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Introduction

Motivation

Example (Consider the following problems...)

Conditional planning (even for temporally extended goals)

Conditional planning in presence of (fully observable) exogenous events

Service/behavior/device composition

Agent planning programs, which mix planning and programming

...

There is a variety of behavior synthesis problems characterized by:

Nondeterminism (of devilish nature!)

Full observability

Key observation:

Sometimes we informally describe such problems as games between two players,
where one player (the controller) tries to force that certain objectives no matter
how other player (the environment) behave.
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Introduction

Objectives:

Take seriously the idea of modelling such synthesis problems as games among
two contrasting agents.

Develop a general framework for synthesis in AI based on two-player game
structures.

Develop reasoning/synthesis techniques leveraging on model-checking
technologies.

In this lecture:

Introduce two-players game structures (2GSs)

Introduce µ-calculus variant for expressing the ability of the controller to
force the game to satisfy desired temporal properties.

Device reasoning and synthesis techniques based on model checking of 2GSs.

Apply such tools to a variety of problem and reconstruct solutions, in an
optimal way wrt computational complexity.
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µ-calculus intermezzo: begin

The actual techniques for 2GS-based synthesis are based on a variant of
µ-calculus model checking.

Hence before getting into the techniques we need to briefly look back at
µ-calculus model checking.
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µ-calculus overview

Transition system

Given a set P of propositions, and set A of atomic actions, a transition system

is a triple T = (S,{R
a

�a ∈ A},⇧), with a set of states S, a family of transition
relations R

a

∈ S × S, and a mapping ⇧ from P to subsets of S.
The (modal) µ-calculus is a logic to talk about dynamic/temporal properties over
TS. It is basically constituted by three kinds of components:

Propositions to denote properties of the global store in a given configuration.
Modalities to denote the capability of performing certain actions in a given
configuration.
Least and greatest fixpoint constructs to denote “temporal” properties of
the system, typically defined by induction and coinduction.

µ-calculus

� ∶∶= A � true � false � ¬� � �
1

∧�
2

� �
1

∨�
2

� �a�� � [a]� � µX .� � ⌫X .� � X
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µ-calculus semantics: extension function
Let T = (S,{R↵�↵ ∈ 2A},⇧) be a transition system, and V a valuation on T . We
assign meaning to µ-calculus formulae by associating to T and V an extension

function (⋅)TV , which maps µ-calculus formulae to subsets of S.
The extension function (⋅)TV is defined inductively as follows:

µ-calculus semantics

(A)TV = ⇧(A) ⊆ S(X )TV = V(X ) ⊆ S(true)TV = S(false)TV = �(¬�)TV = S − (�)TV(�
1

∧�
2

)TV = (�
1

)TV ∩ (�2

)TV(�
1

∨�
2

)TV = (�
1

)TV ∪ (�2

)TV(�a��)TV = {s ∈ S � ∃s ′. (s, s ′) ∈R
a

and s ′ ∈ (�)TV }([a]�)TV = {s ∈ S � ∀s ′. (s, s ′) ∈R
a

implies s ′ ∈ (�)TV }(µX .�)TV = �{E ⊆ S � (�)TV[X←E] ⊆ E }(⌫X .�)TV = �{E ⊆ S � E ⊆ (�)TV[X←E]}
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µ-calculus semantics: intuition

For the fixpoint constructs we have:

Intuition on (µX .�)TV and (⌫X .�)TV
The extension of µX .� is the smallest subset Eµ of S such that, assigning
to X the extension Eµ, the resulting extension of � is contained in Eµ. That
is, the extension of µX .� is the least fixpoint of the operator �E .(�)TV[X←E].
Similarly, the extension of ⌫X .� is the greatest subset E⌫ of S such that,
assigning to X the extension E⌫ , the resulting extension of � contains E⌫ .
That is, the extension of ⌫X .� is the greatest fixpoint of the operator
�E .(�)TV[X←E].

The syntactic monotonicity of � wrt X guarantees the monotonicity of the
operator �E .(�)TV[X←E] and hence, by Tarski-Knaster Theorem, the unique
existence of the least fixpoint.
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µ-calculus: examples

Example

µX .P ∨ �next�X
expresses that there exists an evolution of the system such that P eventually

holds. Indeed, its extension Eµ is the smallest set that includes (1) the states in
the extension of �; and (2) the states that can execute a transition leading to a
successive state that is in Eµ. In other words, the extension Eµ includes each state
s such that there exists a run from s leading eventually (i.e. in a finite number of
steps) to a state in the extension of P . Note the inductive nature of this property.

Example

⌫X .P ∧ [next]X
i.e. ¬(µX .¬P ∨ �next�X ) – expresses the invariance of P under all of the
evolutions of the system. Indeed, its extension E⌫ is the largest set of states in the
extension of P from which every transition leads to a successive state which is still
in E⌫ . In other words, the extension E⌫ includes each state s such that every state
along every run from s is in the extension of P . Note the coinductive nature of
this property.
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µ-calculus: model checking

The reasoning problem we are interested in is model checking:

Definition

Let T = (S,{R
a

� a ∈ A},⇧) be a transition system, let s ∈ S be one of its states,
and let � be a closed (no free variables are present) µ-calculus formula. The
related model checking problem is to verify whether

s ∈ (�)TV
where V is any valuation, since � is closed.

Often we abbreviate s ∈ (�)TV by T , s � � or simply by s � � referring to T only
implicitly.
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µ-calculus: complexity of reasoning

Theorem

Checking (closed) a µ-calculus formula � over a transition systemT = (S,{R
a

� a ∈ A},⇧) can be done in time

O((�T � ⋅ ���)k)
where �T � = �S � +⌃

a∈A�Ra

�, i.e., the number of states plus the number of
transitions of T , ��� is the size of formula � (in fact, considering propositional
formulas as atomic), and k is the number of nested fixpoints, i.e., fixpoints whose
variables are one within the scope of the other.

Also, in general model checking is in NP ∩ coNP .
Theorem

Checking satifiability/validity/logical implication in µ-calculus is decidable and
more precisely EXPTIME-complete.
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µ-calculus: model checking algorithm
Given a µ-calculus formula � over a transition system T = (S,{R

a

� a ∈ A},⇧)
and a valuation V, the model checking algorithm is based on recursively
labeling the states of the transition systems with the formulas that are true in
them, following closely the semantics.

µ-calculus model checking algorithm

[[A]]TV = ⇧(A)[[X ]]TV = V(X )[[true]]TV = S[[false]]TV = �[[¬�]]TV = S − [[�]]TV[[�
1

∧�
2

]]TV = [[�
1

]]TV ∩ [[�2

]]TV[[�
1

∨�
2

]]TV = [[�
1

]]TV ∪ [[�2

]]TV

[[�a��]]TV = PreE(a, [[�]]TV )[[[a]�]]TV = PreA(a, [[�]]TV )
[[µX .�]]TV = lfpX .[[�]]TV[[⌫X .�]]TV = gfpX .[[�]]TV

where PreE,PreA,gfp,lfp are defined below.

For the atomic propositions, variables and propositional operator the labeling
works in an obvious way.
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µ-calculus: model checking algorithm

Let E ⊆ S be a set of state and a ∈ A an action. Then PreE and PreA label the
existential and universal a-preimage of E respectively.

Existential a-preimage of E
PreE(a,E), i.e., the existential a-preimage of E , is defined as follows:

PreE(a,E) = {s ∈ S � ∃s ′. (s, s ′) ∈R
a

and s ′ ∈ E}
Universal a-preimage of E
PreA(a,E), i.e., the universal a-preimage of E , is defined as follows:

PreA(a,E) = {s ∈ S � ∀s ′. (s, s ′) ∈R
a

implies s ′ ∈ E}
Notice the preimage operators follow the semantics of the �a�⋅ and [a]⋅ very
closely.
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µ-calculus: model checking algorithm

Procedures lfpX .[[�]]TV and gfpX .[[�]]TV apply Tarski-Knaster approximates
theorem to compute least fixpoint and greatest fixpoint of operator [[�]]TV :
Procedure lfpX .[[�]]TV

X
old

∶= [[False]]TV ;X ∶= [[�]]TV[X←X
old

];
while (X ≠ X

old

) {X
old

∶= X ;X ∶= [[�]]TV[X←X
old

];}
return X ;

Procedure gfpX .[[�]]TV
X

old

∶= [[True]]TV ;X ∶= [[�]]TV[X←X
old

];
while (X ≠ X

old

) {X
old

∶= X ;X ∶= [[�]]TV[X←X
old

];}
return X ;

Notice the number of interations of the while is at most equal to the number of
states S of the transition system T .
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µ-calculus intermezzo: end

Now we are ready to switch back to 2 player game structure and synthesis.
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Two-player Game Structures

Inspired by Pnueli’s work on LTL synthesis by model checking (and aslo ATL).

2GS’s are akin to transition systems used to describe the systems to be
checked in Verification ...

... but with a substantial di↵erence:

while a transition system describes the evolution of a system...

Two-player Game Structures

A 2GS describes the joint evolution of two autonomous systems—the
environment and the controller—running together and interacting at each
step, as if engaged in a sort of game.
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Two-player Game Structures

Formally, a two-player game structure (2GS) is a tuple:

Definition (2GS)

G = �X ,Y , start,⇢
e

,⇢
c

�, where:
X = {x

1

, . . . , x
m

} is the set of environment (uncontrolled) variables ranging
over finite domains;

Y = {y
1

, . . . , y
n

} are set of controller (controlled) variables ranging over finite
domains;

start = ��x
o

, �y
o

� is the initial state of the game.

⇢
e

⊆ �X × �Y × �X is the environment transition relation, which relates each
game state to its possible successor environment states (or moves).

⇢
c

⊆ �X × �Y × �X × �Y is the controller transition relation, which relates each
game state and environment move to the possible controller replies.
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2GS Transitions

2GS transitions:

Environment

⇢
e

(�x , �y , �x ′) Controller

⇢
c

(�x , �y , �x ′, �y ′)
XY

�
x

′, �y

�
x

′, �y ′�
x , �y

Uncontrolled (X = {x
1

, . . . , x
n

}) and controlled (Y = {y
1

, . . . , y
m

}) vars
Environment assigns X vars (moves first),

Controller sees results of environment’move and assigns Y vars

Both have their own structural assumptions (constraints on execution)
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Nondeterministic Planning Domains as a 2GS’s

Example

Nondeterministic planning domain

D = �P ,A,S
0

,⇢�:
P = {p

1

, . . . ,p
n

} is a finite set of domain propositions;
A = {a

1

, . . . , a
r

} is the finite set of domain actions;
S
0

∈ 2P is the initial state;
⇢ ⊆ 2P ×A × 2P is the domain transition relation.

Corresponding 2GS

GD = �X ,Y , start,⇢e ,⇢c�:X = P ;
Y = {act}, with act ranging over A ∪ {a

init

};
start = �S

0

, a
init

�;
⇢
e

(S , a,S ′) i↵ ⇢(S , a,S ′) + ⇢
e

(S
0

, a
init

,S
0

);
⇢
c

(S , a,S ′, a′) i↵ action a′ is executable in S ′
(i.e., for some S′′ ∈ 2P , ⇢(S ′, a′,S ′′)).
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Goal Formulas

To express winning condition for the controller in 2GS’s we introduce goal
formulas.
For goal formulas, we use a variant of the µ-calculus interpreted over 2GS’s.

Definition
Goal formulas

 ← ' � Z �  
1

∧ 
2

�  
1

∨ 
2

� ¬ � ⊙ � µZ . � ⌫Z . 
Ingredients

Atomic formulas ' of the form (x
i

= x̄
i

) and (y
i

= ȳ
i

);
Boolean operators;

Special operator ⊙ that expresses that the controller can force  next.

Least and greatest fixpoint constructs to capture sophisticated
dynamic/temporal properties, defined by induction or coinduction.
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Operator ⊙ 
Definition (⊙ formal interpretation)

��x , �y� � ⊙ i↵∃�x ′.⇢
e

(�x , �y , �x ′) ∧∀�x ′.⇢
e

(�x , �y , �x ′)→ ∃�y ′.⇢
c

(�x , �y , �x ′, �y ′) s.t. ��x ′, �y ′� �  .

⊙ intuitive meaning

For every move �x of the environment from the game state ��x , �y�, there is a move�y ′ of controller such that in the resulting state of the game ��x ′, �y ′� the property  
holds.

Note: in µ-calculus such alternation of quantification (universal for the
environment) and (existential for the controller) can be easily expressed!
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Examples of Goal Formulas

Example (liveness: eventually goal)

A standard conditional planning goal: reach a desired state of a↵airs can be
expressed as �goal � µZ . goal ∨ ⊙Z .

Example (safety: always goal)

Now assume to have a domain with exogenous actions then maintaining a
property goal still in spite of environment moves can be expressed:

�goal � ⌫Z .goal ∧⊙Z .
Example (fairness: infinitely often goal)

In the same setting, we may be content with a strategy to force the game so that
it is always the case that eventually a state where goal holds is reached.

��goal � ⌫Z
1

.(µZ
2

.((goal ∧⊙Z
1

) ∨⊙Z
2

))
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Service Composition

Example

Composition

Given a target service S
0

and available service S
1

, . . . ,S
n

withS
i

= �A,S
i

, s
i0

, �
i

,F
i

�, check whether there exists a composition (and if so return
it).

Simulation
Given a target service S

0

and available service S
1

, . . . ,S
n

withS
i

= �A,S
i

, s
i0

, �
i

,F
i

�, check whether S
1

, . . . ,S
n

can simulate (forever) S
0

and
(and if so return the “simulation strategy”).
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2GS for Service Composition

Example (2GS for Service Composition)

GD = �X ,Y , start,⇢e ,⇢c�:X = {st
0

, st
1

, . . . , st
n

, act, err}; with st
i

ranging over S
i

, act ranging over A
and err over booleans;

Y = {srv}, with srv ranging over 1, . . . ,n;

⇢
e

(st
0

, st
1

, . . . , st
n

, act, err , srv , st ′
0

, st ′
1

, . . . , st ′
n

, act ′, err ′) for
�
err = false, srv = i and for at least one st

′
i

, we have �
i

(st
i

, act, st ′
i

):
� �

i

(st
i

, act, st′
i

);
�

st

′
j

= st
j

for j = 1, . . . ,n and j ≠ i ;
�

st

′
0

= �
0

(st
0

, act) (recall that the target service is deterministic);

�
act

′
s.t. �

0

(st′
0

, act′) defined (NB: note this is the next step in the target!);

�
err

′ = false;
�
or err = false, srv = i and for no st

′
i

�
i

(st
i

, act, st ′
i

); or if already err = true:
�

st

′
j

= st
j

and j = 1, . . . ,n
�

st

′
0

= st
0

(recall that the target service is deterministic);

�
act

′ = act;
�

err

′ = true
�
plus a suitable treatment of the starting state start.

⇢
c

(st
0

, . . . , err , srv , s ′
0

, . . . , err ′, srv ′) for srv ′ = 1, . . . ,n.
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Goal Formulas for Service Composition

Example (Goal Formulas for Service Composition)

The goal formula requires the to always maintain the following condition � true:

� � ¬err ∧ (F
0

→ F
1

∧ . . . ∧ F
n

)
That is: �� � ⌫Z .� ∧⊙Z .
This is a so called safety formula.
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Reasoning (Model Checking) on 2GS

Theorem

Checking a goal formula  over a game structure G = �X ,Y , start,⇢
e

,⇢
c

� can be
done in time

O((�G � ⋅ � �)k)
where �G � denotes the number of game states of G plus �⇢

e

� + �⇢
c

�, � � is the size
of formula  (considering propositional formulas as atomic), and k is the number
of nested fixpoints sharing the same free variables in  .

Observation
In fact we can easily adapt standard model checking algorithms for µ-calculus:

Note that while we use ⊙ operator, which, though more sophisticated than
in standard µ-calculus � �, in order to evaluate it we only needs local checks.
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Examples (Cont.)

Example (liveness: eventually goal)

A standard conditional planning goal: �goal � µZ . goal ∨⊙Z .
Can be done in linear time in the size of the 2GS G , i.e., 2�G � wrt a compact
representation of G (Problem is known to be EXPTIME-complete.)

Example (safety: always goal)

Maintaining a property goal in spite of environment moves:�goal � ⌫Z .goal ∧⊙Z .
Can be done in linear time in the size of the 2GS G , i.e., 2�G � wrt a compact
representation of G . (Problem also is known to be EXPTIME-complete.)

Example (fairness: infinitely often goal)

Force the game so that it is always the case that eventually a state where goal
holds is reached: ��goal � ⌫Z

1

.(µZ
2

.((goal ∧⊙Z
1

) ∨⊙Z
2

))
Can be done in linear time in the size of the 2GS G , i.e., 2�G �2 wrt a compact
representation of G . (Problem is EXPTIME-complete.)
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Synthesis

Strategies

A controller strategy is a partial function

f ∶ ( �X × �Y )+ × �X � �Y
such that for every sequence � = ��x

0

, �y
0

����x
n

, �y
n

� and every �x ′ ∈ �X such that
⇢
e

(�x
n

, �y
n

, �x ′) holds, it is the case that ⇢
c

(�x
n

, �y
n

, �x ′, f (�, �x ′)) applies.
Extracting winning strategy from model checking witness

Model checking algorithms provide a witness of the checked property.

The witness consists of a labeling of the game structure produced during the
model checking process.

From labelled game states, one can read how the controller is meant to react
to the environment at each step in order to fulfill the formulas that label the
state itself, and from this, define a strategy to fulfill the goal formula.
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Implementation

What’s available o↵-the-shelf
There are a few model checker for µ-calculus – but none very optimized.

Most of them do (symbolically) search backward (typical in model checking),
but interestingly some work forward (“local model checking”).

For formulas without nested fixpoints one can use ATL model checkers such
as MCMAS. But notice that, e.g., fairness cannot be expressed!

For some of the most prominent 2-nested fixpoints properties one can use
Pnueli’s TLV also based on synbolic methods (used for GR(1) LTL –strong
fairness constraints).

In general, more work has to be done, but quite promising: we can leverage on
available model checking techniques!
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Conclusion

Summary

2GS is a powerful framework to express and solve sophisticates synthesis problems ...

... such as: conditional planning, planning against adversaries, synthesis for

sophisticated temporal properties, composition/repurposing of available behaviors,

...

Solvers can be readily implemented: either using directly o↵-the-shelf tools, or by

developing tools using available model checking technology.
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I met him in June 2005 at a Dagstuhl seminar [Synthesis and Planning organized by

Kautz, Thomas, Vardi].

We talked about service/behavior composition, and he suggested me to look into

LTL synthesis via model checking.

In June 2006 he visited Rome and gave a PhD course on LTL synthesis, including

synthesis by model checking [Fabio Patrizi’s PhD Thesis, 2009].

It was an extremely fruitful and enjoyable visit, and an entire line of research was

started.
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