}{\prime}\wedge(\mp@subsup{\textrm{s}}{}{\prime},\mp@subsup{t}{}{\prime})\in\mp@subsup{R}{}{\prime}}
    }
    return R'
Ydob
```


Example of Bisimulation

Example of Bisimulation

Automata vs.Transition Systems

- Automata
- define sets of runs (or traces or strings): (finite) length sequences of actions
- TSs
- ... but I can be interested also in the alternatives "encountered" during runs, as they represent client's "choice points"

