
Artificial Intelligence 196 (2013) 106–142
Contents lists available at SciVerse ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Automatic behavior composition synthesis

Giuseppe De Giacomo a, Fabio Patrizi a, Sebastian Sardiña b,∗
a Dipartimento di Informatica e Sistemistica, Sapienza Università di Roma, Rome, Italy
b School of Computer Science and IT, RMIT University, Melbourne, Australia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 February 2011
Received in revised form 28 November 2012
Accepted 13 December 2012
Available online 2 January 2013

Keywords:
Knowledge representation and reasoning
Intelligent agents
Reasoning about actions and change
Automated planning
Synthesis of reactive systems

The behavior composition problem amounts to realizing a virtual desired module (e.g.,
a surveillance agent system) by suitably coordinating (and re-purposing) the execution of a
set of available modules (e.g., a video camera, vacuum cleaner, a robot, etc.). In particular,
we investigate techniques to synthesize a controller implementing a fully controllable tar-
get behavior by suitably coordinating available partially controllable behaviors that are to
execute within a shared, fully observable, but partially predictable (i.e., non-deterministic),
environment. Both behaviors and environment are represented as arbitrary finite state tran-
sition systems. The technique we propose is directly based on the idea that the controller
job is to coordinate the concurrent execution of the available behaviors so as to “mimic”
the target behavior. To this end, we exploit a variant of the formal notion of simulation
to formally capture the notion of “mimicking”, and we show that the technique proposed
is sound and complete, optimal with respect to computational complexity, and robust for
different kind of system failures. In addition, we demonstrate that the technique is well
suited for highly efficient implementation based on synthesis by model checking technolo-
gies, by relating the problem to that of finding a winning strategy in a special safety game
and explaining how to actually solve it using an existing verification tool.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we provide a thorough investigation—from theory to implementation—of the behavior composition prob-
lem, that is, the problem of how to realize an abstract desired target behavior module by reusing and re-purposing a set
of accessible modules implementing certain concrete behaviors. More concretely, we are interested in synthesizing a sort of
controller that coordinates the available existing behaviors in order to replicate a given desired target behavior [30,79,80].
Generally speaking, a behavior stands for the logic of any artifact that is able to operate in the environment, such as devices,
agents, software or hardware components, or workflows. For example, consider a painting blocks world scenario in which
blocks are painted and processed by different robotic arms; different behaviors stand for different types of arms (e.g., a grip-
per, a painting arm, a cleaner arm, etc.), all acting in the same environment. The aim is to realize a desired (intelligent)
virtual painting system by suitably “combining” the available arms.

Behavior composition is of particular interest in agents and multi-agent settings. A (desired) intelligent system may
be built, for example, from a variety of existing different modules operating (that is, performing actions) on a common
environment and whose logic is only partially known. These modules may, in turn, be other agents themselves. A set of
RoboCup players with different capabilities can be put together to form an (abstract) more sophisticated “team” player. Sim-
ilarly, a BDI (Belief–Desire–Intention) agent may implement a desired deterministic plan (which was probably obtained via

* Corresponding author.
E-mail addresses: degiacomo@dis.uniroma1.it (G. De Giacomo), patrizi@dis.uniroma1.it (F. Patrizi), sebastian.sardina@rmit.edu.au (S. Sardiña).
0004-3702/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.artint.2012.12.001

http://dx.doi.org/10.1016/j.artint.2012.12.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:degiacomo@dis.uniroma1.it
mailto:patrizi@dis.uniroma1.it
mailto:sebastian.sardina@rmit.edu.au
http://dx.doi.org/10.1016/j.artint.2012.12.001
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.artint.2012.12.001&domain=pdf

G. De Giacomo et al. / Artificial Intelligence 196 (2013) 106–142 107
planning or agent communication) by appealing to the set of available user pre-defined non-deterministic plans [36,75]. In
robot ecologies and ambient intelligence, advanced functionalities, such as a home surveillance agent, are achieved through
the composition of many simple robotic devices, such as a vacuum cleaner, a lamp, or a video camera [76,17].

Our work is really a form of process synthesis as studied in Computer Science [70,1,89,51]. However, while most litera-
ture on synthesis concentrates on synthesizing a process satisfying a certain specification from scratch, behavior composition
focuses on synthesizing a process (the controller) starting from available components [54]. This idea of composing and
reusing components has been strongly put forward by Service Oriented Computing, under the name of “service com-
position” [2,42,63,86]. Indeed, service composition aims at composing complex services by orchestrating (i.e., controlling
and coordinating) services that are already at disposal. When service composition takes into account the behavior of the
component service, as in [20,84,16] for instance, it becomes intimately related to what we call here “behavior composi-
tion”.

When we look at behavior composition from an Artificial Intelligence perspective, the issue of actual controllability of
the available behaviors becomes prominent. While one can instruct a behavior module to carry out an action, the actual
outcome of the action may not always be foreseen a priori, though it can possibly be observed after execution. Our work
here is based on revisiting a certain stream of work in service composition [13–15], called “Roman Model” in [42,86], but
keeping the need of dealing with partial controllability central. In particular, we consider the problem of synthesizing a fully
controllable target behavior from a library of available partially controllable behaviors that are to execute within a shared,
fully observable, but partially predictable environment [30,79].

Technically, we abstract behaviors and the environment as finite state transition systems. More precisely, each available
module is represented as a non-deterministic transition system (to model partial controllability); the target behavior is
represented as a deterministic transition system (to model full controllability); and the environment is represented as a
non-deterministic transition system (to model partial predictability). The environment’s states are fully accessible by the
other transition systems. Working with finite state transition systems allows us to leverage on research in Verification and
Synthesis in Computer Science [69,87,50,3,23].

Once we settle for a formal specification of the problem of concern, we develop a novel sound and complete, and optimal
w.r.t. worst-case computational complexity technique to generate so-called compositions. The technique is directly based on
the idea that a composition amounts to a controller that coordinates the concurrent execution of the available modules
so as to “mimic” the desired target behavior. We capture “mimicking” through the formal notion of simulation [60,41].
Obviously, we need to consider that available behaviors as well as the environment are only partially controllable (i.e.,
non-deterministic), and therefore a special variant of the classical notion of simulation ought to be devised.

The proposed technique has several interesting features:

• The technique is sound and complete, in a very strong sense: it allows to synthesize a sort of meta-controller, called
controller generator, that represents all possible compositions. While the set of possible compositions is infinite (in fact
uncountable) in general, the controller generator is unique.

• The technique gives us a very precise characterization of the sources of complexity in the problem: it allows for comput-
ing the controller generator (i.e., an implicit representation of all compositions) in time exponential only in the number
of available behaviors, but not in the number of their states. Observe that checking the existence of a composition is
known to be EXPTIME-hard even for deterministic available behaviors running in a stateless environment [61].

• Due to its “universality”, the controller generator can be used to generate a sort of lazy composition on-the-fly, possibly
adapting reactively based on runtime feedback.
In particular, we shall argue that the composition solutions obtained are robust to behavior failures in two ways. First,
they can handle (a) temporary behavior unavailability as well as (b) unexpected behavior/environment evolution in a
totally reactive and on-the-fly manner—that is, without any extra effort or “re-planning” required to continue the realiza-
tion of the target behavior—if at all possible, by the very nature of the composition generator. Second, the composition
solutions can be parsimoniously refined when a module (c) becomes permanently unavailable, or (d) unexpectedly re-
sumes operation.

We complement the proposed technique by showing how it can be implemented by making use of model checking
technology applied to some special game structures developed in the context of Synthesis in Computer Science [3,47,40,69,
27]. To that end, we show how to polynomially encode behavior compositions into safety games of a specific form, in which
each strategy for winning the game corresponds to a composition (Section 5). With that reduction at hand, one is then able
to use available tools such as tlv [71] in order to actually compute the controller generator by symbolic model checking
(Section 6).

Most results presented in this paper appeared at an earlier stage in [30,79,15,80,26]. Here we revise, extend, and combine
them into a uniform and in-depth investigation which includes all the technical details and extended examples, so as to
provide a fully-comprehensive and clear analysis of the problem and of our solution approach. In particular the technical
contributions include:

• a notion of composition in the presence of partially controllable behaviors;

108 G. De Giacomo et al. / Artificial Intelligence 196 (2013) 106–142
• a simulation-based technique working with partially controllable behaviors, which produces “universal” solutions, i.e.,
ones from which all possible solutions can be generated;

• repair procedures to incrementally refine and adapt an existing solution to various unexpected types of failures;
• an alternative, equivalent, solution technique based on safety games well suited for model checking based technology;

and a proof-of-concept implementation of the latter in the tlv system.

The rest of the paper is organized as follows. In Section 2 we spell out our framework for behavior composition. In Sec-
tion 3, we provide our technique based on simulation for synthesizing compositions, and we detail the notion of controller
generator. In Section 4, we show how the approach can deal with behavior failures. Then, in Section 5, we turn to synthesis
by model checking, and show how one can compute the controller generator through safety games. Based on the results of
the previous sections, we show in Section 6 how to implement behavior composition in practice using existing platforms
for synthesis by model checking such as tlv [71]. (The full tlv code for our running example is reported in Appendix A.) We
discuss related work in various areas of Artificial Intelligence and Computer Science in Section 7, and draw conclusions in
Section 8.

2. The framework

In this section, we formally define the problem of concern, by developing an abstract framework based on finite state
transition systems.

Environment. We assume to have a shared fully observable environment which provides an abstract account of action pre-
conditions and effects, and can be regarded as a means of communication among behaviors (defined below). As, in general,
we have incomplete information about preconditions and effects (akin to an action theory), the environment can, in general,
be non-deterministic.

Formally, an environment is a tuple E = 〈A, E, e0,ρ〉, where:

• A is a finite set of shared actions;
• E is the finite set of environment states;
• e0 ∈ E is the environment initial state;
• ρ ⊆ E ×A× E is the environment transition relation among states.

When referring to environment transitions, we equivalently use notations 〈e,a, e′〉 ∈ ρ or e
a−→ e′ (in E), both denoting that

performing action a in state e may lead the environment to successor state e′.
Observe that this notion of environment shares a lot of similarities with so-called “transition systems” in action lan-

guages [34]; indeed, that formalism might well be used to compactly represent the environment, in our setting.

Behaviors. A behavior abstracts the program of some agent (or, more in general, the logic of a device/module), in terms of
(internal) states, actions and transitions. Behaviors are not intended to execute on their own but, rather, to operate within
an environment (and, through this, possibly interact with other behaviors). Hence, they are equipped with the ability to
test, when needed, conditions (or guards) on environment states.

Formally, a behavior over an environment E is a tuple B = 〈B,b0, G, F ,�〉, where:

• B is the finite set of behavior states;
• b0 ∈ B is the behavior initial state;
• G is a set of guards over E , that is, boolean functions g : E 	→ {
,⊥};
• F ⊆ B is the set of behavior final states;
• � ⊆ B × G ×A× B is the behavior transition relation.

We freely interchange notations 〈b, g,a,b′〉 ∈ �, and b
g,a−→ b′ in B. A “guarded” transition 〈b, g,a,b′〉 ∈ � denotes that:

(i) action a can be executed by B in state b when the environment is in a state e such that g(e) =
; and (ii) the execution
may lead the behavior to successor state b′ . Notice that a behavior’s evolution depends on the environment it is defined
over, as action executability depends on guard satisfaction.

Intuitively, behavior states model agent’s decision points: when the behavior is in a given state, the agent selects the
action to be executed next among those executable1 at that state. Executing the selected action, besides other effects,
leads the behavior to a successor state, where a new set of actions become executable, and a new iteration starts. Final
states are those where the behavior can be safely stopped (e.g., final states of a mechanic arm might correspond to safe
configurations).

1 Subject to environment’s current state.

G. De Giacomo et al. / Artificial Intelligence 196 (2013) 106–142 109
Fig. 1. The painting arms system S = 〈B1,B2,B3,E〉 and the target arm BT .

We say that a behavior B over environment E is deterministic if no behavior and environment states exist, say b ∈ B and

e ∈ E , respectively, for which two transitions b
g1,a−→ b′ and b

g2,a−→ b′′ exist such that b′ �= b′′ and g1(e) = g2(e) =
.
Clearly, given a deterministic behavior’s and an environment’s states, and an executable action, the next behavior state is

always predictable. In other words, deterministic behaviors are fully controllable by appropriate action selections. In general,
however, behaviors are non-deterministic, that is, the state resulting from an action execution is unpredictable, and, thus,
so are the actions that will be available in such a state. In other words, non-deterministic behaviors are only partially
controllable.

System and target behavior. As said above, behaviors operate within an environment (the one they are defined over) and
can, through this, interact with each other. The notion of system introduced below allows for identifying a set of interacting
behaviors over the same environment.

A system is a tuple S = 〈B1, . . . ,Bn,E〉, where E is an environment and B1, . . . ,Bn are pre-defined, possibly non-
deterministic, available behaviors over E . We stress that available behaviors are given and cannot be modified, though they
can, of course, be (partially) controlled through action execution. The behaviors of a system model the only available im-
plementations one can actually use to execute actions. Importantly, a behavior cannot be instructed to execute actions
regardless of its (and environment’s) current state, but needs to be in a state where the desired action is actually exe-
cutable; external controllers must, of course, take these constraints into account when coordinating a set of behaviors.

Finally, we define the so-called target behavior BT as a deterministic behavior over E , which represents the fully control-
lable desired behavior to be obtained. Roughly speaking, the challenge we deal with here is to bring about the “virtual” (i.e.,
non-readily available) target behavior by properly “composing” the execution of available behaviors. Observe that the target
is meant to be deterministic, as it is assumed that the desired system is fully known.

Example 1. In the painting arms scenario depicted in Fig. 1, the overall aim of the system is to process blocks. Only one
block at a time can be processed: it can be cleaned or painted, but needs first to be prepared. After preparation, cleaning
and painting can be performed when water and paint, stored in two different tanks, are (respectively) available. Both tanks
can be charged simultaneously by pushing a button. Blocks can also be cleaned, but only in particular circumstances (i.e.,
environment in state e3, see below).

The non-deterministic environment E provides a description of the dynamic domain that the behaviors interact with.
Nodes and edges represent states and transitions, respectively; each edge label represents the action that triggers the tran-
sition; and the initial state has an incoming edge without source. For instance, as said, blocks can be painted or cleaned
only after they have been prepared: so, from e1, a state where either action paint or clean is enabled (either e2 or e3) can
only be reached by first executing prepare. Though not graphically represented, the environment accounts for tank states,
e.g.: in e1 and e2 the water tank is not empty, while it is in e3 and e4. Action clean can also be performed in e3, even
though the water tank is empty, as in this state a cleaning tool not relying on water becomes available.

BT describes the (deterministic) behavior of a desired (target) arm-agent module. Observe that state t2 captures a deci-
sion point: cleaning a block is optional, as the selection of the next transition is demanded to the executor, which makes

110 G. De Giacomo et al. / Artificial Intelligence 196 (2013) 106–142
Fig. 2. Enacted arm B3.

its decisions according to internal policies—e.g., ensuring first that the block is dirty. Also, notice that BT is “conservative”,
in that it always recharges the tanks after processing a block, so as to guarantee that clean will be executable, if needed.

The desired arm BT does not exist in reality. Nonetheless, there are three different actual arms available: B1
(states a1, a2), a cleaning-disposing arm able to clean and dispose blocks; B2 (states b1, . . . ,b4), capable of preparing,
cleaning, and painting blocks; and B3 (states c1, c2), a paint arm that can also prepare blocks for processing. All three arms
are able to press the charge button (to refill the tanks). Notice that arm B2 behaves non-deterministically when it comes to
painting a block. This non-determinism captures modeler’s incomplete information about B2’s internal logic. Observe also
that arm B1 requires the environment to be in e1 or e2, in order to perform clean, as it needs water to actually execute the
action.

In this example, all behavior states are assumed final, thus imposing no restrictions on when the execution can be
stopped.

Next, we derive the notions of behavior and system enactment, which are abstract structures needed to formally state
the composition problem and characterize its solutions.

Enacted behaviors. Behaviors and the environment mutually affect their executions. Such a “combined” evolution is for-
mally described by enacted behaviors. Given a behavior B = 〈B,b0, G, F ,�〉 over an environment E = 〈A, E, e0,ρ〉, the
enacted behavior of B on E is a tuple TB = 〈S,A, s0, Q , δ〉, where:

• S = B × E is the (finite) set of TB ’s states, where for each state s = 〈b, e〉 ∈ S , we denote b as beh(s) and e as env(s);
• A is the same set of actions as in E ;
• s0 ∈ S is the initial state of TB , such that beh(s0) = b0 and env(s0) = e0;

• δ ⊆ S ×A× S is the enacted transition relation, where 〈s,a, s′〉 ∈ δ or, equivalently, s
a−→ s′ in TB , if and only if:

– env(s)
a−→ env(s′) in E , that is, action a is actually executable in E ;

– beh(s)
g,a−→ beh(s′) in B, with g(env(s)) =
 for some g ∈ G , that is, action a can be performed by B from its state

beh(s) when the environment state env(s) satisfies the guard which labels the respective transition.
• Q = {s ∈ S | beh(s) ∈ F } is the set of the enacted behavior’s final states.

Technically, TB is the synchronous product of the behavior and the environment, and represents all possible executions
obtained from running behavior B once guards are evaluated and actions are performed in E . Observe that the enacted
behavior non-determinism stems from both environment’s and behavior’s. Moreover, notice that action executability for a
behavior is subject to: (i) its own state; (ii) guard evaluation in current environment state; and (iii) the environment state
itself. In particular, even though a transition labeled with action a and outgoing from current behavior (B) state exists,
if, given current environment state e, no transition outgoing from e is labeled with a, then B cannot execute a—as if
its precondition were not satisfied. In the following, when no ambiguity arises, we simplify the notation by denoting the
enacted counterpart of a behavior Bi simply as Ti , instead of TBi .

Example 2. The enacted behavior T3 depicted in Fig. 2 describes the evolution of arm B3 if it were to act alone in the
environment. Observe that there exist some joint states that cannot be reached by B3 alone. For instance, 〈c1, e4〉 can only
be reached by executing action dispose which is not available in B3.

Enacted system behavior. The enacted system behavior formally captures the concurrent, interleaved, execution of all avail-
able behaviors on the environment of a system. Let S = 〈B1, . . . ,Bn,E〉 be a system, where E = 〈A, E, e0,ρ〉 and Bi =
〈Bi,bi0, Gi, Fi,�i〉 (i = 1, . . . ,n). The enacted system behavior of S is a tuple TS = 〈SS ,A, {1, . . . ,n}, sS0, QS , δS 〉, where:

• SS = B1 × · · · × Bn × E is the finite set of TS states; given sS = 〈b1, . . . ,bn, e〉, we denote bi as behi(sS) (i = 1, . . . ,n)

and e as env(sS);
• sS0 ∈ SS is the initial state of TS , such that behi(sS0) = bi0 (i = 1, . . . ,n) and env(sS0) = e0;
• QS = {sS ∈ SS | ∀i ∈ {1, . . . ,n} behi(sS) ∈ Fi} is the set of TS final states;

G. De Giacomo et al. / Artificial Intelligence 196 (2013) 106–142 111
• δS ⊆ SS ×A× {1, . . . ,n} × SS is TS ’s transition relation, where 〈sS ,a,k, s′
S 〉 ∈ δS or, equivalently, sS

a,k−→ s′
S in TS , if

and only if:

– env(sS)
a−→ env(s′

S) in E ;

– behk(sS)
g,a−→ behk(s′

S) in Bk , with g(env(sS)) =
, for some g ∈ Gk;
– behi(sS) = behi(s′

S), for i ∈ {1, . . . ,n} \ {k}.

The enacted system behavior TS is technically the synchronous product of: (i) the environment, and (ii) the asynchronous
product of the available behaviors. Except for the presence of index k in transitions, which identifies the behavior that
performs the labeling action, it is formally analogous to an enacted behavior.

Controller. We are now ready to introduce the main component of our framework: the controller, which models an entity
able to instruct available behaviors to execute actions, as well as to activate, stop, and resume their execution. We assume
the controller has full observability on both available behaviors and the environment, that is, it can keep track, at runtime,
of their current states. Although other choices are possible, full observability is quite natural in this context, since available
behaviors and environment are already suitable abstractions of actual modules: if details have to be hidden, this can be
done directly within the exposed abstract behaviors, by resorting to non-determinism.

In order to formally define controllers, we start with the notions of traces and histories. Let TB = 〈S,A, s0, Q , δ〉 be an
enacted behavior of some (available or target) behavior B over environment E . A trace for TB is a possibly infinite sequence

τ = s0 a1−→ s1 a2−→ · · · , such that (i) s0 = s0; and (ii) s j a j+1−→ s j+1 in TB , for all j � 0. A history is just a finite prefix (ending

with a state) h = s0 a1−→ · · · a�−→ s� of a trace. We denote h’s last state s� by last(h), and its length � by |h|. As finite traces
are also histories, function |·| is also defined over them; if τ is an infinite trace, we let |τ | = ∞.

Traces and histories extend immediately to enacted system behaviors, by adding index k. System traces have the form

s0 a1,k1−→ s1 a2,k2−→ · · · , and system histories have the form s0 a1,k1−→ · · · a�,k�−→ s� . Functions |·| and last are extended in the obvious
way.

Now, consider a system S = 〈B1, . . . ,Bn,E〉 and its enacted behavior TS . Let H be the set of all TS histories. A controller
for S is a possibly partial function P :H×A 	→ {1, . . . ,n}.2 Intuitively, P (h,a) identifies the available behavior, i.e., BP (h,a) ,
to delegate action a to, after S has evolved as described by enacted system behavior history h.

The behavior composition problem. Roughly speaking, the problem we deal with is that of synthesizing, for a given system S ,
a controller that realizes a desired target behavior, that is, a controller able to coordinate the available modules in the system
so that the resulting behavior is, in fact, analogous to the target. In order to formalize this notion, we first need to define
trace realizations. Let S = 〈B1, . . . ,Bn,E〉 be a system, BT a target behavior, and P a controller for S . Furthermore, let τ be

an enacted target behavior trace (i.e., a trace of TT) of the form τ = s0 a1−→ s1 a2−→ · · · . We define the set of enacted system
histories induced by controller P on trace τ , as the set Hτ ,P = ⋃

��0 H�
τ ,P , where:

• H0
τ ,P = {sS0};

• H j+1
τ ,P is the set of all (j + 1)-length histories h

a j+1,k j+1−→ s j+1
S such that:

– h ∈H j
τ ,P ;

– env(s j+1
S) = env(s j+1);

– k j+1 = P (h,a j+1), that is, at history h, action a j+1 in trace τ is delegated to available behavior Bk j+1 ;

– last(h)
a j+1,k j+1−→ s j+1 in TS , that is, behavior Bk j+1 can actually execute action a j+1.

Informally, Hτ ,P ⊆H represents the set of all possible enacted system histories that ensue when controller P processes the
target trace τ . Notice that the evolution of the environment in the histories in Hτ ,P ought to respect the evolution of the
environment encoded in trace τ . Also note that because the evolution of the environment is independent of which behavior
executes an action, if the target can cause the environment to evolve from one state to another when performing an action,
then such same action in an available behavior will also be able to cause the same evolution of the environment.

Then, we say that P realizes enacted target trace τ (recall τ = s0 a1−→ s1 a2−→ · · ·) if:

1. for all TS histories h ∈Hτ ,P : if |h| < |τ |, then P (h,a|h|+1) = k and last(h)
a|h|+1,k−→ s′

S in TS for some s′
S ;

2. if τ is finite and s|τ | ∈ Q T (i.e., beh(s|τ |) is final for BT), then all |τ |-length histories h ∈H|τ |
τ ,P are such that last(h) ∈ QS .

2 The kind of general synthesis we focus on here is that under the general assumption of perfect recall [32]: all what has been “seen” so far can be used
to take a decision. As part of the technical contributions of this paper, we shall demonstrate later that finite controllers will however be sufficient for our
composition framework.

112 G. De Giacomo et al. / Artificial Intelligence 196 (2013) 106–142
Fig. 3. Two finite state controllers.

Informally, saying that a controller realizes a target behavior trace means that: given a (possibly infinite) sequence of actions
compliant with the target behavior, and a possible environment evolution resulting from the execution of such action
sequence, the controller selects at each step of execution a behavior able to actually execute the action requested at that
step, no matter how behaviors—which are non-deterministic—selected earlier evolved.

In addition, if the target trace finishes at a final state (for the enacted target behavior), then the whole system is brought
to a legal terminating state, too. In other words, the controller is always able to delegate the actions so as to mimic the
target behavior.

Because a deterministic behavior itself can be seen as a specification of a set of traces, we say that a controller P realizes
a target behavior BT if and only if it realizes all traces of TT . This can be informally rephrased as the ability to delegate, step
by step, all target behavior’s action sequences, no matter how the environment and the available behaviors evolve.

Observe that the controller can observe the current states of the available behaviors as well as that of the environment
(in fact, it can observe the whole system history up to the current state), in order to decide which behavior to select next.
This makes these controllers akin to an advanced form of conditional plans and, in fact, the problem itself is related to
planning [39], being both synthesis tasks. Here, though, we are not planning for choosing the next action, but for who
shall execute the next action, whatever such action happens to be at runtime. Formally, the problem that we deal with is as
follows:

Given a system S = 〈B1, . . . ,Bn,E〉 and a deterministic target behavior BT over E , synthesize a controller P that real-
izes BT .

All controllers that are a solution to this problem are called compositions (of BT on E).

Example 3. Even though compositions are, in general, functions of system histories (and actions), there are cases where
they depend only on the history’s last k (� 0) states. In such cases, they can be represented as finite state machines. In
Fig. 3, for instance, two finite state controllers P1 and P2 are depicted. An edge outgoing from a state s and labeled with a
pair c : 〈a,k〉 means that when the controller is in state s and action a is requested, a is delegated to behavior Bk , provided
condition c holds (omitted conditions are assumed true). The main difference between P1 and P2 is in the arm used for
painting: P1 uses B2, while P2 uses B3. In addition, P1 recharges the tanks using behavior B1 when behavior B2 is in b1,
whereas it uses behavior B2 when B2 is in state b1. Controller P2, on the other hand, always uses B3 to recharge the tanks.

For an example of trace realization, consider trace τ = 〈t1, e1〉 prepare−→ 〈t2, e2〉 clean−→ 〈t3, e3〉 paint−→ 〈t4, e3〉 of the enacted target
behavior TT depicted in Fig. 4(a) (the graphical patterns of states are not relevant here). The set Hτ ,P1 of enacted system
histories induced by P1 on τ , for the enacted system behavior TS of Fig. 4(b), contains exactly the following traces:

h1 = 〈a1,b1, c1, e1〉;
h2 = 〈a1,b1, c1, e1〉 prepare,2−→ 〈a1,b2, c1, e2〉;
h3 = 〈a1,b1, c1, e1〉 prepare,2−→ 〈a1,b2, c1, e2〉 clean,1−→ 〈a2,b2, c1, e3〉;
h4 = h3

paint,2−→ 〈a2,b1, c1, e3〉;
h5 = h3

paint,2−→ 〈a2,b3, c1, e3〉.
Observe that even though action paint may lead the environment to either state e2 or state e3, the traces in Hτ ,P1

account for the latter outcome only. This is due to the fact that Hτ ,P1 only contains histories encoding the same environment
evolution as target trace τ (and where delegations are performed as dictated by controller P1). The case in which the
environment moves to state e2 is accounted for by another target trace, say τ ′ , which matches τ except for the last state,
where last(τ ′) = 〈t4, e2〉. Notice however that in order for P1 to be a composition, τ ′ must be realized as well. As for
available behaviors, instead, all of their possible evolutions are accounted for in set Hτ ,P1 . For instance, h4 and h5 represent

G. De Giacomo et al. / Artificial Intelligence 196 (2013) 106–142 113
Fig. 4. The largest ND-simulation relation � between the enacted target TT and (a fragment of) the enacted system TS . A state in TS ND-simulates
those in TT that share its texture, e.g., 〈〈a1,b3, c1〉, e2〉 � 〈t4, e2〉. Observe that state 〈〈a1,b1, c1〉, e1〉 is the only one with two textures—plain black and
white—and hence ND-simulates both 〈t1, e1〉 and 〈t5, e1〉, and that state 〈〈a1,b1, c1〉, e3〉 ND-simulates no state.

similar runs except for the fact that behavior B2 evolves differently after executing the paint action (either to b1 in h4 or to
b3 in h5).

It can be easily seen that P1 does realize trace τ , as well as all of the other traces of TT , thus being a composition of BT
on E . On the contrary, P2 does not amount to a composition of BT . To see that, consider again the target trace τ . It turns
out that set Hτ ,P2 contains the history

〈a1,b1, c1, e1〉 prepare,2−→ 〈a1,b2, c1, e2〉 clean,1−→ 〈a2,b2, c1, e3〉,
and that no transition 〈a2,b2, c1, e3〉 paint,3−→ s′

S exists in TS for any s′
S . Hence, P2 does not realize τ and is not a composition.

This concludes the formal statement of the behavior composition problem. The framework just presented stands for what
can be considered the “core” framework, i.e., a basic setting that incorporates all distinguishing features of the problem.
However, we stress that extensions and generalization can be defined so as to obtain non-trivial variants, which can be
adopted to model and solve similar problems from domains that satisfy different assumptions (see Section 8 for a discussion
on this).

3. Composition via simulation

Next, we present our approach to composition synthesis. This is originally inspired by [15], where a restricted version
of the composition problem was addressed, in the context of services, by taking the standard notion of simulation rela-
tion [60,41] as a formal tool for solution characterization. Here, the shared environment and the (devilish) non-determinism
of both the available behaviors and the environment significantly sophisticate that framework, calling for a new formal set-
ting, the one presented here, where the usual notion of simulation relation is no longer enough to fully characterize the set
of solutions and, hence, to guide the solution process.

Intuitively, we say that a transition system S1 simulates another transition system S2, if S1 is able to “match”, step by
step, all of S2 moves during execution. More precisely, imagine to execute S2 starting from its initial state. At each step of
execution, S2 performs a transition among those allowed in its (current) state. If, for all possible ways of executing S2, S1
can, at each step, choose a transition that “matches” (according to some criteria, e.g., label equivalence) the one executed
by S2 then S1 simulates S2. We stress that S1 decisions are required to be made in an “online” fashion, as S2 evolves. In
other words, it is not the case that S1 knows in advance which transitions S2 will execute in the future.

Such an intuition is formalized in the following definition, where both non-determinism and the shared environment are
taken into account.

114 G. De Giacomo et al. / Artificial Intelligence 196 (2013) 106–142
Algorithm 1: NDS(TT ,TS)—Largest ND-simulation.

1 R := S T × SS \ {〈sT , sS 〉 | env(sT) �= env(sS) ∨ (sT ∈ Q T ∧ sS /∈ QS)};
2 repeat

3 R := (R \ C), where C is the set of 〈sT , sS 〉 ∈ R such that there exists an action a ∈ A and for each k there exists a transition sT
a−→ s′

T in TT

such that either:

(a) there is no transition sS
a,k−→ s′

S in TS such that env(s′
T) = env(s′

S); or

(b) there exists a transition sS
a,k−→ s′

S in TS such that env(s′
T) = env(s′

S)

but 〈s′
T , s′

S 〉 /∈ R.

4 until (C = ∅);
5 return R;

Let S = 〈B1, . . . ,Bn,E〉 be a system, BT a target behavior over E , and TS = 〈SS ,A, {1, . . . ,n}, sS0, QS , δS 〉 and TT =
〈ST ,A, sT 0, Q T , δT 〉 the enacted system and enacted target behaviors corresponding to S and BT on E , respectively. An
ND-simulation relation of TT by TS is a relation R ⊆ ST × SS , such that 〈sT , sS 〉 ∈ R implies:

1. env(sT) = env(sS);
2. if sT ∈ Q T , then sS ∈ QS ;
3. for all a ∈ A, there exists a k ∈ {1, . . . ,n}—also referred to as a witness of 〈sT , sS 〉 ∈ R for action a—such that for all

transitions sT
a−→ s′

T in TT :

(a) there exists a transition sS
a,k−→ s′

S in TS with env(s′
S) = env(s′

T);

(b) for all transitions sS
a,k−→ s′

S in TS with env(s′
S) = env(s′

T), it is the case that 〈s′
T , s′

S 〉 ∈ R .

In words, if a pair of enacted states is in the ND-simulation (relation), then: (i) its states share the same environment
component; (ii) if the target behavior is in a final state, so is the system; and (iii) for all actions the (enacted) target
behavior can execute, there exists a witness behavior Bk that can execute the same action while guaranteeing, regardless of
non-determinism, preservation of the ND-simulation relation for successor target and system states.

We say that a state sT ∈ ST is ND-simulated by a state sS ∈ SS (or sS ND-simulates sT), denoted sT � sS , if there exists
an ND-simulation relation R of TT by TS such that 〈sT , sS 〉 ∈ R . Observe that this is a co-inductive definition. As a result,
the relation � is itself an ND-simulation relation, in fact the largest one, in the sense that all ND-simulations are contained
in �.

Given TT and TS , relation � can be computed by Algorithm 1 (NDS). Roughly speaking, the algorithm works by iter-
atively removing those tuples for which the requirements of the ND-simulation definition do not apply, until a fixpoint
is reached. It is straightforward to prove that the algorithm reaches a fixpoint in a finite number of steps and computes
the largest ND-simulation, by comparing the algorithm with the definition of ND-simulation relation and observing that no
tuple is ever added to the candidate set R, and that C ⊆R.

Example 4. Fig. 4 shows a fragment of the largest ND-simulation relation for our painting blocks world example. In par-
ticular, Fig. 4(a) shows the enacted target behavior of BT and Fig. 4(b) depicts a fragment of the system enacted behavior.
States in Fig. 4(b) contain, in the bottom half, the environment component, and, in the top half, a compact representation of
available service (current) states: the first component of the integer string represents the subscript of the state that B1 is in,
the second refers to B2, and so on. For instance, the node labeled with 〈211, e4〉 represents the system state 〈〈a2,b1, c1〉, e4〉.

Matching graphical patterns between TT and TS states mean that such states are in ND-simulation. For example,
〈〈a1,b3, c2〉, e2〉 of TS ND-simulates 〈t2, e2〉 of TT ; this implies that (i) every conceivable action taken in 〈t2, e2〉 can be
replicated by some behavior (possibly a different one for each action) when the system is in 〈〈a1,b3, c2〉, e2〉 and, moreover,
that (ii) this property propagates to the resulting successor states.

Observe that, clearly, a TT state can be simulated by several TS ’s, as is the case for, e.g., 〈t4, e2〉, which is simulated
by both 〈〈a1,b1, c1〉, e2〉 and 〈〈a1,b3, c1〉, e2〉. Also the converse may happen: 〈〈a1,b1, c1〉, e1〉 in TS ND-simulates TT state
〈t1, e1〉 as well as 〈t5, e1〉.

The relevance of the ND-simulation relation to the composition problem addressed here is twofold. Firstly, as will be
shown next, computing the largest ND-simulation relation between a target enacted behavior and a system enacted behavior
is essentially equivalent to checking whether there exists a composition for the target behavior that “uses” the behaviors
available in the system. Secondly, this “simulation-based” approach overcomes the main obstacles that previous solution
techniques (e.g., [13]) encountered, as it enables the construction of flexible solutions that can take runtime information into
account, at no additional (worst-case) cost.

Our first main result states that checking the existence of a composition can be reduced to checking whether the enacted
target behavior’s initial state is ND-simulated by the enacted system behavior’s initial state, which corresponds to checking
whether there exists an ND-simulation relation that includes the initial states of both.

G. De Giacomo et al. / Artificial Intelligence 196 (2013) 106–142 115
Theorem 1. Let S = 〈B1, . . . ,Bn,E〉 be a system and BT a target behavior over E . Moreover, let TT = 〈ST ,A, sT 0, Q T , δT 〉 and
TS = 〈SS ,A, {1, . . . ,n}, sS0, QS , δS 〉 be the enacted target behavior and the enacted system behavior for BT and S , respectively.
Then, a composition controller P of target BT on system S exists if and only if sT 0 � sS0 .

Proof. (If Part) . First, we define P . To this end, let h = s0
S

a1,k1−→ · · · a�,k�−→ s�
S ∈H be a TS history and a ∈A an action. If there

exists a TT history hT = s0
T

a1−→ · · · a�−→ s�
T (i.e., a history matching the actions of h) such that s�

T � s�
S , and a transition

s�
T

a−→ s�+1
T in TT (i.e., action a is BT -executable in s�

T), then we define P (h,a) ∈ ωa , where ωa is the set of all indexes

k ∈ {1, . . . ,n} such that for all transitions s�
T

a−→ s�+1
T :

• there exists a transition s�
S

a,k−→ s�+1
S in TS with env(s�+1

S) = env(s�+1
T);

• for all transitions s�
S

a,k−→ s�+1
S in TS with env(s�+1

S)=env(s�+1
T), s�+1

T � s�+1
S .

Because s�
T � s�

S , we know that ωa �= ∅. In all other cases, namely, when hT does not exist or a is not BT -executable,
P (h,a) undefined.

Next, we prove that P is indeed a composition, that is, we show that every TT trace is realized by P . To this end, we

consider any TT trace τ = s0
T

a1−→ s1
T

a2−→ · · · (s0
T = sT 0) and prove the following claim first:

(†) for every TS history h = s0
S

a1,k1−→ · · · a�,k�−→ s�
S ∈Hτ ,P , with 0 � � < |τ |, it is the case that s�

T � s�
S .

Since Hτ ,P = ⋃
��0 H�

τ ,P , we prove (†) by induction on � as follows:

• Let H0
τ ,P = {sS0}. Clearly, sT 0 � sS0 and (†) holds trivially.

• Take h�+1 = s0
S

a1,k1−→ · · · a�,k�−→ s�
S

a�+1,k�+1−→ s�+1
S ∈ H�+1

τ ,P , where s0
S = sS0. By the definition of H�+1

τ ,P , s�
S

a�+1,k�+1−→ s�+1
S in TS ,

env(s�+1
T) = env(s�+1

S) and P (h�,a�+1) = k�+1. By the induction hypothesis, we know that s�
T � s�

S . Then, by the way P

was defined above, it follows that s�+1
T � s�+1

S .

Next, take any h ∈ Hτ ,P such that |h| < |τ |. Because of the way each Hi
τ ,P is constructed, h ought to be of the form

h = s0
S

a1,k1−→ · · · a�,k�−→ s�
S , that is, h has to match all actions in τ . From (†) above, we have that s�

T � s�
S . Then, by definition

of ND-simulation, the fact that a�+1 is BT -executable in s�
T , and the way P is defined above, there exists a transition

s�
S

a�+1,k−→ s�+1
S , where k = P (h,a�+1) and k ∈ {1, . . . ,n}. In addition, if τ is finite, then for every h ∈ H|τ |

τ ,P we have, due to (†)

above, that s|τ |
T � last(h), which in turns implies that if s|τ |

T ∈ Q T (i.e., TT is final in enacted state s|τ |
T), then last(h) ∈ QS .

Then, P realizes τ and P is a composition.
(Only-If Part) . Let P be a controller for S that is a composition of BT on E . From P , we build a relation R ⊆ ST × SS

that is an ND-simulation such that 〈sT 0, sS0〉 ∈ R . The definition of R is as follows: 〈sT , sS 〉 ∈ R if and only if there exists a

TT trace τ = s0
T

a1−→ s1
T

a2−→ · · · and an (induced) TS history h ∈Hτ ,P such that sT = s|h|
T and sS = last(h).

Next, we show that R is an ND-simulation relation (page 114). Consider then a pair 〈sT , sS 〉 ∈ R . By R ’s definition, there

exists a TT trace of the form τ = s0
T

a1−→ · · · a�−→ sT · · · and an �-length TS history (induced by τ and P) h ∈H�
τ̂ ,P such that

h = s0
S

a1,k1−→ · · · a�,k�−→ sS .
First, due to the way set H�

τ ,P is constructed, env(sT) = env(sS) holds, as only system histories matching the evolution
of the environment as in trace τ are considered. Second, because P is a composition, P realizes τ as well as its |h|-length
trace prefix τ ||h| . It follows then that if last(τ ||h|) = sT ∈ Q T , then sS ∈ QS .

It remains to prove that the third requirement of ND-simulation holds. To that end, consider an action a ∈ A that

is BT -executable in sT , that is, there exists sT
a−→ s∗

T in BT . Take now trace τ ∗ = τ |� a−→ s∗
T . Clearly, h ∈ H�

τ ∗,P , that
is, h can be induced by P when realizing trace τ ∗ . Since P is a composition, it realizes trace τ ∗ and hence there exits

ka ∈ {1, . . . ,n} such that P (h,a) = ka and sS
a,ka−→ s∗

S in TS . Next consider any transition sT
a−→ s′

T in TT . Because the

evolution of the environment is independent of that of the behaviors, there must exist sS
a,ka−→ s′

S with env(s′
T) = env(s′

S)

and hence condition 3(a) of ND-simulation definition applies. Moreover, τ ′ = τ |� a−→ s′
T is a legal trace of TT and history

h
a,ka−→ s′

S ∈H�+1
τ ′,P . Hence, by definition of R above, R(s′

T , s′
S) holds, that is, requirement 3(b) of the ND-simulation definition

is satisfied, with ka = P (h,a) being indeed a witness of sT � sS for action a. �
Theorem 1 provides a straightforward method for checking the existence of a composition, namely: (i) compute the

largest ND-simulation relation between TT and TS , and (ii) check whether 〈sT 0, sS0〉 is in such a relation.

116 G. De Giacomo et al. / Artificial Intelligence 196 (2013) 106–142
As for computational complexity considerations, observe that algorithm NDS described above computes the largest ND-
simulation relation � between TT and TS in polynomial time, with respect to the size of TT and TS . Since the number of
states in TS is exponential in the number of available behaviors B1, . . . ,Bn , we get that the largest ND-simulation relation
� can be computed in exponential time in the number of available behaviors. Hence, as formally stated in the next theorem,
this technique is a notable improvement with respect to the ones based on reduction to PDL [30,79], which are exponential
also in the number of states of both the behaviors and the environment.3 Considering that the composition problem is
EXPTIME-hard [61], the upper bound we get is indeed tight, that is, roughly speaking, this is the best we can hope for.

Theorem 2. Checking for the existence of compositions by computing the largest ND-simulation relation � can be done in polynomial
time in the number of states of the available behaviors, of the environment, and of the target behavior, and in exponential time in the
number of available behaviors.

Once the ND-simulation relation is computed, the problem of “synthesizing” a controller that is a composition arises.
Next, we show how, from the largest ND-simulation relation, we can build a finite state program, i.e., a controller generator,
that returns, at each step, the set of all available behaviors capable of performing the requested action, while guaranteeing
the possibility of delegating to available services all (target-compliant) requests that can be issued in the future.

Formally, let S = 〈B1, . . . ,Bn,E〉 be a system, BT a target behavior over E , and TS = 〈SS ,A, {1, . . . ,n}, sS0, QS , δS 〉 and
TT = 〈ST ,A, sT 0, Q T , δT 〉 the enacted system behavior and the enacted target behavior corresponding, respectively, to S
and BT . The controller generator (CG) of S for BT is a tuple CG = 〈Σ,A, {1, . . . ,n}, ∂,ω〉, where:

1. Σ = {〈sT , sS 〉 ∈ ST × SS | sT � sS } is the set of CG states, formed by all pairs of TT and TS state belonging to the largest
ND-simulation relation; given σ = 〈sT , sS 〉 we denote sT by comT (σ) and sS by comS (σ).

2. A is the finite set of shared actions.
3. {1, . . . ,n} is the finite set of available behavior indexes.

4. ∂ ⊆ Σ ×A× {1, . . . ,n} × Σ is the transition relation, where 〈σ ,a,k, σ ′〉 ∈ ∂ , or σ
a,k−→ σ ′ in CG, if and only if:

• there exists a transition comT (σ)
a−→ comT (σ ′) in TT ;

• there exists a transition comS (σ)
a,k−→ comS (σ ′) in TS ;

• for all σ ′′ ∈ ST × SS such that comS (σ)
a,k−→ comS (σ ′′) in TS , comT (σ)

a−→ comT (σ ′′) in TT , and env(comT (σ ′′)) =
env(comS(σ

′′)), it is the case that 〈comT (σ ′′), comS (σ ′′)〉 ∈ Σ (i.e., k is a witness of comT (σ) � comS (σ) for action a).
5. ω : Σ × A 	→ 2{1,...,n} is the output function defined as

ω(σ ,a) = {
k

∣∣ ∃σ ′ ∈ Σ s.t. σ
a,k−→ σ ′ is in CG

}
.

Roughly speaking, the CG is a finite state transducer that, given an action a (compliant with the target behavior), outputs,
through function ω, the set of all available behaviors that can perform a next, according to the largest ND-simulation
relation �. Observe that computing the CG from relation � is easy, as it involves checking local conditions only. In fact, one
could directly compute the CG by enriching relation �, during computation, with information about actions, indices, and
transitions.

By Theorem 1, if there exists a composition of BT , then sT 0 � sS0 and CG does include state σ0 = 〈sT 0, sS0〉. In such
a case, we can build actual controllers, called generated controllers, that are compositions of BT , by picking up, at each
step, one available behavior among those returned by output function ω. Notice that full-observability of available behavior
states is a crucial assumption here, as both ω and ∂ depend on the current states of both the environment and all system
behaviors, which, due to non-determinism, cannot be known with certainty, i.e., can be reconstructed, by just looking at the
action history. As a result, after each action execution, in order to obtain ω’s output, the new states of the system and of
the environment need to be known. Of course, more complex scenarios where available behavior states are only partially
observable can be considered, though this is out of the scope of this paper.

Formally, controllers that are compositions can be generated from the CG as follows.4 Firstly, in analogy with behavior and

system traces, we define CG traces and histories: a trace for CG is a possibly infinite sequence σ 0 a1,k1−→ σ 1 a2,k2−→ · · ·, such that

each transition σ j a j+1,k j+1−→ σ j+1 is in CG, for all j � 05; consequently, a history for CG is a finite prefix of a trace. Functions

last and | · | over CG histories are defined as usual. For technical convenience, given a CG trace τCG = σ 0 a1,k1−→ σ 1 a2,k2−→ · · ·, we

define the corresponding projected system trace as the sequence projS (τCG) = comS (σ 0)
a1,k1−→ comS (σ 1)

a2,k2−→ · · ·, intuitively
obtained from τCG by taking only the system component of each state. Clearly, by definition of CG, if σ 0 = 〈sT 0, sS0〉 then

3 Though in light of the result in here, a better complexity analysis involving the specific PDL satisfiability procedures could be carried out.
4 We stress that as a composition exists if and only if σ0 = 〈sT 0, sS0〉 ∈ Σ (Theorem 1), constructing a composition makes sense only if this condition

holds.
5 Observe that we do not require σ 0 = 〈sT 0, sS0〉 .= σ0 as, in general, the CG does not include σ0.

G. De Giacomo et al. / Artificial Intelligence 196 (2013) 106–142 117
projS (τCG) is a legal TS trace. Also, from τCG we define the corresponding projected target trace projT (τCG) = comT (σ 0)
a1−→

comT (σ 1)
a2−→ · · · that can be easily proven to be a legal TT trace if σ 0 = 〈sT 0, sS0〉. Similarly, we can derive from each CG

history hCG a projected system history and a projected target history, which are, respectively, a TT history and a TS history, if
σ 0 = 〈sT 0, sS0〉.

Next, let HCG be the set of all CG histories, and consider a selection function

CGP : HCG ×A 	→ {1, . . . ,n}
such that CGP(hCG,a) ∈ ω(last(hCG),a), for all hCG ∈ HCG and a ∈ A, if ω(last(hCG),a) is non-empty, while it is left uncon-
strained if ω(last(hCG),a) is empty.

Finally, assuming that CG includes σ0 = 〈sT 0, sS0〉, for each CG history hCG = σ 0 a1,k1−→ · · · a�,k�−→ σ � such that σ 0 = σ0,
consider the corresponding projected system history:

projS(hCG) = comS
(
σ 0) a1,k1−→ · · · a�,k�−→ comS

(
σ �

)
.

For a given selection function CGP, a generated controller is any function PCGP : H × A 	→ {1, . . . ,n} such that for every TS
history h ∈H and action a ∈A, if h = projS (hCG) for some CG history hCG , then PCGP(h,a) = CGP(hCG,a).

The following results relate CGs to compositions and show that, given a CG containing σ0, one gets all and only controllers
that are compositions by considering all possible resolutions of the non-determinism of function CGP. Notably, while each
specific composition may be an infinite state program, the controller generator, which in fact includes them all, is always
finite.

Theorem 3. Let S , BT , TS and TT be as above, and let CG = 〈Σ,A, {1, . . . ,n}, ∂,ω〉 be the controller generator of S for BT . If
σ0 = 〈sT 0, sS0〉 ∈ Σ , then:

1. every generated controller obtained from CG as shown above is a composition of BT on E ;
2. every controller that is a composition of BT on E can be obtained from CG as shown above.

Proof. To prove the first claim, we show that for every target trace τ ∈ HT and controller PCGP defined as above, there
exists a controller P , defined as in the (If Part) of Theorem 1, such that Hτ ,P = Hτ ,PCGP . Since P is proven to realize τ , by
looking at the definition of trace realization, this is enough to prove that PCGP realizes τ as well.

Let H�
τ ,PCGP

⊆Hτ ,PCGP be the set of system histories h = s0
S

a1,k1−→ · · · a�,k�−→ s�
S induced by τ and PCGP . Also, let H�

τ ,P ⊆Hτ ,P
be the analogous set for τ and P . We prove, by induction, the existence of P (defined as in the (If Part) of Theorem 1) such
that H�

τ ,PCGP
=H�

τ ,P , for every � � 0. Since, for every controller C , Hτ ,C = ⋃
��0 H�

τ ,C , we get that Hτ ,PCGP =Hτ ,P .

For the base case (� = 0), no matter how P is defined, H0
τ ,PCGP

= H0
τ ,P = {sS0}. By induction hypothesis, assume

H�
τ ,PCGP

= H�
τ ,P , and consider a system history h = s0

S
a1,k1−→ · · · a�,k�−→ s�

S ∈ H�
τ ,PCGP

. Because h is an induced history, for i =
1, . . . , �, we have ki = PCGP(h|i−1,ai), where h| j = s0

S
a1,k1−→ · · · a j ,k j−→ s j

S . In particular k� = PCGP(h|�−1,a�) is defined, and there-

fore, by PCGP definition, there exists a CG history h̃CG = 〈s̃0
T , s0

S 〉 a1,k1−→ · · · a�−1,k�−1−→ 〈s̃�−1
T , s�−1

S 〉 such that projS (h̃CG) = h|�−1.

In principle, h̃CG can be any, as long as projS (h̃CG) = h|�−1. In particular, it could be unrelated to τ . But because h̃CG is a
history for CG, it is such that 〈s̃i

T , si
S 〉 ∈ Σ (i = 0, . . . , � − 1), hence s̃i

T � si
S and therefore env(s̃i

T) = env(si
S). In turn, h being

induced by τ , env(si
S) = env(si

T), and hence env(s̃i
T) = env(si

S) = env(si
T) (i = 0, . . . , � − 1). Finally, BT being deterministic

and having s̃0
T = s0

T = sT 0, we get beh(s̃i
T) = beh(si

T). So, we conclude that projT (h̃CG) = τ |�−1. Based on this and the fact

that projS (h̃CG) = h|�−1, we also have that h̃CG is unique, for fixed h.
By definition of induced history, given h, k� = PCGP(h|�−1,a�) = CGPCGP(h̃CG,a�) ∈ ω(〈s�−1

T , s�−1
S 〉,a�). So, observing the

definition of CG and ω, it is easily seen that the sequence hCG = 〈s0
T , s0

S 〉 a1,k1−→ · · · a�,k�−→ 〈s�
T , s�

S 〉 is a CG history, in particular,
such that projS (hCG) = h and projT (hCG) = τ |� .

Next, we prove that all possible extensions of h, obtained by realizing action a�+1 in τ (if any), according to PCGP , are
also possible under P , and vice versa. In other words, we prove that H�+1

τ ,PCGP
= H�+1

τ ,P . Two cases are possible: either (i)

τ = τ |� (i.e., τ is finite); or (ii) not. In case (i), we trivially obtain H�+1
τ ,PCGP

= H�+1
τ ,P = ∅. For case (ii), observe that s�

T � s�
S —

as 〈s�
T , s�

S 〉 ∈ Σ—and that a�+1 is BT -executable in s�
T (this trivially comes from a�+1 position in τ). In addition, hC G is

proved, above, a CG history such that projS (hCG) = h. Therefore, by definition of generated controller, PCGP(h,a�+1) = k�+1 ∈
ω(〈s�

T , s�
S 〉,a�+1) �= ∅.

On the other hand, consider the construction of P in the (If Part) of Theorem 1. Given h, τ |� matches (by construc-
tion) all actions in h, and is such that s�

T = last(τ |�) � last(h) = s�
S (as proven above). So, P (h,a�+1) ∈ ωa�+1 �= ∅. But then,

observing that ω(〈s�
T , s�

S 〉,a�+1) = ωa�+1 , no matter which index PCGP returns, P can choose the same index, say k�+1,
from ωa�+1 so that k�+1 = PCGP(h,a�+1) = P (h,a�+1). Clearly, given h, a�+1 and k�+1, every possible system history of the

118 G. De Giacomo et al. / Artificial Intelligence 196 (2013) 106–142
form ĥ = h
a�+1,k�+1−→ s�+1 is such that ĥ ∈ H�+1

τ ,P if and only if ĥ ∈ H�+1
τ ,PCGP

. Since h is arbitrarily chosen, we ultimately get

H�+1
τ ,P =H�+1

τ ,PCGP
.

We prove the second part by showing that for all TT traces, all decisions made by P along an arbitrary history induced
by τ and P are compliant with the definition of generated controller.

Let τ = s0
T

a1−→ s1
T

a2−→ · · · be a TT trace, and h = s0
S

a1,k1−→ · · · a�,k�−→ s�
S ∈ Hτ ,P a generic history induced by τ and P . Since

P is a composition, by (Only-If Part) of Theorem 1, we get that ki = P (h|i,ai+1) is a witness of si
T � si

S for ai+1, for

i = 0, . . . , � − 1. Then, hCG = 〈s0
T , s0

S 〉 a1,k1−→ · · · a�,k�−→ 〈s�
T , s�

S 〉 is a CG-history. Indeed, by definition of ω, for every a that is BT -
executable in sT , ω(〈sT , sS 〉,a) contains all (and only) the witnesses of sT � sS for a. So, this will be true, in particular, for
ω(〈si

T , si
S 〉,ai+1).

Since every prefix of a history is a history itself, and � being arbitrary, the argument above proves that for every prefix
of h, say h| j (j = 0, . . . , � − 1), there exists an hCG prefix hCG| j , which is a CG-history, such that projS (hCG| j) = h| j . But then,

PCGP(h| j,a j+1) = CGP(hCG| j) ∈ ω(〈s j
T , s j

S 〉,a j+1). As k j ∈ ω(〈s j
T , s j

S 〉,a j+1), we get that PCGP can behave in the same way
as P , along h, by properly picking, at every step, an element from the set returned by ω. Since � was arbitrarily chosen, this
result extends to all histories h ∈Hτ ,P . �

We close this section by observing that compositions can be generated just-in-time, based on both the CG and ob-
servability of behavior and environment states. Intuitively, the CG is analogous to a sort of “meta-plan” or a stateful
non-deterministic “complete universal plan”, which keeps all the existing plans at its disposal and selects the one to follow
for next action, possibly with contingent decisions.6

Example 5. The CG can decide how to delegate actions, as requests from target arm BT come in. For instance, if a clean
action is requested after a block has been prepared, the CG knows it ought to delegate such a request to arm BA , so as
to stay within the ND-simulation relation. While physically possible, delegating clean to arm BB would bring the enacted
system into state 〈〈a1,b1, c1〉, e3〉 which is known not to be in ND-simulation with the (enacted) target.

4. On behavior failures

In discussing the behavior composition problem, we have, so far, assumed implicitly that all (available) component
modules are fully reliable, i.e., that they are always available, and behave “correctly”, relative to their specification. However,
there are many situations and domains in which full reliability of components might not be an adequate assumption. For
example, in multi-agent complex and highly dynamic domains, one can rely neither on total availability nor on reliability
of the existing modules, which may stop being available due to a variety of reasons, e.g.: devices may break down, agents
may decide to stop cooperating, communication with agents may drop, exogenous events may change the state of the
environment, and many others; also, behaviors may possibly re-appear into the system at some later stage, thus creating
new “composition opportunities” for the controller.

Generally speaking, behavior and environment specifications can be seen as contracts, and failures, such as those de-
scribed above, can be interpreted as “breaches” of such contracts. In this section, we identify some classes of failures and
propose respective procedures to “repair” the controller under execution when the failure occurred. Specifically, we identify
five core ways of breaking contracts7:

(a) A behavior temporarily freezes, that is, it stops responding and remains still, then eventually resumes in the same state
it was in. As a result, while frozen, the controller cannot delegate actions to it.

(b) A behavior unexpectedly and arbitrarily (i.e., without respecting its transition relation) changes its current state. The
controller can in principle keep delegating actions to it, but it must take into account the behavior’s new state.

(c) The environment unexpectedly and arbitrarily (i.e., without respecting its transition relation) changes its current state.
The controller has to take into account that this affects both the target and the available behaviors.

(d) A behavior dies, that is, it becomes permanently unavailable. The controller has to completely stop delegating actions to
it.

(e) A behavior that was assumed dead unexpectedly resumes operation starting in a certain state. The controller can exploit
this opportunity by delegating actions to the resumed behavior, again.

Previous composition techniques (e.g., [14,30,79]) do not address these cases, as they assume that controllers always deal
with fully reliable modules. Consequently, upon any of the above failures, we are only left with the (default) option of

6 As stated, we defined controllers to be as general as possible. Note that since traces are unbounded in nature, it is not immediate that finite controller
are enough. Indeed, the notion of simulation includes a local condition on states as well as a transition condition that captures how states evolve over time.

7 Obviously, we assume an infrastructure that is able to distinguish between these failures.

G. De Giacomo et al. / Artificial Intelligence 196 (2013) 106–142 119
“re-planning” from scratch for a whole new controller, if any. What we shall prove in this section is that the simulation-
based technique presented in Section 3 is intrinsically robust, in the sense of being able to deal with unexpected failures by
suitably refining the solution at hand, either on-the-fly (for cases (a), (b), and (c)), or parsimoniously (for cases (d) and (e)),
thus avoiding full re-planning.

4.1. Reactive adaptability

We start by showing that Theorem 3 provides us with a sound and complete technique for dealing with failure cases (a),
(b) and (c), without requiring any re-planning step. As a matter of fact, once we have the controller generator, actual
compositions can be generated “just-in-time”, as (target compliant) actions are requested. In other words, one can delay
the choice performed by the selection function CGP until run-time, when contingent information, such as actual behavior
availability, can be taken into account. This ability provides the executor with great flexibility, as, in a sense, it can “switch”
compositions online, as needed. A controller generated in this manner is referred to as a just-in-time (JIT) generated controller,
and is denoted as CGPjit . Below, we discuss the effectiveness of JIT generated controllers in cases (a), (b) and (c).

Freezing of behaviors. A JIT generated controller CGPjit fully addresses temporary behavior freezing, i.e., failure case (a).
Indeed, if a behavior is temporarily frozen, the CGPjit simply stops delegating actions to it, and continues with any other
possible choice.8 Obviously, if no other choices are possible, the CGPjit is left with no other option than waiting for the
frozen behavior to come back.

State change of behaviors and environment. JIT generated controllers also address unexpected changes in the internal state
of behaviors and/or of the environment, that is, failure cases (b) and (c).9 To understand this, let us denote by TS (zS) the
variant of the enacted system behavior whose initial state is zS instead of sS0. Similarly, let us denote by TT (zT) the enacted
target behavior whose initial state is zT instead of sT 0. Next, suppose that the state of the enacted system behavior changes,
unexpectedly, to state ŝS , due to a change of the state of a behavior (or a set of behaviors) and/or of the environment. Then,
if sT is the state of the target when the failure happened, one should recompute the composition with the system starting
in ŝS and the target starting from ŝT , where ŝT is just sT with its environment state replaced by the one in ŝS (note ŝT = sT

for failures of type (b)). Observe, though, that ND-simulation relations are independent from the initial states of both the
target and the system enacted behaviors. Therefore, the largest ND-simulation relation between TT (ŝT) and TS (ŝS) is, in
fact, relation �, that we already computed. This implies that we can still use the very same controller generator CG (and
the same just-in-time generated controller CGPjit as well), with the guarantee that all compositions of the system variant
for the target variant, if any, are still captured by the CG (and CGPjit too). Put it all together, we only need to check whether
ŝT � ŝS , and, if so, continue to use CGPjit (now from 0-length CG history h0

CG = 〈ŝT , ŝS 〉).

Example 6. Upon an unexpected change in the system, in the environment or any available behavior, the CG can react/adapt
to the change immediately. For instance, referring to Fig. 4, suppose the target is in state t3, the environment in state e3,
and the available behaviors B1, B2, and B3, are in their states a2, b2, and c1, respectively. That is, TT is in 〈t3, e3〉, and TS
is in 〈〈a2,b2, c1〉, e3〉. Suppose that, unexpectedly, the environment happens to change to state e2—someone has recharged
the water tank. All that is needed in this case is to check whether the new states of TT and TS , namely 〈t3, e2〉 and
〈〈a2,b2, c1〉, e2〉, respectively, are still related according to relation �. Since they are, the CG continues the realization of the
target from such (new) enacted states.

Computing reactive compositions on-the-fly. Observe that a JIT generated controller CGPjit can be computed on-the-fly by
storing only the ND-simulation relation �. In fact, at each point, the only information required for the next choice is
ω(σ ,a), where σ ∈ Σ (recall Σ = �) is formed by the current state of the enacted target behavior and that of the enacted
system behavior. Now, in order to compute ω(σ ,a) we only need to know �.

4.2. Parsimonious refinement

As seen above, failure cases (a), (b), and (c), do not need any particular effort to be dealt with. However, when consider-
ing cases (d) and (e), things change significantly: a simple reactive approach is no longer sufficient, and more complex
refinement techniques are required. Concretely, suppose that the current composition that is being executed—from an
ND-simulation relation—becomes suddenly invalid, due to a disruption in the available system (e.g., a behavior becomes
unavailable). While the current ND-simulation relation behind the composition is no longer sound, it may not be necessary
to recompute the new ND-simulation relation (and a corresponding composition, if any) “from scratch”. As a matter of fact,
we shall show here that the ND-simulation at hand can be refined in an intelligent manner, so as to re-use previous compu-
tation effort. Technically, using the current ND-simulation relation and the nature of the disruption, one can identify upper

8 If more information is at hand, the CGPjit may use it to choose in an informed way, though this is out of the scope of this paper.
9 Although hardly as meaningful as the ones above, unforeseen changes in the target state can be accounted for in a similar way.

120 G. De Giacomo et al. / Artificial Intelligence 196 (2013) 106–142
Algorithm 2: NDSP(TT ,TS ,Rinit,Rsure).

1 R := Rinit \Rsure;
2 R := R \ {〈sT , sS 〉 | (env(sT) �= env(sS)) ∨ (sT ∈ Q T ∧ sS /∈ QS)};
3 repeat

4 R := (R \ C), where C is the set of 〈sT , sS 〉 ∈ R such that there exists an action a ∈ A such that for each k there is a transition sT
a−→ s′

T in
TT such that either:

(a) there is no transition sS
a,k−→ s′

S in TS such that env(s′
T) = env(s′

S); or

(b) there exists a transition sS
a,k−→ s′

S in TS such that env(s′
T) = env(s′

S)

but 〈s′
T , s′

S 〉 /∈ R∪Rsure .

5 until (C = ∅);
6 return R∪Rsure;

and lower bounds for the new ND-simulation relation that needs to be computed due to the disruption. The upper bound
will rule out tuples that are known not to be in the new ND-simulation, whereas the lower bound will provide those tuples
that ought to be in such relation.

To that end, we define a new algorithm, namely Algorithm 2 (NDSP), that instead of computing the largest ND-simulation
relation from scratch (as done by Algorithm 1), it does so by leveraging on known lower (Rinit) and upper (Rsure) bounds.
More specifically, the algorithm—a (generalized) parametric version of Algorithm 1—computes the largest ND-simulation
relation between TT and TS that is contained in the initial relation Rinit ⊆ ST × SS and assuming that such resulting
relation contains relation Rsure ⊆ ST × SS . Of course, not every upper and lower bounds are reasonable. We will present
below a set of results that tells us how to use such algorithm in order to refine or adapt an existing (ND-simulation) relation
at hand. As one can observe, the NDSP algorithm works the same way as algorithm NDS, except that: (i) instead of starting
from ST × SS , it takes the initial set Rinit as input; and (ii) neglects all pairs contained in Rsure for removal, as they are
assumed to be (surely) included in the ND-simulation relation that is being computed. As expected, when Rinit = ST × SS
and Rsure = ∅, algorithm NDSP behaves exactly as NDS does. Indeed, this is a special case of the next result, which identifies
sufficient conditions on the new parameters to guarantee that the outputs of NDSP and NDS match.

Lemma 4. Consider a system S = {B1, . . . ,Bn,E} and a target behavior BT , and let TS and TT be their respective enacted behaviors.
If Rsure ⊆ NDS(TT ,TS) ⊆Rinit , then NDSP(TT ,TS ,Rinit,Rsure) = NDS(TT ,TS).

Proof. Let Ri
1 and Ri

2 be the sets representing R in algorithms NDS and NDSP, respectively, after the i-th repeat-loop
iteration. Similarly, define C i

1 and C i
2. Moreover, assume that NDSP and NDS require n2 and n1, respectively, repeat-loop

iterations (clearly, n2 � n1).
First, let us prove, by induction on i, that Ri

2 ∪Rsure ⊆Ri
1. It is obvious that R0

2 ∪Rsure ⊆R0
1 (observe Rinit ⊆ ST × SS).

Suppose now that Rr
2 ∪Rsure ⊆Rr

1, with r < n1. Let π = 〈sT , sS 〉 ∈Rr+1
2 ∪Rsure , but π /∈Rr+1

1 . Since neither Ri
1 nor Ri

2 are
ever expanded along iterations, it is the case that π /∈ Rsure (otherwise π ∈ NDS(TT ,TS) and π ∈ Rr+1

1 , as NDS(TT ,TS) ⊆
Rr+1

1), and thus π ∈ Rr+1
2 , π ∈ Rr

2, and π ∈ Rr
1. Because π /∈ Rr+1

1 , π was deleted at the r-th loop iteration of NDS, that

is, π ∈ Cr
1. This means that there exists an action â ∈ A such that for each k there is a transition sT

â−→ s′
T in TT such that

either (a) or (b) of step 3 of NDS holds. If case (a) holds, then also π ∈ Cr
2 trivially holds. If case (b) applies for some k, then

there exists a tuple π ′
k = 〈s′

T , s′
S 〉 such that sS

â,k−→ s′
S in TS , but π ′

k /∈ Rr
1. By induction hypothesis, π ′

k /∈ Rr
2 ∪Rsure . Thus,

action â and tuple π ′
k do indeed satisfy the requirement of the step 4 of NDSP. Hence, π ∈ Cr

2. We conclude that if either

(a) or (b) of NDS′ step 3 hold then π ∈ Cr
2 and, consequently, π /∈ Rr+1

2 . Contradiction. Therefore, Rr+1
2 ∪Rsure ⊆ Rr+1

1 and
NDSP(Tt ,TS ,Rinit,Rsure) ⊆ NDS(Tt ,TS).

Next, we prove that NDS(TT ,TS) ⊆ NDSP(TT ,TS ,Rinit,Rsure). To that end, we shall prove, by induction on i, that
NDS(TT ,TS) ⊆ Ri

2 ∪ Rsure . Since NDS(TT ,TS) ⊆ Rinit , NDS(TT ,TS) ⊆ R0
2 ∪ Rsure . Next, suppose that NDS(TT ,TS) ⊆ Rr

2 ∪
Rsure , for some r < n2, and let π = 〈sT , sS 〉 ∈ NDS(TT ,TS) but π /∈ Rr+1

2 ∪Rsure . By induction hypothesis, π ∈ Rr
2 ∪ Rsure ,

and π was therefore removed from R2 in the r-th iteration of the NDSP algorithm. This means that there exists an ac-

tion â ∈ A such that for each k there is a transition sT
â−→ s′

T in TS such that either (a) or (b) of the fourth step in

NDSP holds. In particular, if case (b) applies for some k, then there exists a tuple π ′
k = 〈s′

T , s′
S 〉 such that sS

â,k−→ s′
S in TS ,

but π ′
k /∈ Rr

2 ∪ Rsure . By the induction hypothesis, π ′
k /∈ NDS(TT ,TS) and thus π ′

k /∈ Rn1
1 . However, since π ∈ NDS(TT ,TS),

π ∈ Rn1
1 . But, by using the same action â, together with the corresponding π ′

k /∈ Rn1
1 tuples, π is a candidate to be re-

moved from set Rn1
1 , i.e., π ∈ Cn1

1 . Then, algorithm NDS requires more than n1, a contradiction. Hence, π ∈ Rr
2 ∪Rsure and

NDS(TT ,TS) ⊆ NDSP(Tt,TS ,Rinit,Rsure) follows. �
Next, we introduce convenient notations to shrink and expand systems and ND-simulation relations. Given a system

S = 〈B1, . . . ,Bn,E〉 and a set of behavior indexes W ⊆ {1, . . . ,n}, we denote by S(W) the system derived from S by

G. De Giacomo et al. / Artificial Intelligence 196 (2013) 106–142 121
keeping only the behaviors Bi such that i ∈ W (note S = S({1, . . . ,n})). Also, for an enacted target behavior TT over E , we
denote by �W the largest ND-simulation relation of TT by TS(W) . Finally, given a further set of indexes U ⊆ {1, . . . ,n} such
that W ∩ U = ∅, we denote by �W ⊗ U the relation obtained from �W , by (trivially) putting back into the system all Bi
such that i ∈ U . Formally, this latter operation can be defined as follows (without loss of generality, assume W = {1, . . . , �}
and U = {� + 1, . . . ,m}):

�W ⊗ U = {〈sT , s′〉 ∣∣ s′ = 〈b1, . . . ,b�,b�+1, . . . ,bm, e〉 such that 〈sT , 〈b1, . . . ,b�, e〉〉 ∈ �W and bi is a state of Bi,

for i ∈ {� + 1, . . . ,m}}.
Intuitively, adding a set of behaviors to a system can only extend, and never reduce, the capabilities of the system. Indeed,
the additional behaviors do not constrain in any way those already present, while, in general, make the system able to
execute more actions. In particular, if a system can simulate a target behavior (on some environment), we expect it to have
the same ability, and possibly more, after introducing additional behaviors. The next result proves this intuition, i.e., that
when “putting back” a set of behaviors U into system S(W), by extending �W as shown above, we are guaranteed to
obtain an ND-simulation relation for the (expanded) system S(W ∪ U), though not necessarily the largest one.

Lemma 5. Given a system S = {B1, . . . ,Bn,E}, a target behavior BT and its respective enacted behavior TT over E , let W , U ⊆
{1, . . . ,n} be such that W ∩ U = ∅. The following hold:

• �W ⊗ U ⊆ �W ∪U ;
• �W ⊗ U is an ND-simulation relation of TT by TS(W ∪U) .

Proof. Without loss of generality, consider W = {1, . . . , �}, and U = {�+ 1, . . . ,m}. Suppose that 〈〈t, e〉, 〈b1, . . . ,b�,b�+1, . . . ,

bm, e′〉〉 ∈ �W ⊗ U . Due to the definition of operation ⊗, it is the case that 〈t, e〉�W 〈b1, . . . ,b�, e′〉. This means that e = e′
and that for each a ∈ A, there exists index ka ∈ W satisfying the requirements of the ND-simulation relation definition for
system S(W). Then, 〈t, e〉 �W ∪U 〈b1, . . . ,b�,b�+1, . . . ,bm, e′〉. Indeed, e = e′ , and for every a ∈ A, the same index ka would
also satisfy the requirements of the ND-simulation definition for system S(W ∪ U)—the new behaviors are not used and
they cannot either remove or inhibit other behaviors capabilities. This shows that �W ⊗ U is an ND-simulation relation of
TT by TS(W ∪U) and, hence, �W ⊗ U ⊆ �W ∪U , as �W ∪U is the largest ND-simulation relation of TT by TS(W ∪U) . �

As it turns out, adding new behaviors has a minimal impact on the ND-simulation relation, that can be recomputed
through simple projection operations. Unfortunately, this is not the case when behaviors become unavailable. As discussed
below, this has, in general, a disruptive impact on the ND-simulation relation, which, in order to be recomputed, requires
more than just local changes. To see this, let F ⊆ W be the set of indexes of those behaviors that become permanently
unavailable, and denote by �W|F the relation obtained from �W by projecting out, that is dropping, the terms/arguments
corresponding to (failed) behaviors Bi such that i ∈ F . In general, the so-obtained relation just contains (possibly properly)
the new largest ND-simulation after failure. Specifically, we have:

Lemma 6. For S and TT as above, let W , F ⊆ {1, . . . ,n} be such that F ⊆ W . The following holds:

• �(W \F) ⊆ �W|F ;
• �W|F may not be an ND-simulation relation of TT by TS(W \F) .

Proof. By Lemma 5, �(W \F) ⊗ F ⊆ �(W \F)∪F , that is, �(W \F) ⊗ F ⊆ �W . By projecting out F on both relations, we get
�(W \F) ⊗ F |F ⊆ �W|F . Then, since � ⊗ X |X = � for any � and X , �(W \F) ⊆ �W|F follows.

It is immediate to find cases where the containment is proper, and hence the second part follows. �
Notice that even though �W is the largest ND-simulation relation when all behaviors in W are active, the projected

relation �W |F is not necessarily even an ND-simulation relation for the (contracted) system S(W \ F).
In light of these results, we next show how to deal with failure cases (d) and (e).

Permanent unavailability. When a behavior becomes permanently unavailable (cf. case (d)), one cannot wait for it to resume.
Instead, one can either continue to executing the composition (controller) and just “hope for the best”, i.e., that the failed
behavior will not be actually required (because, e.g., some actions occurring in the target behavior are not executed at
runtime), or one can “refine” the current composition so as to continue guaranteeing the full realization of the target
behavior.

Assume that, at some point, while a composition built from an ND-simulation relation is executing, a set of available
behaviors become unavailable. Clearly, the current composition is no longer sound (as some required behaviors might be un-
available), the ND-simulation relation is no longer useful, and one is required to recompute a new one (and a corresponding

122 G. De Giacomo et al. / Artificial Intelligence 196 (2013) 106–142
Fig. 5. An ND-simulation relation between enacted target behavior TT and enacted system TS({1,3}) .

composition) in order to keep executing the target behavior. Of course, the new ND-simulation relation can always be com-
puted “from scratch”, by considering only the set of currently available behaviors. However, from the computational point
of view this might not be the best solution, as it does not take advantage of what has been previously computed. In the
following, we propose a different approach, based on the above results, that aims at minimizing the required computational
effort by refining, rather than recomputing, the ND-simulation relation at hand.

Lemma 6 essentially says that, when some behaviors become unavailable, in order to compute the new ND-simulation
relation, it is enough to execute the NDSP algorithm by instantiating Rinit with the relation obtained by projecting out the
failed components from the current ND-simulation relation. This yields, in general, substantially less algorithm iterations
than NDS. Indeed, as behaviors become unavailable, the effort to obtain the new largest ND-simulation relation is systematic
and incremental, in that no tuples that were previously discarded are considered again. This, along with Lemma 4 leads to
the following

Theorem 7. Consider S , BT and TT as above. Let W ⊆ {1, . . . ,n} contain the indexes of the behaviors currently working in S and let
F ⊆ W contain the indexes of the behaviors that, at a given point, become permanently unavailable. Then, for every relation β such
that β ⊆ �(W \F) , the following holds:

�(W \F) = NDSP(TT ,TS(W \F),�W |F , β).

Proof. Direct consequence of Lemmas 4 and 6. �
Example 7. Suppose that arm BT (Fig. 1) is being successfully realized by means of controller P1 (Fig. 3). Assume that
arm B2 breaks down in state b3, just after painting a block. With B2 out, controller P1 cannot guarantee BT realization
anymore—yet, interestingly, this can now be done by controller P2 on the new (unexpected) sub-system. To handle such
a failure case, first, behavior B2 is projected out from the ND-simulation relation �{1,2,3} , thus getting �{1,2,3}|{2}; then,
the new largest ND-simulation relation is computed with NDSP starting from relation �{1,2,3}|{2} , thus obtaining �{1,3}—
from which a new CG and a corresponding composition can be derived. The result is shown in Fig. 5, where the enacted
target behavior is the same as in Fig. 4(b), reported here for convenience. Like in Example 4, matching filling patterns
individuate pairs in the ND-simulation relation. Observe that tuple 〈〈t3, e3〉, 〈〈a2, c1〉, e3〉〉 belongs to relation �{1,2,3}|{2} , but
is filtered out by the NDSP algorithm (the original tuple 〈〈t3, e3〉, 〈〈a2,b2, c1〉, e3〉〉 ∈ �{1,2,3} relied on B2 for maintaining
the ND-simulation).

Resumed behaviors. Consider now the situation where the operating behaviors are those with indexes in W , and others,
supposed to be permanently unavailable, become unexpectedly available (cf. case (e)). Let U be the set of indexes of such
behaviors, with U ∩ W = ∅. As already observed, this never reduces the capabilities of the whole system but could enhance
it with more choices, or, differently said, after behaviors in U become available again, the system can still realize at least
the same executions as before. However, if one wants to exploit the further capabilities brought by the resumed behaviors,
the new largest ND-simulation relation �(W ∪U) must be computed. In doing so, one can leverage on the fact that �(W ∪U)

contains relation �W ⊗U (cf. Lemma 5) and completely neglect, for potential filtering, tuples in �W ⊗U . That is, such tuples
can be provided in input to the NDSP algorithm as the “sure set”.

G. De Giacomo et al. / Artificial Intelligence 196 (2013) 106–142 123
Theorem 8. Consider S , BT and TT as above. Let W ⊆ {1, . . . ,n} contain the indexes of the behaviors currently working in S , and
U ⊆ {1, . . . ,n}, with W ∩ U = ∅, the indexes of those that were assumed permanently unavailable but have unexpectedly resumed.
Then, for every set α such that �(W ∪U)⊆ α, the following holds:

�(W ∪U) = NDSP(TT ,TS(W ∪U),α,�W ⊗ U).

Proof. Consequence of Lemmas 4 and 5. �
As it turns out, this requires, in general, less iterations than those required for computing the ND-simulation relation

from scratch, as tuples considered by NDS are not processed by NDSP. Observe that even if new behaviors not appearing in
{1, . . . ,n} are included in U , the thesis of Lemma 5 still holds. Therefore, if the system is enriched with new behaviors, one
can use the largest ND-simulation relation previously computed, in order to save computational efforts, when computing
the new ND-simulation relation.

Reusing previously computed ND-simulations. Theorems 7 and 8 essentially show that, by using algorithm NDSP, when a be-
havior resumes or becomes unavailable and a new ND-simulation relation needs to be re-computed, one can take advantage
of the ND-simulation relation previously computed. In fact, such theorems can be combined so as to reuse not only the last
ND-simulation relation computed, but all those computed in the past (assuming they have been stored).

To see this, let W ⊆ 2{1,...,n} , such that {1, . . . ,n} ∈ W , be a set of sets of behavior indices, and assume that the largest
ND-simulation relation for each set in W has been already computed and stored. For W /∈ W , in order to compute the
(largest) ND-simulation relation �W , one can first define the following sets:

ᾱ = ⋂
{W ′∈�W

W } �W ′ |(W ′\W);
β̄ = ⋃

{W ′∈�W
W } �W ′ ⊗ (W \ W ′);

where �W
W and �W

W stand for the set of tightest supersets and subsets, respectively, of W in W , namely:

�W
W = {

W ′ ∈ W
∣∣ W ⊆ W ′ ∧ ∀V ∈ W.W ⊆ V → V �⊂ W ′};

�W
W = {

W ′ ∈ W
∣∣ W ′ ⊆ W ∧ ∀V ∈ W.V ⊆ W → W ′ �⊂ V ′}.

Then, by applying Theorems 7 and 8, �W can be computed as follows:

�W = NDSP(TT ,TS(W), ᾱ, β̄).

Clearly, by using NDSP(TT ,TS (W), ᾱ, β̄) to compute �W , the computations already carried out are maximally reused to
devise other ND-simulation relations, as ᾱ and β̄ are the tightest sets one can obtain starting from the ND-simulation
relations for sets in W . Of course, once computed �W , CGPjit can be immediately computed on-the-fly, as before.

We close this section by noting that the kind of failures considered can be seen as core classes of breach-of-contract, with
respect to the specification. Other forms of failures are clearly conceivable [88,64,55], which assume additional information
at hand—e.g., a module may announce unavailability duration and/or the state (or possible states) it will join back—and that
can be exploited for failure reaction, thus opening interesting research directions. However, covering a wider range of failure
cases is out of the scope of the present paper, and we limit our attention only to the classes presented above.

5. Simulation and safety games

In previous sections, we have shown that the behavior composition problem can be reduced to the problem of finding an
ND-simulation relation between two transition systems that, together, describe the original problem instance. Moreover, we
have discussed optimization approaches to obtain computational benefits, when computing a new ND-simulation relation in
response to different type of failures. In the rest of the paper, we adopt a more pragmatic perspective, and focus on finding
effective ways for actually computing an ND-simulation relation. Concretely, we will demonstrate how controller generators
can be synthesized by applying model checking techniques.

We begin by laying down the theoretical bases for actually solving the behavior composition problem, and show that
an ND-simulation relation can be constructed by resorting to infinite games. In particular, we argue that constructing an
ND-simulation relation is equivalent to building a winning strategy in a safety game (cf. [5,6,69]).10 The main motivation
behind the use of game structures is the availability of software tools, such as tlv [71], Lily [44], Anzu [45], and Mocha [4],
which provide (i) effective procedures for strategy computation; and (ii) convenient languages for representing the problem
instance in a modular and high-level manner. In fact, the next section explains in detail how to solve behavior composition
problem instances using the tlv system.

10 Safety games are those where some condition—the invariant property—needs to always be maintained, in our case: TS is always able to “locally” (i.e.,
state-by-state) mimic TT .

124 G. De Giacomo et al. / Artificial Intelligence 196 (2013) 106–142
5.1. Safety-game structures

We consider the notion of game structure proposed in [69], specialize it to safety games (see, e.g., [5]), and adapt liter-
ature results [5,6] to solve the resulting problem. Roughly speaking, a safety-game structure represents a game played by
two players, system and controller,11 where, at each turn, the former moves and the latter replies. Moves are subject to
constraints (i.e., only some moves/replies are allowed in a given game state). Intuitively, the controller ’s objective is to
always be able to reply to system ’s moves so as to satisfy a given (goal) property, while the system tries to avoid this.

Throughout the rest of the paper, we assume to deal with infinite-play (though finite state) games, possibly obtained
by introducing fake loops, as customary, e.g., in ltl verification. Infinite plays are assumed for technical convenience only,
so as to handle all plays—finite or infinite—in a uniform way. This assumption, however, does not limit the power of game
structures (for technical details about plays, see below).

A safety-game structure (�-GS, for short) is a tuple G = 〈V,X ,Y,Θ,ρs,ρc,�ϕ〉, where:

• V = {v1, . . . , vn} is the finite set of state variables, which range over finite domains V 1, . . . , Vn , respectively. Set V is
partitioned into sets X = {v1, . . . , vm} (the system variables) and Y = {vm+1, . . . , vn} (the controller variables). A valuation
of variables in V is a total function val : V −→ ⋃n

i=1 V i such that val(vi) ∈ V i , for each i ∈ {1, . . . ,n}. For convenience,
we represent valuations as vectors �s = 〈s1, . . . , sn〉 ∈ V , where V = V 1 × · · ·× Vn and si = val(vi), for each i ∈ {1, . . . ,n}.
Consequently, (sub)valuations of variables in X (resp. Y) are represented by vectors �x ∈ X (�y ∈ Y), with X = V 1 × · · · ×
Vm (Y = Vm+1 × · · · × Vn). A game state is a valuation �s = 〈s1, . . . , sn〉 ∈ V , and its sub-vectors �x = 〈s1, . . . , sm〉 ∈ X and
�y = 〈sm+1, . . . , sn〉 ∈ Y are the corresponding system and controller states, respectively. By a slight abuse of notation,
we shall also write �s = 〈�x, �y〉.

• Θ is a formula representing the initial states of the game. Technically, it is a boolean combination of expressions of the
form (vi = si), where vi ∈ V , for some i ∈ {1, . . . ,n}, and si ∈ V i . Each of such expressions is an assignment constraint,
satisfied by state �s = 〈s1, . . . , sn〉 if val(vi) = si . In general, not all variables in V are required to occur in Θ . Given a
game state 〈�x, �y〉 ∈ V , we write 〈�x, �y〉 |� Θ if 〈�x, �y〉 satisfies, in the obvious way, the boolean combination of assignment
constraints specified by Θ .

• ρs ⊆ X × Y × X is the system transition relation, which relates each game state to its possible successor system states.
• ρc ⊆ X × Y × X × Y is the controller transition relation, relating each game state together with one its successor system

states (i.e., move), to possible successor controller states.
• �ϕ is the goal formula, representing the invariant property to be guaranteed, where ϕ has the same form as Θ above.

The above definition is completed by enforcing the infinite-play game assumption, informally stated above, by requiring that
for each game state 〈�x, �y〉 ∈ V :

• there exists an �x′ ∈ X such that ρs(�x, �y, �x′); and
• for all �x′ such that ρs(�x, �y, �x′), there exists a �y′ ∈ Y such that ρc(�x, �y, �x′, �y′).

In the rest of the paper, when no ambiguity arises, we will use “game structure” or simply “game” to refer to a safety-game
structure. The idea behind game structures is that, with the game in some state �s = 〈�x, �y〉, the system moves, by choosing �x′
such that ρs(�x, �y, �x′), and the controller then replies, by choosing �y′ such that ρc(�x, �y, �x′, �y′). Each pair of system move and
subsequent controller reply defines a game transition from �s = 〈�x, �y〉 to state �s′ = 〈�x′, �y′〉. Note that the controller is allowed
to observe the system move before replying, as witnessed by the presence of �x′ in ρc(�x, �y, �x′, �y′).

With the formal notion of games at hand, let us next define the corresponding dynamics and the notion of winning in a
game. A game state 〈�x′, �y′〉 is a successor of a state 〈�x, �y〉 iff ρs(�x, �y, �x′) and ρc(�x, �y, �x′, �y′). A game play starting from state
〈�x0, �y0〉 ∈ V is an infinite sequence of states η = 〈�x0, �y0〉〈�x1, �y1〉 · · · such that for each j � 0, 〈�x j+1, �y j+1〉 is a successor of
〈�x j, �y j〉. Clearly, by the infinite-play assumption, every game always admits at least a play. Intuitively, plays capture (infinite)
sequences of game states obtained by alternating system moves and controller replies. A play is said to be winning (for the
controller) if it satisfies the winning condition �ϕ , that is, 〈�xi, �yi〉 |� ϕ , for all i � 0. The intuition is that the play remains
within a set of safe states, i.e., which satisfy the invariant property.

A (controller) strategy is a partial function f : (X × Y) × X+ 	→ Y such that for every (finite) sequence of
game states λ : 〈�x0, �y0〉 · · · 〈�xn, �yn〉 and for every system state �x′ ∈ X such that ρs(�xn, �yn, �x′), it is the case that
ρc(�xn, �yn, �x′, f (〈�x0, �y0〉, �x1 · · · �xn�x′)) holds. A play η = 〈�x0, �y0〉〈�x1, �y1〉 · · · is compliant with a strategy f if �y� = f (〈�x0, �y0〉,
�x1 · · · �x�), for all � > 0, that is, intuitively, all controller replies in the play match those the strategy prescribes. A strategy f
is winning from a state �s if all plays starting from �s and compliant with f are winning. A strategy f is winning for a game
G if f is winning from all of G ’s initial states. We say that a game is winning (for the controller) if there exists a winning
strategy for it, and that a game state is winning if there exists a winning strategy from that state. The winning set of a game
G is the set of all winning states of that game.

11 To avoid confusion with our previous notation, we adopt a notation different from that of [69], in which the players are the environment (our system)
and the system (our controller).

G. De Giacomo et al. / Artificial Intelligence 196 (2013) 106–142 125
Algorithm 3: WIN—Computes a safety-game structure’s winning set.

1 W ′ := {〈�x, �y〉 ∈ V | 〈�x, �y〉 |� ϕ};
2 repeat
3 W := W ′ ; // current candidate set

4 W ′ := W ∩ π(W) ; // compute next candidate set
5 until (W = W ′);
6 return W ;

Intuitively, a game is winning if the controller can control the game evolution, through a winning strategy that affects
only Y variables, so as to guarantee that the winning condition ϕ holds along all game plays, no matter how the system
moves happen to be. In order to prove that a game is winning, one thus needs to prove the existence of a winning strategy,
which is clearly equivalent to showing that the set of game’s initial states is a subset of the winning set.

Next, we show how one can compute the winning set of a given safety-game structure G = 〈V,X ,Y,Θ,ρs,ρc,�ϕ〉. The
key ingredient is the following operator π : 2V −→ 2V (see [5]):

π(P)
.= {〈�x, �y〉 ∈ V | ∀ �x′.ρs

(�x, �y, �x′) → ∃ �y′.ρc
(�x, �y, �x′, �y′) ∧ 〈�x′, �y′〉 ∈ P

}
.

Intuitively, given a set of game states P ⊆ V , π(P) denotes the set of P ’s controllable predecessors, that is, the set of all game
states from which the controller can force the play to reach a state in P , no matter how the system happens to move. Using
this operator, Algorithm 3 [5] can be applied to compute the set of all G ’s winning states, as proven below.

The algorithm essentially computes a fixpoint, starting from the set of all game states that satisfy the goal formula ϕ .
After the first iteration, W ′ (the next “candidate” set) contains all those game states that satisfy ϕ , and from which the
controller has a strategy to force, in one step, the game to a state that satisfies ϕ . The process is then iterated, by refining
the current candidate set W , ruling out all those states that are not controllable predecessors of W . At the end of the
n-th iteration, W contains all those game states from which the controller has a strategy to make the game traverse n
states satisfying ϕ , independently of system moves. When a fixpoint is reached, n can be replaced by ∞. Termination of the
algorithm is evident, as no new states are ever added to W . The following theorem, which shows that the obtained set is
indeed the winning set, rephrases previous results from [5] and [6] within our game framework.

Theorem 9. Let G = 〈V,X ,Y,Θ,ρs,ρc,�ϕ〉 be a safety-game structure as above, and let W be obtained by running Algorithm 3
on G. Given a game state 〈�x0, �y0〉 ∈ V , there exists a winning strategy from 〈�x0, �y0〉 if and only if 〈�x0, �y0〉 ∈ W .

Proof. (If Part) When the algorithm returns, it is the case that W ′ = W . Being W ′ = W ∩ π(W), we have that W =
W ∩ π(W) and therefore W ⊆ π(W). Hence, by definition of π(W), the following holds:

∀〈�x, �y〉 ∈ W , ∀�x′ ∈ X .ρs
(�x, �y, �x′) → Φ

(�x, �y, �x′) �= ∅, (1)

where Φ(�x, �y, �x′) = {�y′ | ρc(�x, �y, �x′, �y′) ∧ 〈�x′, �y′〉 ∈ W } represents, informally, the set of all “good” moves when the system
has just played �x′ from game state 〈�x, �y〉.

Using set Φ , we consider next any strategy f (〈�x, �y〉, λ) satisfying the following constraint (here � � 1):

f
(〈�x0, �y0〉, �x1 · · · �x�

) ∈ Φ(�x�−1, �y�−1, �x�), whenever Φ(�x�−1, �y�−1, �x�) �= ∅,

where �y�−1 = f (〈�x0, �y0〉, �x1 · · · �x�−1), when � > 1 (when � = 1, �y�−1 = �y0).
Next, let us prove that strategy f is indeed a winning strategy from the initial game state. To that end, all we have to

do is to show that for any game play η = 〈�x0, �y0〉〈�x1, �y1〉 · · · from game state 〈�x0, �y0〉 and compliant with strategy f , it is
the case that 〈�xi, �yi〉 ∈ W , for all i � 0. Observe that for any game state 〈�x, �y〉 ∈ W , it is the case that 〈�x, �y〉 |� ϕ . This is
because the algorithm starts exactly with the game states that satisfy ϕ (line 1) and only removes states from the candidate
set (line 4). So, let us prove that 〈�xi, �yi〉 ∈ W , for all i � 0, by induction on the index i. The base case when i = 0 is trivial,
as 〈�x0, �y0〉 ∈ W holds by assumption.

Next, suppose that for 〈�xi, �yi〉 ∈ W , for all i � k, for some k � 0. Because η is a game play, it is the case
that ρs(�xk, �yk, �xk+1). Also, by the induction hypothesis, 〈�xk, �yk〉 ∈ W . Therefore, by applying Eq. (1), we have that
Φ(�xk, �yk, �xk+1) �= ∅. From this—together with the fact that �yk = f (〈�x0, �y0〉, �x1 · · · �xk) when k > 0, as play η is compliant
with f —it follows that f (〈�x0, �y0〉, �x1 · · · �xk+1) = �yk+1 ∈ Φ(�xk, �yk, �xk+1), and by definition of set Φ , 〈�xk+1, �yk+1〉 ∈ W follows.

(Only-If Part) Let W i be the version of W at i-th iteration (at line 5), where 1 � i � N , assuming the algorithm ter-
minates in N iterations and hence it returns W N . We show, by induction on index i, that for any game state 〈�x, �y〉, if
〈�x, �y〉 /∈ W i , and hence 〈�x, �y〉 /∈ W N , then the system can always force from state 〈�x, �y〉 to reach, in at most i steps, a state
〈�x′, �y′〉 such that 〈�x′, �y′〉 �|� ϕ .

For the base case, suppose that 〈�x, �y〉 /∈ W1. Due to lines 1 and 3 of Algorithm 3, set W1 is exactly those and only
those states that satisfy ϕ , that is, 〈�x, �y〉 �|� ϕ , and the claim follows trivially. Now, assume the claim holds for all i � k and
consider a game state 〈�x, �y〉 /∈ Wk+1. If 〈�x, �y〉 /∈ Wk , then the game state was removed at some previous iteration j � k, and
by the induction hypothesis, the system can force all plays to violate the goal in at most k (and hence k + 1) steps. So,

126 G. De Giacomo et al. / Artificial Intelligence 196 (2013) 106–142
suppose on the other hand that 〈�x, �y〉 ∈ Wk , that is, the game state was removed at the k+1 iteration (in line 4). From line 4
in the algorithm, we know that Wk+1 = Wk ∩ π(Wk). Since 〈�x, �y〉 ∈ Wk but 〈�x, �y〉 /∈ Wk+1, it follows that 〈�x, �y〉 /∈ π(Wk).
By definition of π , there the system has a move �x′ ∈ X , with ρs(�x, �y, �x′), such that for all controller replies �y′ ∈ Y with
ρc(�x, �y, �x′, �y′), it is the case that 〈�x′, �y′〉 /∈ Wk . By the induction hypothesis, the system can always force from game state
〈�x′, �y′〉 to reach, in at most k steps, a state that violates ϕ . Thus, by playing �x′ from the initial state 〈�x, �y〉, the system is
always able to force violating ϕ in at most k + 1 steps.

Now, suppose that there exits a winning strategy f from state 〈�x0, �y0〉, but on the contrary, that 〈�x0, �y0〉 /∈ W , or what
is the same, that 〈�x0, �y0〉 /∈ W N . By our reasoning above, the system can always force the game to violate ϕ in at most
N steps. This implies that there exits a game play η = 〈�x0, �y0〉〈�x1, �y1〉 · · · (i.e., starting from 〈�x0, �y0〉) and compliant with f
such that for some i < N , 〈�x1, �y1〉 �|� ϕ applies. Hence, f would not be a winning strategy from 〈�x0, �y0〉, a contradiction is
reached, and it follows then that 〈�x0, �y0〉 ∈ W must apply. �

Importantly, once the winning set is computed, it can be used to define a winning strategy [5,6]. To see this, assume
that η = 〈�x0, �y0〉 . . . 〈�xn, �yn〉 is the prefix of a play executed up to some point. For each next system move �x′ ∈ X (such that
ρs(�xn, �yn, �x′)), one can define f (〈�x0, �y0〉, �x1 . . . �xn�x′) = �y′ , by taking any reply �y′ such that 〈�x′, �y′〉 ∈ W (and ρc(�xn, �yn, �x′, �y′)).
Indeed, such a condition guarantees that the controller has a winning strategy from 〈�x′, �y′〉, informally meaning that it can
force the (future extension of the) play to maintain ϕ .

5.2. From composition to safety games

Next, we show how the behavior composition problem can be reduced in practice to the problem of synthesizing a win-
ning strategy in a safety-game structure. In order to do so, we need to identify which place each component of a composition
problem—target behavior, available behaviors, environment, and composition controller—occupies in the game represen-
tation, that is, players controller and system need to be defined for the particular setting. Generally speaking, when
composing behaviors, a controller can be seen as a strategy, i.e., a function of system histories that returns decisions, so,
from this perspective, it seems very natural to represent the composition as the (synthesized strategy for) controller player,
and all other components combined together as the system player.

Let S = 〈B1, . . . ,Bn,E〉 be a system and BT a target behavior over E , where Bi = 〈Bi,bi0, Gi, Fi,�i〉, for i = 1, . . . ,n, T ,
and E = 〈A, E, e0,ρ〉. We derive a safety-game structure G〈S,BT 〉 = 〈V,X ,Y,Θ,ρs,ρc,�ϕ〉 that captures the relationship
between the target behavior and the system, as follows:

1. V = {b1, . . . ,bn, e,bT ,a, ind}, where:
• bi ranges over Bi , for each i ∈ {1, . . . ,n, T };
• e ranges over E;
• a ranges over A∪ {�};
• ind ranges over {1, . . . ,n} ∪ {�}.
Here, V = B1 × · · · × Bn × E × BT × (A∪ {�}) × {1, . . . ,n, �} is the set of all possible valuations.

2. X = {b1, . . . ,bn, e,bT ,a} is the set of player system variables, and X = B1 × · · ·× Bn × E × BT × (A∪ {�}) represents the
set of all possible valuations.

3. Y = {ind} is the (singleton) set of player controller variables, and Y = {1, . . . ,n, �} represents the set of all possible
valuations.

4. Θ = (ind = �) ∧ (a = �) ∧ ∧
i∈{1,...,n,T } bi = bi0 ∧ e = e0;

5. ρs ⊆ X × Y × X is such that 〈〈b1, . . . ,bn, e,bT ,a〉, ind, 〈b′
1, . . . ,b′

n, e′,b′
T ,a′〉〉 ∈ ρs iff a′ ∈ {�} ∪ {â | e′ â−→ e′′ in E,b′

T

g′
T ,â−→

b′′
T in BT , g′

T (e′) =
} and one of the following three cases applies:
(a) ind = � and b′

i = bi0, for each i ∈ {1, . . . ,n, T }, and e′ = e0;
(b) ind �= � and

i. there exists a transition bT
gT ,a−→ b′

T in BT such that gT (e) =
;

ii. there exists a transition bind
gind,a−→ b′

ind in Bind such that gind(e) =
;
iii. bi = b′

i , for all i ∈ {1, . . . ,n} \ {ind};

iv. there exists a transition e
a−→ e′ in E ; or

(c) ind �= �, e′ = e and b′
i = bi , for each i ∈ {1, . . . ,n, T }, and at least one of the following conditions applies:

i. there is no transition bT
gT ,a−→ b′′

T in BT such that gT (e) =
;

ii. there is no transition bind
gind,a−→ b′

ind in Bind such that gind(e) =
; or

iii. there is no transition e
a−→ e′′ in E .

6. 〈〈b1, . . . ,bn, e,bT ,a〉, ind, 〈b′
1, . . . ,b′

n, e′,b′
T ,a′〉, ind′〉 ∈ ρc iff ind′ �= �.

G. De Giacomo et al. / Artificial Intelligence 196 (2013) 106–142 127
7. Formula ϕ is defined depending on current system, target, and environment state, current requested action and current
behavior selection12:

ϕ(b1, . . . ,bn, e,bT ,a, ind)
.=

(
validReq →

n∧
i=1

¬faili

)
∧

(
finalT →

n∧
i=1

finali

)
,

where
• validReq

.= ∨
〈bT ,gT ,a,b′

T 〉∈�T
gT (e) =
;

• faili
.= ind = i ∧ ∧

〈bi ,gi ,a,b′
i〉∈�i

gi(e) = ⊥, for each i ∈ {1, . . . ,n};

• finali
.= ∨

b∈Fi
(bi = b), for each i ∈ {1, . . . ,n, T }.

Intuitively, the system player represents all possible evolutions of S generated by legal executions of BT , which are
indeed the only evolutions relevant to our problem. Each complete valuation of variables in V captures the current state
of the system (variables b1, . . . ,bn, and e), that of the target behavior (variable bT), the action to be performed next
(variable a), and the available behavior selected to perform the action (variable ind). For technical convenience, a special
value � is used for both the action request and the delegation, to represent a request for “no action” (a = �) and the initial
distinguished states of the game (ind = �).

As for the evolution of the game, the player system’s transition relation ρs accounts for the synchronous evolution of the
system and the target behavior. Condition 5(a) states that initial game states—those where ind = �—evolve to states encod-
ing S ’s and BT ’s initial states. Condition 5(b) encodes the evolution of system S when the controller has performed a valid
action delegation. Basically, the new state of player system encodes the correct evolution of the target (condition 5(b)i),
the selected available behavior (condition 5(b)ii), the non-selected behaviors (condition 5(b)iii), and the environment (con-
dition 5(b)iv). Condition 5(c), on the other hand, accounts for the cases in which there is no valid behavior delegation
possible, either because the current action being requested is not target-compatible (condition 5(c)i), cannot be handled by
any available behavior (condition 5(c)ii), or is not allowed in the environment (condition 5(c)iii). In these cases, all behaviors
and the environment are forced to stay still. Note that condition 5(c) accounts for the case of an “empty” action request,
that is, when a = �. Finally, the next requested action a′ can either be �—denoting no request—or one that conforms with
the target behavior logic. Observe that in a certain game state, transition function ρs may allow several different system
player’s moves, thus reflecting the non-determinism coming from the available behaviors, the environment, as well as from
target action requests.

The rules for controller player’s moves are simpler, as such player is allowed to arbitrarily assign any available behavior
index in any of its moves (condition 6).

To fully comply with our definition of safety-game structures given in Section 5.1, we need to show that G〈S,BT 〉 sat-
isfies the infinite-play assumption. For legibility, from now on, when �xi = 〈b1i, . . . ,bni, ei,bT i,ai〉 is a system player state
in G〈S,BT 〉 , we will use comT (�xi) = 〈bT i, ei〉 and comS (�xi) = 〈b1i, . . . ,bni, ei〉 to project the enacted target and the enacted
system states encoded in �xi , respectively, and a(�xi) = ai to project the action request encoded in �xi . A game state is of the
form 〈�x, y〉.

Lemma 10. Let G〈S,BT 〉 be the safety-game structure derived for a behavior composition problem, as above. Then, for each game state
〈�x, y〉, there exists �x′ such that ρs(�x, y, �x′), and for each such �x′ there exists y′ such that ρc(�x, y, �x′, y′).

Proof. If cases 5(a) and 5(b) do not account for any system player’s move, then case 5(c) will apply and ρs(�x, y, �x′) will hold
with �x′ matching �x except, possibly, for a(�x′). Moreover, for every �x, y and �x′ , ρc(�x, y, �x′, y′) holds, for any y′ ∈ {1, . . . ,n}. �

Once proven that G〈S,BT 〉 is a legal safety-game structure, we show a useful property of (certain) successor game states.
In words, the following lemma says that a successor game state captures a legal evolution of the enacted target behavior TT

and the enacted system TS . In addition, provided the successor game state encodes an actual action request, such request
conforms with the enacted target behavior.

Lemma 11. Let G〈S,BT 〉 be the safety-game structure derived for a behavior composition problem, as above. Let 〈�x, y〉 be a (non-

initial) game state of G〈S,BT 〉 such that there exist transitions comS (�x) a(�x),y−→ sS in TS and comT (�x) a(�x)−→ sT in TT , for some sS ∈ SS
and sT ∈ ST . Then, 〈�x′, y′〉 is a successor state of 〈�x, y〉 iff

• y′ �= �;

• comT (�x) a(�x)−→ comT (�x′) in TT (and, since BT is deterministic, comT (�x′) = sT);

• comS (�x) a(�x),y−→ comS (�x′) in TS ; and

12 We assume an empty set of conjuncts is equal to ⊥.

128 G. De Giacomo et al. / Artificial Intelligence 196 (2013) 106–142
• if a(�x′) �= �, then there exists s′
T ∈ ST such that comT (�x′) a(�x′)−→ s′

T in TT .

Proof. All three claims follow directly from G〈S,BT 〉 ’s ρs definition (see condition 5). Observe that since the system and
target both have transitions, conditions 5(a) and 5(c) may not apply. The first claim follows from conditions 5(b)i and 5(b)iv.
The second one is a consequence of conditions 5(b)ii, 5(b)iii and 5(b)iv. Finally, the third claim follows from the constraint
imposed on a(�x′). �

Finally, consider the goal formula ϕ . As for the first disjunct, it is trivially satisfied by the initial state only. Concerning
the second one, it is better understood by looking at subformulae faili and finali . The former holds if behavior Bi is selected
(i.e., ind = i), but cannot execute the requested action a, that is, each transition outgoing from its current state bi for action
a has its guard not satisfied by the current environment state e. The latter holds if the target behavior is in a final state, but
not all available behaviors are. The target fails (failT) if it requests an action incompatible with its specification. Essentially, ϕ
requires that the controller player makes an adequate decisions: it never selects a behavior that may not be able to execute
the current requested action.

Once the game structure is built, the problem we deal with is that of synthesizing a (winning) strategy for the controller
player that guarantees ϕ to hold along all possible plays starting from the initial state. We shall demonstrate next that this
corresponds to synthesizing a composition. More specifically, in Theorem 14, we will show that by computing G〈S,BT 〉 ’s
winning set, one is able to construct the controller generator.

We start by exploring the relationship between G〈S,BT 〉 ’s maximal winning set and the largest ND-simulation relation.

Theorem 12. Let S = 〈B1, . . . ,Bn,E〉 be a system and BT a target behavior over E . Let G〈S,BT 〉 = 〈V,X ,Y,Θ,ρs,ρc,�ϕ〉 be a �-
GS derived as above from S and BT , and let W ⊆ V be the maximal set of controller winning states for G〈S,BT 〉 . Then, for all bi ∈ Bi ,
with i ∈ {1, . . . ,n}, e ∈ E and a ∈A∪ {�}:〈〈b1, . . . ,bn, e,bT ,a〉, ind

〉 ∈ W , for some ind ∈ {1, . . . ,n} if and only if 〈bT , e〉 � 〈b1, . . . ,bn, e〉.

Proof. (Only-If Part) Assume that 〈�x0, y0〉 = 〈〈b1, . . . ,bn, e,bT ,a〉, ind〉 ∈ W , for some ind ∈ {1, . . . ,n}. Hence, there exists a
winning strategy f from 〈�x0, y0〉. Using such a strategy, we define a relation R ⊆ ST × SS as follows:

〈sT , sS 〉 ∈ R iff there exists a game play η = 〈�x0, y0〉〈�x1, y1〉 · · · compliant with f such that

comT (�x�) = sT and comS(�x�) = sS , for some � � 1.

Clearly, η = 〈�x0, y0〉〈�x, f (〈�x0, y0〉, �x)〉〈�x, f (〈�x0, y0〉, �x�x)〉 · · · where �x = 〈b1, . . . ,bn, e,bT , �〉 is an f -compliant play. Since,
comT (�x) = comT (�x0) = 〈bT , e〉 and comS (�x) = comS (�x0) = 〈b1, . . . ,bn, e〉, we get that 〈〈bT , e〉, 〈b1, . . . ,bn, e〉〉∈R .

So, let us prove that R is indeed an ND-simulation of TT by TS , that is, we are to prove the three requirements of ND-
simulations (see page 114). To that end, assume 〈sT , sS 〉 ∈ R . By definition of R , env(sT) = env(sS) holds, so requirement 1
holds.

Since 〈sT , sS 〉 ∈ R , there exists a game play η = 〈�x0, y0〉〈�x1, y1〉 · · · compliant with f such that comT (�xk) = sT and
comS (�xk) = sS , for some k � 1. Because f is a winning strategy, 〈�xk, yk〉 |� ϕ . Hence, 〈�xk, yk〉 |� (finalT → ∧n

i=1 finali),
which yields requirement 2: if the target is in a final state in �xk , so are all available behaviors.

Finally, for the third requirement of ND-simulations, consider a transitions sT
a′−→ s′

T in TT . First, from condition 5(b)
in G〈S,BT 〉 ’s definition, it follows that there exists an f -compliant game play η′ = 〈�x′

0, y′
0〉〈�x′

1, y′
1〉 · · · such that �x′

i = �xi and
y′

i = yi , for all i ∈ {0, . . . ,k − 1}, and comT (�xk) = comT (�x′
k) = sT and comS (�xk) = comS (�x′

k) = sS—play η′ is exactly like η
up to game state 〈�xk, yk〉, except that �x′

k may (possibly) encode a different requested action. Due to the rules of ρs , either
a(�x′

k) = � or a(�x′
k) is a legal target transition in comT (�x′

k). In the former case, the third ND-simulation constraint follows

trivially. So, suppose that a(�x′
k) = a′ ∈A and that sT

a′−→ s′
T in TT .

Due to conditions 5(b)iv and 5(b)i in G〈S,BT 〉 ’s definition, we can assume that η′ is such that comT (�xk+1) = s′
T —there

is one such η′ . Since a(�x′
k) is a valid target request (and hence, 〈�x′

k, y′
k〉 |� validReq), f is winning, and η′ is compliant

with f , 〈�x′
k, y′

k〉 |� ¬faily′
k
. So, from conditions 7, 5(b)ii, 5(b)iii and 5(b)iv in G〈S,BT 〉 ’s definition, comS (�x′

k)
a(�x′

k),y′
k−→ comS (�x′

k+1)

follows, and requirement 3(a) of ND-simulations applies (again, it is trivially true that env(comS (�xk+1)) = env(comT (�xk+1))).

Finally, consider any sS
a′−→ s′

S in TS with env(s′
S) = env(s′

T). Again, since every possible evolution of the enacted system is
accounted by some successor game states (Lemma 11), we can assume that η′ is such that comS (�x′

k+1) = s′
S . Thus, by R ’s

definition (see any such η′ is still compliant with f), it follows that R(s′
T , s′

S) and condition 3(b) of ND-simulation follows.
(If Part) Assume 〈bT , e〉 � 〈b1, . . . ,bn, e〉 and let ω(·,·) be the output function of the controller generator of S for BT

(see page 116).
Let �x0 = 〈b1, . . . ,bn, e,bT ,a〉. We define y0 = ω(〈〈bT , e〉, 〈b1, . . . ,bn, e〉〉,a), if a ∈ A is a legal action for the target to

request at state bT when the environment is in state e; otherwise y0 can take any arbitrary value in {1, . . . ,n}. It is
important to note that, in the former case, ω(〈〈bT , e〉, 〈b1, . . . ,bn, e〉〉,a) �= ∅ and hence y0 ∈ {1, . . . ,n}. This is because since

G. De Giacomo et al. / Artificial Intelligence 196 (2013) 106–142 129
comS (�x0) can mimic any possible move of comT (�x0), including the target compatible action a, there must exist σ ′ ∈ Σ such

that 〈comT (�x0), comS (�x0)〉 a(�x0),i−→ σ ′ in CG, for some i ∈ {1, . . . ,n}. Note that 〈comT (�x0), comS (�x0)〉 ∈ Σ is a state in CG, as
comT (�x0) � comS (�x0).

To prove that 〈 �x0, y0〉 ∈ W , we show that there is a strategy f (·,·) that is winning from game state 〈 �x0, y0〉. Consider
then any strategy f (·,·) such that for all sequences �x1 · · · �xk , with k � 1, it is the case that f (〈�x0, y0〉, �x1 · · · �xk) ∈ {1, . . . ,n}
and

f
(〈�x0, y0〉, �x1 · · · �xk

) ∈ ω
(〈comT (�xk), comS(�xk)〉,a(�xk)

)
,

whenever a(�xk) �= �, comT (�xk) � comS (�xk), and ρs(�xk−1, yk−1, �xk) hold true. Informally, we pick any strategy that always
selects a behavior compatible with the controller generator output function whenever the enacted system state simulates
the enacted target state in the last move �xk of the system player and there is a proper action request. In all other cases, the
strategy can pick any behavior arbitrarily (but never �).

First, we argue that f is well-defined and indeed a valid strategy in G〈S,BT 〉 . It never selects � and hence adheres
to G〈S,BT 〉 ’s condition 6. Moreover, whenever a(�xk) �= �, comT (�xk) � comS (�xk), and ρs(�xk−1, yk−1, �xk) apply, we can follow
the same reasoning we did above for y0 to conclude that ω(〈comT (�xk), comS (�xk)〉,a(�xk)) �= ∅. We just need to note that
because a(�xk) �= � and ρs(�xk−1, yk−1, �xk), then a(�xk) ought to stand for an action that is legal for the target at comT (�xk)

(condition 5(b) and third claim in Lemma 11).
So, let us next prove that for any f -compliant game play η = 〈�x0, y0〉〈�x1, y1〉 · · ·, it is the case that comT (�xi) � comS (�xi)

(i.e., 〈bT i, ei〉 � 〈b1i, . . . ,bni, ei〉), for all i � 0. The base case when i = 0 is trivial by definition of �x0 and the assumption.
Consider now game state 〈�xk+1, yk+1〉, for some k � 0. By induction hypothesis, comT (�xk) � comS (�xk) applies. Because η

is a game play, one of the three cases of condition 5 in G〈S,BT 〉 ’s definition must apply for each transition. First of all,
because yi ∈ {1, . . . ,n} for every i � 0, condition 5(a) never applies. Now, if a(�xk) is not a legal target transition (including
a(�xk) = �), then case 5(c) ought to apply, comT (�xk+1) = comT (�xk) and comS (�xk+1) = comS (�xk) hold, and comT (�xk+1) �
comS (�xk+1) follows directly.

Assume next that a(�xk) does stand for a legal action transition in the target at game state �xk , that is, 〈�xk, yk〉 |� validReq.
If k = 0, then by definition of f for the first move, y0 ∈ ω(〈comT (�x0), comS (�x0)〉,a(�x0)). If k � 1, then because comT (�xk) �
comS (�xk) (by induction hypothesis), a(�xk) �= � (by assumption), and ρs(�xk−1, yk−1, �xk) (η is a game play), we know by
definition of f that yk ∈ ω(〈comT (�xk), comS (�xk)〉,a(�xk)). So, yk ∈ ω(〈comT (�xk), comS (�xk)〉,a(�xk)), for all k � 0, which implies
that yk ∈ {1, . . . ,n}, as we proved above that f is indeed a well-defined strategy for G〈S,BT 〉 .

By definition of CG’s output function, 〈comT (�xk), comS (�xk)〉 a(�xk),yk−→ 〈s′
T , s′

S 〉 in CG, for some s′
T ∈ ST and sS ∈ S ′

S . By CG’s

transition relation ϑ , this means that comT (�xk)
a(�xk)−→ s′

T and comS (�xk)
a(�xk),yk−→ s′

S . Due to Lemma 11, we conclude that:

comS(�xk)
a(�xk),yk−→ comS(�xk+1); (2)

comT (�x) a(�x)−→ comT (�xk+1). (3)

From (2) and the third condition in CG’s transition relation, it follows that 〈s′
T , comS (�xk+1)〉 ∈ Σ is a state in CG, and

thus s′
T � comS (�xk+1). Due to the first requirement of ND-simulations, env(s′

T) = env(comS (�xk+1)) applies. What is more,
env(s′

T) = env(comT (�xk+1)), since env(comS (�xk+1)) = env(comT (�xk+1)). This, together with (3) and the fact that the target
behavior BT is deterministic, implies that s′

T = comT (�xk+1), and as a result, comT (�xk+1) � comS (�xk+1) follows.
So, we have proven that for any f -compliant game play η = 〈�x0, y0〉〈�x1, y1〉 · · ·, it is the case that comT (�xi) �

comS (�xi), for all i � 1. Consider next any game state 〈�x�, y�〉 in η, with � � 0, and let us prove that 〈�x�, y�〉 |� ϕ .
From comT (�x�) � comS (�x�) and requirement 2 of ND-simulations, we conclude that 〈�x�, y�〉 |� finalT → finali , for each
i ∈ {1, . . . ,n}. Now, if a(�x�) is not a legal transition for the target at game state �x� (including �), then 〈�x�, y�〉 |� ¬validReq
follows. Otherwise, a(�x�) ∈ A is a target compatible action, then, by the way we defined f above, we know that
y� ∈ ω(〈comT (�x�), comS (�x�)〉,a(�x�)); observe comT (�x�) � comS (�x�) and 〈�x�, y�〉 is part of a legal play respecting ρs . This

means that there exists a transition 〈comT (�x�), comS (�x�)〉 a(�x�),y�−→ σ ′ in controller generator CG, for some σ ′ ∈ Σ . By CG’s

transition relation definition, there exists a transition comS (�x�)
a(�x�),y�−→ s′

S in TS , which—by the notion of enacted system—
implies that behavior By�

can make a transition on action a(�x�) and 〈�x�, y�〉 |� ¬faily�
follows. Finally, 〈�x�, y�〉 |� ¬faili

trivially, for all i ∈ {1, . . . ,n} \ {y�}.
Putting it all together, the strategy f is a winning from game state 〈�x0, y0〉 = 〈〈b1, . . . ,bn, e,bT ,a〉,ω(〈〈bT , e〉,

〈b1, . . . ,bn, e〉〉,a)〉, and 〈�x0, y0〉 ∈ W . �
While Theorem 12 only talks about non-initial states, it can be easily further extended to the unique initial state.

Theorem 13. Let W ⊆ V be the maximal set of winning states for �-GS G〈S,BT 〉 , as above, and let 〈�x0, y0〉 be the initial state of the
game, that is, 〈�x0, y0〉 |� Θ . Then, 〈�x0, y0〉 ∈ W iff 〈bT 0, e0〉 � 〈b10, . . . ,bn0, e0〉.

130 G. De Giacomo et al. / Artificial Intelligence 196 (2013) 106–142
Proof. This follows from the fact that, due to case 5(a) in G〈S,BT 〉 definition, each successor of the initial game
state represents the initial state of the composition problem. That is, 〈�x, y〉 is a game successor of 〈�x0, y0〉 iff
comS (�x) = 〈b10, . . . ,bn0, e0〉 and comT (�x) = 〈bT 0, e0〉. So, if 〈bT 0, e0〉 � 〈b10, . . . ,bn0, e0〉, then by Theorem 12, for each such
(initial) system move �x, there exists a controller move ind such that 〈�x, ind〉 ∈ W is a winning state, and as a result,
〈�x0, y0〉 ∈ W , too. Conversely, 〈�x0, y0〉 can only be winning if for every system move �x from 〈�x0, y0〉, there exists a con-
troller move ind such that the successor state 〈�x, ind〉 of the initial state is winning, which by Theorem 12, implies that
〈bT 0, e0〉 � 〈b10, . . . ,bn0, e0〉. �

As a straightforward consequence of this result and Theorem 1, we have that �-GS G〈S,BT 〉 is winning if and only if
there exists a composition of the target in the system.

In addition to this, the following result holds, which gives us an actual procedure to build a controller generator and,
hence, all possible compositions.

Theorem 14. Let S = 〈B1, . . . ,Bn,E〉 be a system and BT a target behavior over E . Let G〈S,BT 〉 = 〈V,X ,Y,Θ,ρs,ρc,�ϕ〉 be
the �-GS derived as above, and assume that 〈〈b10, . . . ,bn0, e0,bT 0, �〉, �〉 ∈ W , where W is the maximal set of winning states. Let
ĈG = 〈Σ̂,A, {1, . . . ,n}, ∂̂, ω̂〉, where:

• Σ̂ = {〈〈bT , e〉, 〈b1, . . . ,bn, e〉〉 | 〈〈b1, . . . ,bn, e,bT ,a〉, ind〉 ∈ W }.

• ∂̂ ⊆ Σ̂ × A × {1, . . . ,n} × Σ̂ is such that 〈σ ,a,k, σ ′〉 ∈ ∂̂ , where σ = 〈〈bT , e〉, 〈b1, . . . ,bn, e〉〉 and σ ′ = 〈〈b′
T , e′〉,

〈b′
1, . . . ,b′

n〉, e′〉, if and only if
– 〈〈b1, . . . ,bn, e,bT ,a〉,k〉 ∈ W ;
– 〈〈b1, . . . ,bn, e,bT ,a〉,k〉 |� validReq; and
– ρs(〈b1, . . . ,bn, e,bT ,a〉,k, 〈b′

1, . . . ,b′
n, e′,b′

T ,a′〉), for some a′ ∈A∪ {�}.

• ω̂(σ ,a) = {k | ∃ σ ′ ∈ Σ̂ s.t. σ
a,k−→ σ ′ is in ĈG}.

Then, ĈG = CG, that is, ĈG is the controller generator of S for BT .

Proof. Consider the definition of controller generator CG in Section 3; page 116. We need to show that Σ = Σ̂ , ∂̂ = ∂ , and
ω̂ = ω.

By definition of Σ̂ , 〈〈bT , e〉, 〈b1, . . . ,bn, e〉〉 ∈ Σ̂ iff 〈〈b1, . . . ,bn, e,bT ,a〉, ind〉 ∈ W , for some a and ind. Thus, by The-
orem 12, 〈〈bT , e〉, 〈b1, . . . ,bn, e〉〉 ∈ Σ̂ iff 〈bT , e〉 � 〈b1, . . . ,bn, e〉. This, together with the definition of Σ in CG and the
fact that if sT � sS then env(sT) = env(sS), implies that 〈〈bT , e〉, 〈b1, . . . ,bn, e〉〉 ∈ Σ̂ iff 〈〈bT , e〉, 〈b1, . . . ,bn, e〉〉 ∈ Σ . Hence,
Σ = Σ̂ .

Let us prove next that ∂̂ = ∂ . Suppose that 〈σ ,a,k, σ ′〉 ∈ ∂̂ . Then, 〈〈b1, . . . ,bn, e,bT ,a〉,k, 〈b′
1, . . . ,b′

n, e′,b′
T ,a′〉〉 ∈ ρs .

Because a,k �= � due to the definition of ∂̂ , case 5(a) (page 126) of G〈S,BT 〉 does not apply. Moreover, a is a target and
environment compatible action, due to 〈〈b1, . . . ,bn, e,bT ,a〉,k〉 |� validReq, that can be legally performed by behavior Bk ,
due to 〈〈b1, . . . ,bn, e,bT ,a〉,k〉 |� ¬failk (as 〈〈b1, . . . ,bn, e,bT ,a〉,k〉 ∈ W). Thus, case 5(c) of G〈S,BT 〉 cannot apply either.

So, case 5(b) of G〈S,BT 〉 must apply. Then, comT (σ)
a−→ comT (σ ′) in TT and comS (σ)

a,k−→ comS (σ ′) in TS . Let us next

prove the third requirement for ∂ in CG. To that end, consider any transition comS (σ)
a,k−→ s′′

S = 〈b′′
1, . . . ,b′′

n, e′〉 in TS . Due to
Lemma 11, game state 〈〈b1, . . . ,bn, e,bT ,a〉,k〉 ought to have a successor state of the form 〈〈b′′

1, . . . ,b′′
n, e′,b′

T , �〉,k′′〉 where
k′′ �= �. Moreover, since 〈〈b1, . . . ,bn, e,bT ,a〉,k〉 ∈ W , there is at least one such k′′ such that 〈〈b′′

1, . . . ,b′′
n, e′,b′

T ,a′′〉,k′′〉 ∈ W .
Then, by Theorem 12, 〈b′

T , e′〉 � 〈b′′
1, . . . ,b′′

n, e′〉 applies and therefore, by definition of Σ in CG, 〈〈b′
T , e′〉, 〈b′′

1, . . . ,b′′
n, e′〉〉 ∈ Σ

follows. Then, 〈σ ,a,k, σ ′〉 ∈ ∂ follows and ∂̂ ⊆ ∂ .
Now, let us prove that ∂ ⊆ ∂̂ . Assume 〈σ ,a,k, σ ′〉 ∈ ∂ . We want to prove 〈σ ,a,k, σ ′〉 ∈ ∂̂ . To that end, we show that:

1. 〈�x,k〉 = 〈〈b1, . . . ,bn, e,bT ,a〉,k〉 ∈ W ; and
2. ρs(〈b1, . . . ,bn, e,bT ,a〉,k, 〈b′

1, . . . ,b′
n, e′,b′

T , �〉).

To prove the first claim, take a successor 〈�x∗,k∗〉 = 〈〈b∗
1, . . . ,b∗

n, e∗,b∗
T ,a∗〉,k∗〉 of 〈�x,k〉 in G〈S,BT 〉 . Because 〈σ ,a,k, σ ′〉 ∈ ∂ ,

comT (σ)
a−→ comT (σ ′) in TT and comS (σ)

a,k−→ comS (σ ′) in TS . Thus, Lemma 11 applies and we conclude that

comS (σ)
a,k−→ comS (�x∗) in TS and comT (σ)

a−→ comT (�x∗) in TT . (Note that because the target behavior is deterministic
b∗

T = b′
T .) Again, since 〈σ ,a,k, σ ′〉 ∈ ∂ , the third requirement in the definition of ∂ implies that 〈comT (�x∗), comS (�x∗)〉 ∈ Σ

and therefore comT (�x∗) � comS (�x∗). By applying Theorem 12, there exists one such k∗ ∈ {1, . . . ,n} such that 〈�x∗,k∗〉 ∈ W .
Note that for such particular k∗ , 〈�x∗,k∗〉 is still a successor game state of 〈�x,k〉 by requirement 6 (page 126) of G〈S,BT 〉
definition. Informally, at game state 〈�x,k〉, the controller can force the game to a winning state no matter the system plays
its next move �x∗ . So, to prove that 〈�x,k〉 ∈ W , it remains to be shown that 〈�x,k〉 |� ϕ , that is, game state 〈�x,k〉 itself sat-

isfies the winning condition. Since comS (σ)
a,k−→ comS (σ ′) in TS , then bk

g,a−→ b′ in Bk such that g(e) =
, and therefore
k

G. De Giacomo et al. / Artificial Intelligence 196 (2013) 106–142 131
〈�x,k〉 |� ¬failk . (Note that 〈�x,k〉 |� ¬faili trivially for all i �= k.) Next, because σ ∈ Σ , comT (σ) � comS (σ). Then, if bT is final
in BT , so are all bi in Bi . Hence, 〈�x,k〉 |� ¬finalT → ∧n

i=1 finali .
Finally, ρs(〈b1, . . . ,bn, e,bT ,a〉,k, 〈b′

1, . . . ,b′
n, e′,b′

T , �〉) follows due to Lemma 11 and the fact that � is always a legal
action in the game.

Putting it all together, we have just shown that ∂̂ = ∂ , that is, the transition relation for ĈG is exactly that of the controller
generator. As an immediate consequence of this, we obtain ω = ω̂, as their definitions coincide. Hence, CG = ĈG. �

The above theorems show how one can exploit tools from reactive system synthesis for computing all compositions of a
given target behavior. In details, starting from S = 〈B1, . . . ,Bn,E〉 and BT , one can build the corresponding game structure
G〈S,BT 〉 , then compute the winning set W , and, if it contains G〈S,BT 〉 ’s initial state, use W to generate the controller
generator. In fact, this last step is not really needed. It is not hard to see that given a system state 〈b1, . . . ,bn, e,bT ,a〉
(including action a ∈ A to be executed next), a behavior selection ind is “good” (i.e, the selected behavior can actually
execute the action and the whole system can still ND-simulate the target behavior) if and only if W contains a tuple
〈〈b1, . . . ,bn, e,bT ,a〉, ind〉. Consequently, at each step, based on (current) target behavior state bT , available behaviors’ states
b1, . . . ,bn , environment state e, and requested action a, one can select a tuple from W , extract its ind component, and use
it to select the next behavior.

Finally, note that the time complexity of Algorithm 3 is polynomial in |V |, the size of the input �-GS state space. Since,
in our encoding, |V | is polynomial in |B1|, . . . , |Bn|, |BT |, |E|, and |A|, and exponential in n, we get the following result:

Theorem 15. Let S = 〈B1, . . . ,Bn,E〉 be a system and BT a target behavior over E . Checking the existence of compositions by reduc-
tion to safety games can be done in polynomial time w.r.t. |B1|, . . . , |Bn|, |BT |, |E|, and |A|, and exponential time in n.

Such a result says that computing a composition using safety games has the same computational complexity as comput-
ing the ND-simulation relation for solving behavior composition problems (cf. Theorem 2). Since the composition problem
is EXPTIME-hard [61], the technique based on safety games is actually optimal with respect to worst-case time complex-
ity.

6. Implementing behavior composition in TLV

With the behavior composition problem formally reduced to that of synthesizing a winning strategy in a special safety-
game, one can appeal to existing implemented systems that are capable of searching for winning strategies in game
structures, such as tlv [71], Anzu [45], Lily [44], and Mocha [4]. We note that, even though not all of these tools of-
fer efficient, or more appropriately optimized, solution techniques, there are currently promising efforts in this direction (cf.,
e.g., [44]), so we may likely expect formal synthesis technology to become available as an effective alternative in the future—
similarly to model checking [23]. In that sense, in this section we explain in detail how a proof-of-concept implementation
of what was presented in the previous section can be readily obtained. Although we shall focus on tlv, all basic concepts
discussed here remain valid for all other tools.

tlv (Temporal Logic Verifier) is a (generic) software for verification and synthesis of ltl specifications, which exploits
Binary Decision Diagrams (BDDs) for symbolic state manipulation, in order to contain state explosion. Generally speaking,
tlv takes two inputs: (i) a synthesis procedure; and (ii) an ltl specification, encoded in smv language [59], to be processed
by the input procedure. In particular, for (i), we consider a specific procedure for dealing with safety games and refer to the
so-obtained system as tlv � .13 Essentially, tlv �takes as input an ltl specification encoding a �-GS and derives from the
game’s maximal winning set, if non-empty, a structure representing the controller generator, as shown in Theorem 14. We
refer to [71] for further details on tlv and the input language smv, here introducing some essentials only.

Our approach consists in: (i) building, as described in Section 5.2, the �-GS corresponding to a given behavior composi-
tion problem; (ii) deriving the smv encoding for the obtained �-GS; and (iii) executing the encoding in tlv � , to both check
whether the composition problem is solvable and, if so, compute the controller generator. Next, we detail (ii) .

In the smv encoding, every aspect of a �-GS, e.g., the available behaviors or the controller, is modeled as a so-called
“module”. Fig. 6 shows the basic blocks of the encoding for our painting world running example (see Fig. 1; page 109).
Modules, e.g., ArmSys, can be built from submodules, by declaring these in the VAR section, which is what we actually do
in our construction. When doing so, according to the smv semantics, the execution of the composite module corresponds
to the synchronous execution of its submodules. Asynchronicity can be emulated by allowing a module to loop at each
state via a no-op transition. This is indeed what we do so as to accommodate the asynchronous execution of the available
behaviors (see definition of enacted system in Section 2): each submodule that represents an available behavior is forced to
loop at each step when not “selected”, by means of auxiliary no-op action none.

Module Main, consisting of submodules sys and contr, wraps all the other modules, and represents the whole game
structure. In particular, module sys captures the system player, by encoding the enacted system behavior (asys) together
with the enacted target behavior (client), i.e., informally, the external uncontrollable system. Module contr, on the other

13 This specific procedure for safety games was originally coded by Amir Pnueli.

132 G. De Giacomo et al. / Artificial Intelligence 196 (2013) 106–142
Fig. 6. A tlv sample fragment encoding.

hand, encodes the constraints on the controller player in the game structure, that is, the module to be synthesized. Finally,
variable good encodes the goal invariant property to be respected, which states that a game state (including both player
states) is “good” if and only if either both players are at their dummy initial states or the external system—the system
player—has not been brought into a failure state. The external system may reach a failure state, for instance, if an available
behavior is requested an action it cannot perform in its current state, or if the target behavior is in a final state but some
available behavior is not.

Modules sys and contr are meant to evolve synchronously, the former choosing the next requested action to be per-
formed and the latter selecting the available behavior for its execution. Consequently, the requested action (sys.req)
is passed as an input argument to the contr module, and the chosen available behavior is passed as an input to the
sys module. Notice that instead of merely returning just the index of the available behavior meant to execute the cur-
rently requested action (as in the game structure previously defined), the contr module outputs one action per available
behavior—e.g., a2op denotes the action assigned to behavior arm a2, using the distinguished action constant none to state
that no action is requested. This approach enables the encoding of settings where more than one behavior may execute
at the same time, like in [79]. We refer to this encoding as it introduces no additional difficulty while being clearly more
general.

Next, we detail the submodules representing the two players of the game structure. As for contr, which is an instance of
Controller, the transition relation defined by the constraints in the INIT and TRANS sections encodes an unconstrained
controller, which assigns, at each step, one action to each available behavior, by assigning values to the state variables a1op,
a2op, and a3op. The synthesis goal is to restrict such a relation so as to obtain a winning strategy. In particular, the constraints
enforced on the controller player’s state are as follows. According to the INIT section, in its initial state (where variable
initial holds true) the controller must instruct every behavior to initialize itself by performing the dummy action start
(all behaviors initialize simultaneously). As for non-initial states, the TRANS section defines the following constraints: (i) no
initialization action can be assigned to any behavior; (ii) the current action request must match at least one of the behavior

G. De Giacomo et al. / Artificial Intelligence 196 (2013) 106–142 133
actions; (iii) a behavior can be instructed to execute an action only if that action is the one currently requested; and (iv) at
most one behavior can be instructed to act at a time.

Concerning module sys, which is an instance of System, it essentially captures, as said above, all the aspects of the
system player. Precisely, sys is the synchronous product of the enacted available system (submodule asys) and the client
issuing the action requests (submodule client). On the one hand, submodule asys accounts for the available behaviors
running in the environment, according to both the currently requested action (variable req) and the controller assignment
to variables a1op, a2op, and a3op; on the other hand, submodule client provides, at every game state, the requested
action (variable req), which is, of course, required to be compliant with the target behavior. Observe that client requests
action none (last rule) only when no other legal action can be requested anymore. Since the execution of none yields no
change in the current game state, it turns out that once executed, none remains the only action available to the target,
from that point on.

Distinguished abbreviations are used to define, in the DEFINE section, initial, final, and failure states. In particular, the
enacted system behavior (ArmSys) fails (failure) when any of the available behaviors does, an available behavior failing
when instructed to perform an action it cannot execute, depending on its and the environment’s current state. Avoiding
such situations, by properly constraining sys’s transition relation, is exactly the synthesis procedure’s aim. Clearly, the only
way to achieve this is by suitably assigning sys’s controllable input variables a1op, a2op, and a3op, that is, ultimately, by
suitably “crafting” the contr module (while respecting its constraints). Finally, the whole enacted system does not respect
the final-state condition (failfinal) when the client is in a state where it may legally terminate its execution but the
available system does not.

We encoded our running example for tlv � , and run it to compute the corresponding winning set, along with the
controller generator. The result obtained was an automaton with 16 states and 21 transitions, from where controllers can
be easily extracted. We report three sample states of the automaton:

State 3
sys.asys.env.state = e2, sys.asys.a1.state = a1,
sys.asys.a2.state = b2, sys.asys.a3.state = c1,
sys.client.target.state = t2, sys.client.req = paint,
contr.a1op = none, contr.a2op = paint, contr.a3op = none,

State 15
sys.asys.env.state = e2, sys.asys.a1.state = a1,
sys.asys.a2.state = b3, sys.asys.a3.state = c1,
sys.client.target.state = t4, sys.client.req = dispose,
contr.a1op = dispose, contr.a2op = none, contr.a3op = none,

State 16
sys.asys.env.state = e2, sys.asys.a1.state = a1,
sys.asys.a2.state = b1, sys.asys.a3.state = c1,
sys.client.target.state = t4, sys.client.req = dispose,
contr.a1op = dispose, contr.a2op = none, contr.a3op = none,

In state 3, for instance, the environment is in state e2, the available arms are in states a1, b2, and c1, the target behavior
is in state t2, the action requested next is paint, and the controller has selected arm B2 for carrying out the action. States
15 and 16 are the possible successor states that the game can be in, depending on how the non-deterministic transition in
behavior B2 turns out.

The complete tlv specification for our example can be found in Appendix A.
We close by noting that the implementation discussed in this section is only concerned with the synthesis of the con-

troller generator (see Section 3), and as a result is not meant to deal with the run-time adaptation techniques developed in
Section 4 for dealing with failures. Indeed such techniques are expected to be part of a “smart” composition executor which
will execute and adapt controller generators at run-time.

7. Related work

The framework developed in this paper can be seen as a core account for behavior composition, and can be extended
in a number of directions. In [79], a distributed version of the problem is presented, where instead of a central entity
that embodies the controller, a set of local controllers, one per available behavior, are meant to jointly realize the target
behavior, by exploiting an underlying, shared communication channel. Another extension involves realizing not one but
several target behaviors concurrently, using the same available system [77]. Composition under partial observability was
also explored by De Giacomo [24], whereas composition with data exchange was investigated by Berardi et al. [12] in
the context of web-services. Finally, [78,28] propose two frameworks (and corresponding techniques) for composing agent
high-level programs. The techniques for all these extensions vary, from PDL satisfiability [79,12] to LTL/ATL synthesis [24,
77,28], to computation of specific fix-points [78]. Also, a direct search-based technique for the core composition account

134 G. De Giacomo et al. / Artificial Intelligence 196 (2013) 106–142
was recently proposed by Stroeder and Pagnucco [85], which could turn out to be promising when it comes to applying
heuristics.

The composition technique we proposed here is related to synthesis of reactive systems from LTL temporal specifica-
tions [70,69,47], which is proven 2EXPTIME-complete, in general [70]. In our particular case, however, we can restrict to a
class of specifications, namely GR(1), for which the problem is EXPTIME-complete [69]. Though a subclass of full LTL, GR(1)
type formulas are expressive enough to deal with many, if not most, realistic applications. They, for instance, have been
used to support advanced forms of path planning in robots [49,48,11,33]. Notably, a work that is inspired by our behavior
composition is that of Lusting and Vardi [54], where the problem of synthesizing LTL specifications by coordinating given
modules from an existing library is studied (and proven 2EXPTIME-complete). In turn, De Giacomo and Felli [25] showed
how to solve the behavior composition problem by ATL model checking. ATL (Alternating-time Temporal Logic) [3] is a logic
especially aimed for reasoning about multi-player games, where players can form coalitions to satisfy certain formulae. The
result is important in that it gives access to some of the state-of-the-art model checking techniques and tools, such as mc-

mas,14 that have been recently developed within the agent community. Since the behavior composition task can be seen as
winning a special kind of game (see Section 5), it would be interesting to explore whether the heuristic-based techniques
developed in the context of General-Game Playing [35] can be applied for “playing” composition games that are either too
difficult to solve at the outset or directly unsolvable.

Our work directly relates to several others (e.g., [38,19,13,31,12,15,37,73]) on Service Oriented Computing (SOC) [2].
Indeed, available behaviors, ultimately transition systems, can be seen as the conceptual model for conversational, or stateful,
(web) services. By taking this perspective, many results presented here become applicable, almost off-the-shelf, in the SOC
area. One line of research that is quite related to ours is that reported in [65,66,68,16] which exploits techniques for
conditional planning for temporally extended goals. Starting from a set of conversational available services, specified in
bpel4ws (Business Process Execution Language for Web Services), and a goal specified as a branching temporal formulae (in
the language EaGLe, a suitable extension of CTL [22]), conditional planning techniques are exploited to find an interleaved
execution of available services, so as to satisfy the desired goal. Roughly speaking, a goal represents a main, finite, desired
path of states, plus some secondary paths to be followed when “exceptions” (i.e., deviation from the main path) arise.
This technique, actually implemented in the system astro

15 based on the Model Based Planner (mbp3) [21], exploits Model
Checking technology (ultimately, BDDs) to control the state space explosion. Two main features differentiate such work from
ours. Firstly, our goals are actually new services (behaviors), rather than desired executions, which, once realized, can be
executed as any other one. What is more, the behaviors we synthesize are really intended to interact with some executor,
instead of executing on their own, like plans do. So, from a high-level perspective, we aim at extending the set of services
offered by a given system, whereas the work above focuses more on serving particular requests by taking advantage of the
existing system. A research line on services that adopts the same approach as ours is that in [8–10]. Like ours, these works
rely on techniques borrowed from controller synthesis, though the approach therein is more theoretical. In contrast, we
fully take advantage of such results for practical reasons, by (i) exploiting controller synthesis techniques to build flexible
solutions, and (ii) by showing how to use the actual existing technology, based on a symbolic approach, for effective solution
construction.

In the series of works [57,58,83], the Situation Calculus logical framework is adopted as a theoretical framework for
composing semantic Web services (specified in the OWL-S process ontology [56]). Available and goal services are modeled
as (complex) Golog programs, and the objective is to find a terminating execution of the available services that corresponds
to an execution of the goal service. Based on the same Situation Calculus semantics, Sirin et al. [82] exploits Hierarchical
Task Networks (HTN) to model available (OWL-S) services, and then uses an HTN planner [62] to build a plan representing
an actual, finite, execution of a desired target service. All such works share the idea of achieving a desired goal—being
it a state or a situation—by executing a terminating plan or program. Our approach is different, and, in a sense, more
general, essentially due to two major differences: first, we consider realization of infinite target behavior executions; second,
a solution to our composition problem is required to realize all possible behavior service executions, rather than just one.

Behavior composition is also related to several forms of automated planning in AI, in particular, to planning for tem-
porally extended goals (as mentioned above in the context of services), which investigates techniques for building finite or
infinite plans that satisfy linear- or branching-time specifications [7,67,46]. Indeed, our problem requires an advanced con-
ditional plan (with loops) that always guarantees all possible target requests to be served, which is, ultimately, a (temporal)
invariant property. More specifically, the solutions obtained via the simulation technique developed in this work are akin
to the so-called universal plans [81], i.e., plans representing every possible solution. A further recent work about planning,
where temporal fairness constraints are explicitly stated so as to capture long-term effects of action executions is [29]. We
conjecture that some of the concepts there can be exploited in our context to make the notion of behaviors to be composed
more sophisticated.

Composing behaviors can also be linked to (multi-)agent systems in natural ways. For instance, a Belief–Desire-Intention
agent operates on the coordinated execution of pre-defined non-deterministic plans—the available behaviors—in order to
achieve its goals [75,36]. One could then imagine composing such available plans so as to bring about another non-available

14 http://www-lai.doc.ic.ac.uk/mcmas/.
15 http://astroproject.org.

http://www-lai.doc.ic.ac.uk/mcmas/
http://astroproject.org

G. De Giacomo et al. / Artificial Intelligence 196 (2013) 106–142 135
plan—the target behavior—that represents all the goals of the agent. Similarly, composing behaviors can be seen as realizing
a “team-oriented” behavior (e.g., a RoboCup sophisticated abstract “team” player), represented by the target behavior, from
the behavior of single agents (e.g., a set of actual RoboCup robotic players with different capabilities), represented by the
various available behaviors. Of course, the core composition framework as presented here lacks, so far, convenient features
for programming team agent systems [72,43], such as roles, holons, communication channels, etc.

Finally, behavior composition, as studied in this paper, is tightly related to the problem of integrating simple function-
alities to implement advanced (intelligent) behaviors in the context of robot ecologies [76,18,17]. The idea of leveraging
on the capabilities of many simple robotic devices (e.g., vacuum cleaners, blinds, cameras, robot arms, etc.) in order to
achieve complex tasks has attracted much attention lately given the marked tendency toward the embedding of intelli-
gent, networked robotic devices in our homes and offices. While very close in “spirit”, the work done in robot ecologies
so far focuses on differs aspects. Most of the work in “composing” functionalities within an ecology of robots is de-
voted to the generation of adequate ways of connecting existing functionalities via so-called configurations in order to
be able to carry a particular task, such as making the output of a video camera the input of a moving robot lacking
visual capabilities. Instead of dealing explicitly with such connectivity issues (except for the interaction with the en-
vironment), our work focuses on how each component needs to be actually operated in order to achieve the target
process. Also, the integration of functionalities is either done fully by hand (e.g., [76,18]) or semi-automatically through
hand-tailored planning techniques (e.g., [52,53]) in the style of HTN planning. In the latter case, one is meant to de-
fine standard “recipes” to describe ways to combine functionalities for specific purposes. Our approach is more of a
first-principles one, no domain information is available on how available behaviors can or should be combined. More
importantly, while we took a high-level perspective on agents and shared devices, and focused on the synthesis prob-
lem only, the aforementioned work on robot ecologies deals better with many other practical aspects of concern when it
comes to implementing the solution. For instance, how to design such devices so that they can easily interoperate among
themselves, as we assume here, and how such interoperability is actually realized, via an appropriate middleware [17].
In fact, we expect a fruitful cross-fertilization between the theoretical studies on automated synthesis of agents, as the
one in the present paper, and practical work on experimenting device integration in robot ecologies and ambient intelli-
gence.

8. Conclusions

In this paper, we have carried out a deep investigation on the behavior composition problem, that is, the problem
of realizing a desired, but non-available, target behavior by reusing and re-purposing accessible modules (devices, agents,
plans, etc.), which are the only behaviors actually available. In particular, we have proposed a technique, based on the notion
of simulation, for building a controller that coordinates the concurrent executions of the available behaviors so as to “mimic”
the target behavior. What is more, we showed that such technique can be directly related to building a winning strategy
for a safety game, which opens the door for relying on symbolic model checking technology. Because of this, the results
from Sections 3 and 5 can be easily linked. While Theorem 1 connects the existence of a composition controller with that
of certain simulation relation, Theorem 12 connects the latter with the existence of a winning strategy, thus closing the
loop from compositions to winning strategies in a safety game. Similarly, Theorem 14 (which is a surplus of Theorem 12)
can be seen as the counterpart of simulation-based Theorem 3 (which is a surplus of Theorem 1) for safety games. Finally,
Theorems 2 and 15 describe the complexity of the problem in terms of finding an adequate simulation relation or a winning
set for a safety game, respectively, without overhead for the latter.

This work lays the basis for several further developments, some of which have already been mentioned in the related
work section. We would like to close the paper by briefly discussing two of them that still require further study. The
first one concerns the possibility of interchanging actions. More precisely, in this work we have implicitly assumed that
two actions are equivalent if and only if they are named the same way, and hence, they are exactly the same action.
Clearly, there are situations requiring a more flexible model, for instance when the domain includes actions with different
names that execute, in fact, the same task; or where some actions specialize some other, more abstract, ones. For exam-
ple, actions paint-red and paint-blue may stand for specializations (or implementations) of the more abstract, and maybe
not even directly available, action paint. Both concrete actions, when abstracting from other details, may be considered
equivalent in terms of the effect of having an object painted. One natural way to generalize the composition framework
developed in this paper is to assume the existence of an underlying compatibility relation � ⊆ A × A among actions: if
a � â (i.e., action â is compatible with action a), then an execution of action a can be satisfied by the actual execution
of action â. With a domain compatibility relation at hand, one can then generalize the notion of ND-simulation from Sec-
tion 3 to account for the fact that whenever an action a is requested by the target (e.g., paint), a compatible action â,
i.e., a � â, can be carried out by some available behavior (e.g., paint-red). We expect all results presented here to still
hold in such a generalized case, though further work is needed in order to formalize this intuition. While above we do
not make any assumption on relation �, in practice it may be natural to assume that it satisfies certain properties. For
instance, a reflexive compatibility relation captures the fact that every action can be always replaced by itself; a par-
tial order captures a hierarchy of actions, where a general action a can be replaced by a more specific one, but not vice
versa; and finally an equivalence relation can be used to assert that some actions carry out the very same task (relative

136 G. De Giacomo et al. / Artificial Intelligence 196 (2013) 106–142
to some features of interest). A further study of which properties of relation � in specific applications is certainly of
interest.

The second direction for further study stems from the observation that, when no compositions exist, it may be of interest
to approximate “solutions”. That is, if a composition does not exist, one may be interested in understanding which part of
the target cannot be realized and which can. Some compelling contribution in this direction can be found in the area
of supervisory control of deterministic discrete event systems [74]. In particular, there is a foundational result of great
interest: given a specification of the allowed behavior in terms of a language, i.e., a possibly infinite set of runs that are
deemed as “allowed”, it is always possible to find a single maximal subset of such runs that can be obtained by controlling
a given system, the so called “supremal controllable sublanguage” [90]. It would be quite interesting to understand if,
at least in certain cases, an analogous property holds for behavior composition as well. The question then is what an
“optimal” controller amounts to. Besides some domain-independent criteria (e.g., number of transitions realized), allowing
the specification of additional domain information could help define what such best controllers are, such as quantifying
all or some non-deterministic transitions and specifying preferences over target actions or available behaviors. Initial steps
toward “optimization” versions of the composition problem studied in this article have been recently proposed by Yadav and
Sardina [91,92], who developed a (quantitative) decision-theoretic composition framework as well as a qualitative account
for “approximate” composition.

Acknowledgements

The authors would like to thank the anonymous reviewers for their suggestions and comments that helped improve the
paper. This research was partially supported by the Australian Research Council (grants DP1094627 and DP120100332), the
EU FP7-ICT Project ACSI (grant no. 257593), as well as two mobility awards (Australian Academy of Science “Scientific Visit
to Europe” and RMIT Visiting Researcher’s awards).

Appendix A. TLV implementation for the painting block example

We list here the smv code that completes the one presented in Fig. 6. As for module main, we refer the reader to Fig. 6,
where the full encoding is reported. Concerning the code for module Environment, it is as follows:

MODULE Environment(act) -- Environment
VAR
st: {ini,e1,e2,e3,e4};

INIT
st = ini

TRANS
case
st = ini & act = start : next(st) = e1;
act = none : next(st) = st;
st = e1 & act = recharge : next(st) = e1;
st = e1 & act = prepare : next(st) = e2;
st = e2 & act in {paint,recharge} : next(st) = e2;
st = e2 & act = dispose : next(st) = e1;
st = e2 & act = clean : next(st) in {e2,e3}; -- nondet!
st = e3 & act in {paint,clean}: next(st) = e3;
st = e3 & act = dispose : next(st) = e4;
st = e3 & act = recharge : next(st) = e2;
st = e4 & act = prepare : next(st) = e3;
st = e4 & act = recharge : next(st) = e1;
TRUE : FALSE; -- no other transitions possible!

esac
DEFINE
initial := st = ini;

Observe that the environment has one dummy state ini and one dummy action start, which, when executed in the
initial state, makes the environment move to state e1. Every line in the TRANS section encodes a transition, that is, it defines
the next state of the module (next(st)) given the environment’s current state (st) and the action being performed, which
is an input parameter (variable act).

We next list the code corresponding to the three available arms B1, B2, and B3. Their encoding is similar to that of
the environment, though with some differences. Firstly, as the dynamics of each behavior—captured in the module’s TRANS
section—depends on both the action being performed by the behavior itself and the current environment state, both the
action and the environment state appear as inputs (variables act and env) in each behavior module. As for the TRANS
section, similarly to the environment’s, each of its entries within the case body captures a behavior transition. In particular,
observe that every behavior may be instructed to execute the dummy action none (second entry in TRANS), i.e., a no-op
action that yields no state change in the module. Through this mechanism we implement the asynchronous execution of
available behavior modules, as explained in Section 6. Secondly, to account for guards, the transitions occurring in a behavior
module may contain (boolean) formulae involving the current state of the environment. For example, the fourth transition
in the ArmA module states that the next state of the behavior is a2, provided: the current state is a1, the behavior is

G. De Giacomo et al. / Artificial Intelligence 196 (2013) 106–142 137
executing action clean, and the environment is in either state e1 or e2. Finally, each behavior defines its initial, final, and
failure conditions. In particular, behavior failure is accounted for by introducing the distinguished absorbing state failed,
that the module reaches whenever no transition rule applies for the current action and environment state input, i.e., when
the behavior cannot legally execute the requested action.

MODULE ArmA(act, env)
VAR
st: {ini,failed,a1,a2};
INIT
st = ini
TRANS
case
st = ini & act = start :
next(st) = a1;

act = none : next(st) = st;
st = a1 & act in {dispose,recharge} :
next(st) = a1;

st = a1 & act=clean & env in {e1,e2}:
next(st) = a2;

st = a2 & act = recharge :
next(st) = a2;

st = a2 & act = dispose :
next(st) = a1;

TRUE : next(st) = failed;
esac
DEFINE
initial := st = ini;
final:= st = a1;
fail := state = failed;

MODULE ArmB(act, env)
VAR

st: {ini,failed,b1,b2,b3,b4};
INIT
st = ini
TRANS
case
st = ini & act = start :

next(st) = b1;
act = none : next(st) = st;
st = b1 & act = prepare :

next(st) = b2;
st = b2 & act = clean :

next(st) = b1;
st = b2 & act = paint :

next(st) in {b1,b3};
st = b3 & act = recharge :

next(st) = b1;
st = b3 & act = prepare :

next(st) = b4;
st = b4 & act = clean :
next(st) = b3;

TRUE : next(st) = failed;
esac
DEFINE
initial := st = ini;
final:= st = b1;
fail := state = failed;

MODULE ArmC(act, env)
VAR
st: {ini,failed,c1,c2};
INIT
st = ini
TRANS
case
st = ini & act = start : next(st) = c1;
act = none : next(st) = st;
st = c1 & act = recharge : next(st) = c2;
st = c2 & act = prepare : next(st) = c2;
st = c2 & act = paint : next(st) = c1;
TRUE : next(st) = failed; -- failed!
esac
DEFINE
initial := st = ini;
final:= st = c1;
fail := state = failed;

The target specification is even simpler, as the target may not include any non-deterministic transition:

MODULE Target(env, req)
VAR
state: {ini,t1,t2,t3,t4,t5};

INIT
state = ini & req = start

TRANS
case
state = ini & req = start : next(state) = t1;
req = none : next(state) = state;
state = t1 & req = prepare : next(state) = t2;
state = t2 & req = paint : next(state) = t4;
state = t2 & req = clean : next(state) = t3;
state = t3 & req = paint : next(state) = t4;
state = t4 & req = dispose : next(state) = t5;
state = t5 & req = recharge : next(state) = t1;
esac
DEFINE
initial:= state = ini;
final:= state = t1;

138 G. De Giacomo et al. / Artificial Intelligence 196 (2013) 106–142
Using the target, we can then specify the client, which is meant to issue the request actions according, of course, to the
target behavior:

MODULE Client(env)
VAR
target : Target(env, req);
req: {start,none,prepare,clean,paint,dispose,recharge};
INIT
req = start
TRANS
case
next(tst) = t1 : next(req) = prepare;
next(tst) = t2 : next(req) in {paint,clean} ;
next(tst) = t3 : next(req) = paint;
next(tst) = t4 : next(req) = dispose;
next(tst) = t5 : next(req) = recharge;
TRUE : next(req) = none;

esac
DEFINE
initial:= target.initial;
tst := target.state;
final:= target.final;

When the full specification is run against the tlv � system, the following output is obtained:

TLV version 4.18.4
...
Resources used: user time: 0.11 s
BDD nodes allocated: 125962
max amount of BDD nodes allocated: 125962
Bytes allocated: 2228288
...

Automaton States

State 1
sys.availsys.env.state = start_st, sys.availsys.a1.state = start_st,
sys.availsys.a2.state = start_st, sys.availsys.a3.state = start_st,
sys.client.target.state = start_st, sys.client.req = start_op,
contr.a1op = start_op, contr.a2op = start_op, contr.a3op = start_op,

State 2
sys.availsys.env.state = e1, sys.availsys.a1.state = a1,
sys.availsys.a2.state = b1, sys.availsys.a3.state = c1,
sys.client.target.state = t1, sys.client.req = prepare,
contr.a1op = none, contr.a2op = prepare, contr.a3op = none,

State 3
sys.availsys.env.state = e2, sys.availsys.a1.state = a1,
sys.availsys.a2.state = b2, sys.availsys.a3.state = c1,
sys.client.target.state = t2, sys.client.req = paint,
contr.a1op = none, contr.a2op = paint, contr.a3op = none,

State 4
sys.availsys.env.state = e2, sys.availsys.a1.state = a1,
sys.availsys.a2.state = b2, sys.availsys.a3.state = c1,
sys.client.target.state = t2, sys.client.req = clean,
contr.a1op = clean, contr.a2op = none, contr.a3op = none,

State 5
sys.availsys.env.state = e2, sys.availsys.a1.state = a2,
sys.availsys.a2.state = b2, sys.availsys.a3.state = c1,
sys.client.target.state = t3, sys.client.req = paint,
contr.a1op = none, contr.a2op = paint, contr.a3op = none,

State 6
sys.availsys.env.state = e3, sys.availsys.a1.state = a2,
sys.availsys.a2.state = b2, sys.availsys.a3.state = c1,
sys.client.target.state = t3, sys.client.req = paint,
contr.a1op = none, contr.a2op = paint, contr.a3op = none,

State 7
sys.availsys.env.state = e3, sys.availsys.a1.state = a2,
sys.availsys.a2.state = b3, sys.availsys.a3.state = c1,
sys.client.target.state = t4, sys.client.req = dispose,
contr.a1op = dispose, contr.a2op = none, contr.a3op = none,

G. De Giacomo et al. / Artificial Intelligence 196 (2013) 106–142 139
State 8
sys.availsys.env.state = e3, sys.availsys.a1.state = a2,
sys.availsys.a2.state = b1, sys.availsys.a3.state = c1,
sys.client.target.state = t4, sys.client.req = dispose,
contr.a1op = dispose, contr.a2op = none, contr.a3op = none,

State 9
sys.availsys.env.state = e4, sys.availsys.a1.state = a1,
sys.availsys.a2.state = b1, sys.availsys.a3.state = c1,
sys.client.target.state = t5, sys.client.req = recharge,
contr.a1op = recharge, contr.a2op = none, contr.a3op = none,

State 10
sys.availsys.env.state = e4, sys.availsys.a1.state = a1,
sys.availsys.a2.state = b3, sys.availsys.a3.state = c1,
sys.client.target.state = t5, sys.client.req = recharge,
contr.a1op = none, contr.a2op = recharge, contr.a3op = none,

State 11
sys.availsys.env.state = e2, sys.availsys.a1.state = a2,
sys.availsys.a2.state = b3, sys.availsys.a3.state = c1,
sys.client.target.state = t4, sys.client.req = dispose,
contr.a1op = dispose, contr.a2op = none, contr.a3op = none,

State 12
sys.availsys.env.state = e2, sys.availsys.a1.state = a2,
sys.availsys.a2.state = b1, sys.availsys.a3.state = c1,
sys.client.target.state = t4, sys.client.req = dispose,
contr.a1op = dispose, contr.a2op = none, contr.a3op = none,

State 13
sys.availsys.env.state = e1, sys.availsys.a1.state = a1,
sys.availsys.a2.state = b1, sys.availsys.a3.state = c1,
sys.client.target.state = t5, sys.client.req = recharge,
contr.a1op = recharge, contr.a2op = none, contr.a3op = none,

State 14
sys.availsys.env.state = e1, sys.availsys.a1.state = a1,
sys.availsys.a2.state = b3, sys.availsys.a3.state = c1,
sys.client.target.state = t5, sys.client.req = recharge,
contr.a1op = none, contr.a2op = recharge, contr.a3op = none,

State 15
sys.availsys.env.state = e2, sys.availsys.a1.state = a1,
sys.availsys.a2.state = b3, sys.availsys.a3.state = c1,
sys.client.target.state = t4, sys.client.req = dispose,
contr.a1op = dispose, contr.a2op = none, contr.a3op = none,

State 16
sys.availsys.env.state = e2, sys.availsys.a1.state = a1,
sys.availsys.a2.state = b1, sys.availsys.a3.state = c1,
sys.client.target.state = t4, sys.client.req = dispose,
contr.a1op = dispose, contr.a2op = none, contr.a3op = none,

Automaton Transitions

From 1 to 2
From 2 to 3 4
From 3 to 15 16
From 4 to 5 6
From 5 to 11 12
From 6 to 7 8
From 7 to 10
From 8 to 9
From 9 to 2
From 10 to 2
From 11 to 14
From 12 to 13
From 13 to 2
From 14 to 2
From 15 to 14
From 16 to 13

Automaton has 16 states, and 21 transitions

The output states that an automaton with 16 states and 21 transition was successfully synthesized. Observe that
the automaton encodes and accounts for the constraints of both the whole system and the client running the target,

140 G. De Giacomo et al. / Artificial Intelligence 196 (2013) 106–142
as well as the controller performing the composition. In fact, the obtained result can be regarded as a representation
of the controller generator for the painting blocks example. States can be read as follows: an assignment to variables
sys.availsys.env.state, sys.availsys.a1.state, sys.availsys.a2.state, sys.availsys.a3.state,
and sys.client.target.state, forms the current state of the enacted system; an assignment to sys.client.req
represents the action currently requested; and an assignment to contr.a1op, contr.a2op, and contr.a3op, repre-
sents a possible action delegations to available behaviors for fulfilling the current request.

We close by mentioning that, by running the example on a 2011 mid-priced laptop, we get a solution in less than half a
second.

References

[1] M. Abadi, L. Lamport, P. Wolper, Realizable and unrealizable specifications of reactive systems, in: Proceedings of the International Colloquium on
Automata, Languages and Programming (ICALP), 1989, pp. 1–17.

[2] G. Alonso, F. Casati, H. Kuno, V. Machiraju, Web Services. Concepts, Architectures and Applications, Springer, 2004.
[3] R. Alur, T.A. Henzinger, O. Kupferman, Alternating-time temporal logic, Journal of the ACM 49 (5) (2002) 672–713.
[4] R. Alur, T.A. Henzinger, F.Y.C. Mang, S. Qadeer, S.K. Rajamani, S. Tasiran, MOCHA: Modularity in model checking, in: Proceedings of the International

Conference Computer Aided Verification (CAV), 1998, pp. 521–525.
[5] E. Asarin, O. Maler, A. Pnueli, Symbolic controller synthesis for discrete and timed systems, in: P. Antsaklis, W. Kohn, A. Nerode, S. Sastry (Eds.), Hybrid

Systems II, in: LNCS, vol. 999, Springer, 1995, pp. 1–20.
[6] E. Asarin, O. Maler, A. Pnueli, J. Sifakis, Controller synthesis for timed automata, in: IFAC Symposium on System Structure and Control, Elsevier Science

Publishers Ltd., 1998, pp. 469–474.
[7] F. Bacchus, F. Kabanza, Planning for temporally extended goals, Annals of Mathematics and Artificial Intelligence 22 (1–2) (1998) 5–27.
[8] P. Balbiani, F. Cheikh, G. Feuillade, Composition of interactive web services based on controller synthesis, in: Proceedings of the IEEE Congress on

Services (SERVICES), 2008, pp. 521–528.
[9] P. Balbiani, F. Cheikh, G. Feuillade, Algorithms and complexity of automata synthesis by asynchronous orchestration with applications to web services

composition, Electronic Notes in Theoretical Computer Science (ENTCS) 229 (3) (2009) 3–18.
[10] P. Balbiani, F. Cheikh, G. Feuillade, Controller/orchestrator synthesis via filtration, Electronic Notes in Theoretical Computer Science (ENTCS) 262 (2010)

33–48.
[11] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, G.J. Pappas, Symbolic planning and control of robot motion: State of the art and grand challenges,

IEEE Robotics and Automation Magazine 14 (1) (March 2007) 61–70.
[12] D. Berardi, D. Calvanese, G. De Giacomo, R. Hull, M. Mecella, Automatic composition of transition-based semantic web services with messaging, in:

Proceedings of the International Conference on Very Large Databases (VLDB), 2005, pp. 613–624.
[13] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, M. Mecella, Automatic composition of e-services that export their behavior, in: Proceedings of

the International Joint Conference on Service Oriented Computing (ICSOC), 2003, pp. 43–58.
[14] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, M. Mecella, Automatic service composition based on behavioural descriptions, International

Journal of Cooperative Information Systems 14 (4) (2005) 333–376.
[15] D. Berardi, F. Cheikh, G. De Giacomo, F. Patrizi, Automatic service composition via simulation, International Journal of Foundations of Computer Sci-

ence 19 (2) (2008) 429–451.
[16] P. Bertoli, M. Pistore, P. Traverso, Automated composition of web services via planning in asynchronous domains, Artificial Intelligence Journal 174 (3–4)

(2010) 316–361.
[17] M. Bordignon, J. Rashid, M. Broxvall, A. Saffiotti, Seamless integration of robots and tiny embedded devices in a PEIS-ecology, in: Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2007, pp. 3101–3106.
[18] M. Broxvall, M. Gritti, A. Saffiotti, B.-S. Seo, Y.-J. Cho, PEIS ecology: Integrating robots into smart environments, in: Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), 2006, pp. 212–218.
[19] T. Bultan, X. Fu, R. Hull, J. Su, Conversation specification: a new approach to design and analysis of e-service composition, in: Proceedings of the

International Conference on World Wide Web (WWW), 2003, pp. 403–410.
[20] D. Calvanese, G. De Giacomo, M. Lenzerini, M. Mecella, F. Patrizi, Automatic service composition and synthesis: The roman model, IEEE Data Engineering

Bulletin 31 (3) (2008) 18–22.
[21] A. Cimatti, M. Pistore, M. Roveri, P. Traverso, Weak, strong, and strong cyclic planning via symbolic model checking, Artificial Intelligence Jour-

nal 147 (1–2) (2003) 35–84.
[22] E. Clarke, E. Emerson, Design and synthesis of synchronization skeletons using branching time temporal logic, in: D. Kozen (Ed.), Logics of Programs,

in: LNCS, vol. 131, Springer, Berlin/Heidelberg, 1982, pp. 52–71 (Chapter 5).
[23] E.M. Clarke, O. Grumberg, D. Peled, Model Checking, The MIT Press, 1999.
[24] G. De Giacomo, R. De Masellis, F. Patrizi, Composition of partially observable services exporting their behaviour, in: Proceedings of the International

Conference on Automated Planning and Scheduling (ICAPS), 2009, pp. 90–97.
[25] G. De Giacomo, P. Felli, Agent composition synthesis based on ATL, in: Proceedings of Autonomous Agents and Multi-Agent Systems (AAMAS), 2010,

pp. 499–506.
[26] G. De Giacomo, F. Patrizi, Automated composition of nondeterministic stateful services, in: Web Services and Formal Methods, 6th International Work-

shop, Revised Selected Papers, WS-FM 2009, Bologna, Italy, September 4–5, 2009, in: LNCS, vol. 6194, Springer, 2010, pp. 147–160.
[27] G. De Giacomo, F. Patrizi, P. Felli, S. Sardina, Two-player game structures for generalized planning and agent composition, in: Proceedings of the

National Conference on Artificial Intelligence (AAAI), 2010, pp. 297–302.
[28] G. De Giacomo, F. Patrizi, S. Sardina, Agent programming via planning programs, in: Proceedings of Autonomous Agents and Multi-Agent Systems

(AAMAS), May 2010, pp. 491–498.
[29] G. De Giacomo, F. Patrizi, S. Sardina, Generalized planning with loops under strong fairness constraints, in: Proceedings of Principles of Knowledge

Representation and Reasoning (KR), 2010, pp. 351–361.
[30] G. De Giacomo, S. Sardina, Automatic synthesis of new behaviors from a library of available behaviors, in: Proceedings of the International Joint

Conference on Artificial Intelligence (IJCAI), 2007, pp. 1866–1871.
[31] A. Deutsch, L. Sui, V. Vianu, Specification and verification of data-driven web applications, Journal of Computer and System Sciences 73 (3) (2007)

442–474.
[32] R. Fagin, J.Y. Halpern, Y. Moses, M.Y. Vardi, Reasoning About Knowledge, The MIT Press, Cambridge, Massachusetts, 1995.
[33] G.E. Fainekos, A. Girard, H. Kress-Gazit, G.J. Pappas, Temporal logic motion planning for dynamic robots, Automatica 45 (2) (2009) 343–352.
[34] M. Gelfond, V. Lifschitz, Action languages, Electronic Transactions of AI (ETAI) 2 (1998) 193–210.

G. De Giacomo et al. / Artificial Intelligence 196 (2013) 106–142 141
[35] M. Genesereth, N. Love, General game playing: Overview of the AAAI competition, AI Magazine 26 (2005) 62–72.
[36] M.P. Georgeff, A.L. Lansky, Reactive reasoning and planning, in: Proceedings of the National Conference on Artificial Intelligence (AAAI), 1987, pp. 677–

682.
[37] C.E. Gerede, R. Hull, O.H. Ibarra, J. Su, Automated composition of e-services: Lookaheads, in: Proceedings of the International Joint Conference on

Service Oriented Computing (ICSOC), 2004, pp. 252–262.
[38] C.E. Gerede, O.H. Ibarra, B. Ravikumar, J. Su, Online and minimum-cost ad hoc delegation in e-service composition, in: Proceedings of the IEEE Inter-

national Conference on Services Computing (SCC), 2005, pp. 103–112.
[39] M. Ghallab, D. Nau, P. Traverso, Automated Planning: Theory and Practice, Morgan Kauffman, 2004.
[40] A. Harding, M. Ryan, P.-Y. Schobbens, A new algorithm for strategy synthesis in LTL games, in: Proceedings of Tools and Algorithms for the Construction

and Analysis of Systems (TACAS), 2005, pp. 477–492.
[41] M.R. Henzinger, T.A. Henzinger, P.W. Kopke, Computing simulations on finite and infinite graphs, in: Proceedings of the Annual Symposium on Foun-

dations of Computer Science (FOCS), 1995, pp. 453–462.
[42] R. Hull, Web services composition: A story of models, automata, and logics, in: Proceedings of the IEEE International Conference on Services Computing

(SCC), 2005, pp. 18–19.
[43] B. Jarvis, D. Jarvis, L. Jain, Teams in multi-agent systems, in: Z. Shi, K. Shimohara, D. Feng (Eds.), Intelligent Information Processing III, in: IFIP Interna-

tional Federation for Information Processing, vol. 228, Springer, 2007, pp. 1–10 (Chapter 1).
[44] B. Jobstmann, R. Bloem, Optimizations for LTL synthesis, in: Proceedings of the Formal Methods in Computer Aided Design (FMCAD), IEEE Computer

Society Press, 2006, pp. 117–124.
[45] B. Jobstmann, S. Galler, M. Weiglhofer, R. Bloem, Anzu: A tool for property synthesis, in: Proceedings of the International Conference Computer Aided

Verification (CAV), 2007, pp. 258–262.
[46] F. Kabanza, S. Thiébaux, Search control in planning for temporally extended goals, in: Proceedings of the International Conference on Automated

Planning and Scheduling (ICAPS), 2005, pp. 130–139.
[47] Y. Kesten, N. Piterman, A. Pnueli, Bridging the gap between fair simulation and trace inclusion, Information and Computation 200 (July 2005) 35–61.
[48] H. Kress-Gazit, G.E. Fainekos, G.J. Pappas, Where’s Waldo? Sensor-based temporal logic motion planning, in: Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), 2007, pp. 3116–3121.
[49] H. Kress-Gazit, G.E. Fainekos, G.J. Pappas, Temporal-logic-based reactive mission and motion planning, IEEE Transactions on Robotics 25 (6) (2009)

1370–1381.
[50] O. Kupferman, M.Y. Vardi, Module checking, in: Proceedings of the International Conference Computer Aided Verification (CAV), 1996, pp. 75–86.
[51] O. Kupferman, M.Y. Vardi, Church’s problem revisited, The Bulletin of Symbolic Logic 5 (2) (1999) 245–263.
[52] R. Lundh, L. Karlsson, A. Saffiotti, Plan-based configuration of an ecology of robots, in: Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA), 2007, pp. 64–70.
[53] R. Lundh, L. Karlsson, A. Saffiotti, Automatic configuration of multi-robot systems: Planning for multiple steps, in: Proceedings of the European Confer-

ence in Artificial Intelligence (ECAI), 2008, pp. 616–620.
[54] Y. Lustig, M.Y. Vardi, Synthesis from component libraries, in: Proceedings of the International Conference on Foundations of Software Science and

Computational Structures (FOSSACS), in: LNCS, vol. 5504, Springer, 2009, pp. 395–409.
[55] O. Marin, M. Bertier, P. Sens, DARX – a framework for the fault tolerant support of agent software, in: Proceedings of the IEEE International Symposium

on Software Reliability Engineering (ISSRE), 2003, pp. 406–418.
[56] D.L. Martin, M.H. Burstein, D.V. McDermott, S.A. McIlraith, M. Paolucci, K.P. Sycara, D.L. McGuinness, E. Sirin, N. Srinivasan, Bringing semantics to web

services with OWL-S, in: Proceedings of the International Conference on World Wide Web (WWW), 2007, pp. 243–277.
[57] S.A. McIlraith, T.C. Son, Adapting golog for composition of semantic web services, in: Proceedings of Principles of Knowledge Representation and

Reasoning (KR), 2002, pp. 482–496.
[58] S.A. McIlraith, T.C. Son, H. Zeng, Semantic web services, IEEE Intelligent Systems 16 (2) (2001) 46–53.
[59] K.L. McMillan, Symbolic Model Checking, Kluwer Academic Publishers, Norwell, MA, USA, 1993.
[60] R. Milner, An algebraic definition of simulation between programs, in: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),

1971, pp. 481–489.
[61] A. Muscholl, I. Walukiewicz, A lower bound on web services composition, Logical Methods in Computer Science 4 (2) (2008).
[62] D.S. Nau, T.-C. Au, O. Ilghami, U. Kuter, J.W. Murdock, D. Wu, F. Yaman, SHOP2: An HTN planning system, Journal of Artificial Intelligence Research 20

(2003) 379–404.
[63] M.P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, Service-oriented computing: State of the art and research challenges, IEEE Computer 40 (11)

(2007) 38–45.
[64] O. Pettersson, Execution monitoring in robotics: A survey, Robotics and Autonomous Systems 53 (2) (2005) 73–88.
[65] M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, P. Traverso, Planning and monitoring web service composition, in: Proceedings of the Artificial Intelligence:

Methodology, Systems, and Applications (AIMSA), in: LNCS, vol. 3192, Springer, 2004, pp. 106–115.
[66] M. Pistore, A. Marconi, P. Bertoli, P. Traverso, Automated composition of web services by planning at the knowledge level, in: Proceedings of the

International Joint Conference on Artificial Intelligence (IJCAI), 2005, pp. 1252–1259.
[67] M. Pistore, P. Traverso, Planning as model checking for extended goals in non-deterministic domains, in: Proceedings of the International Joint Confer-

ence on Artificial Intelligence (IJCAI), 2001, pp. 479–486.
[68] M. Pistore, P. Traverso, P. Bertoli, A. Marconi, Automated synthesis of composite BPEL4WS web services, in: Proceedings of the IEEE International

Conference on Web Services (ICWS), 2005, pp. 293–301.
[69] N. Piterman, A. Pnueli, Y. Sa’ar, Synthesis of Reactive (1) Designs, in: Proceedings of the International Conference on Verification, Model Checking, and

Abstract Interpretation (VMCAI), 2006, pp. 364–380.
[70] A. Pnueli, R. Rosner, On the synthesis of a reactive module, in: Proceedings of the ACM SIGPLAN–SIGACT Symposium on Principles of Programming

Languages (POPL), 1989, pp. 179–190.
[71] A. Pnueli, E. Shahar, A platform for combining deductive with algorithmic verification, in: Proceedings of the International Conference Computer Aided

Verification (CAV), 1996, pp. 184–195.
[72] D.V. Pynadath, M. Tambe, N. Chauvat, L. Cavedon, Toward team-oriented programming, in: Proceedings of the International Workshop on Agent Theo-

ries, Architectures, and Languages (ATAL), Springer, 2000, pp. 233–247.
[73] R. Ragab Hassen, L. Nourine, F. Toumani, Protocol-based web service composition, in: Proceedings of the International Joint Conference on Service

Oriented Computing (ICSOC), in: LNCS, vol. 5364, Springer, 2008, pp. 38–53 (Chapter 7).
[74] P.J. Ramadge, W.M. Wonham, Supervisory control of a class of discrete event processes, SIAM Journal on Control and Optimization 25 (1987) 206–230.
[75] A.S. Rao, AgentSpeak(L): BDI agents speak out in a logical computable language, in: Proceedings of the Seventh European Workshop on Modelling

Autonomous Agents in a Multi-Agent World (Agents Breaking Away), in: LNCS, vol. 1038, Springer, 1996, pp. 42–55.
[76] A. Saffiotti, M. Broxvall, PEIS ecologies: Ambient intelligence meets autonomous robotics, in: Proceedings of the International Conference on Smart

Objects and Ambient Intelligence, 2005, pp. 275–280.

142 G. De Giacomo et al. / Artificial Intelligence 196 (2013) 106–142
[77] S. Sardina, G. De Giacomo, Realizing multiple autonomous agents through scheduling of shared devices, in: Proceedings of the International Conference
on Automated Planning and Scheduling (ICAPS), 2008, pp. 304–312.

[78] S. Sardina, G. De Giacomo, Composition of ConGolog programs, in: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),
2009, pp. 904–910.

[79] S. Sardina, F. Patrizi, G. De Giacomo, Automatic synthesis of a global behavior from multiple distributed behaviors, in: Proceedings of the National
Conference on Artificial Intelligence (AAAI), 2007, pp. 1063–1069.

[80] S. Sardina, F. Patrizi, G. De Giacomo, Behavior composition in the presence of failure, in: Proceedings of Principles of Knowledge Representation and
Reasoning (KR), 2008, pp. 640–650.

[81] M.J. Schoppers, Universal plans for reactive robots in unpredictable environments, in: Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), 1987, pp. 1039–1046.

[82] E. Sirin, B. Parsia, D. Wu, J. Hendler, D. Nau, HTN planning for web service composition using SHOP2, Journal of Web Semantics: Science, Services and
Agents on the World Wide Web 1 (4) (October 2004) 377–396.

[83] S. Sohrabi, N. Prokoshyna, S.A. McIlraith, Web service composition via generic procedures and customizing user preferences, in: Proceedings of the
International Semantic Web Conference (ISWC), 2006, pp. 597–611.

[84] S. Sohrabi, N. Prokoshyna, S.A. Mcilraith, Web service composition via the customization of golog programs with user preferences, in: A.T. Borgida,
V.K. Chaudhri, P. Giorgini, E.S. Yu (Eds.), Conceptual Modeling: Foundations and Applications, Springer, 2009, pp. 319–334 (Chapter Web and Services).

[85] T. Stroeder, M. Pagnucco, Realising deterministic behaviour from multiple non-deterministic behaviours, in: Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), 2009, pp. 936–941.

[86] J. Su (Ed.), IEEE Data Engineering Bulletin 31 (September 2008).
[87] L. Tan, R. Cleaveland, Simulation revisited, in: Proceedings of Tools and Algorithms for the Construction and Analysis of Systems (TACAS), 2001, pp. 480–

495.
[88] A. Tripathi, R. Miller, Exception handling in agent-oriented systems, in: A. Romanovsky, C. Dony, J. Knudsen, A. Tripathi (Eds.), Advances in Exception

Handling Techniques, in: LNCS, vol. 2022, Springer, 2001, pp. 128–146.
[89] M.Y. Vardi, An automata-theoretic approach to fair realizability and synthesis, in: Proceedings of the International Conference Computer Aided Verifi-

cation (CAV), 1995, pp. 267–278.
[90] W. Wonham, P. Ramadge, On the supremal controllable sub-language of a given language, SIAM Journal on Control and Optimization 25 (3) (1987)

637–659.
[91] N. Yadav, S. Sardina, Decision theoretic behavior composition, in: Yolum Tumer, Stone Sonenberg (Eds.), Proceedings of Autonomous Agents and Multi-

Agent Systems (AAMAS), 2011, pp. 575–582.
[92] N. Yadav, S. Sardina, Qualitative approximate behavior composition, in: Proceedings of the European Conference on Logics in Artificial Intelligence

(JELIA), in: LNCS, vol. 7519, Springer, 2012, pp. 450–462.

	Automatic behavior composition synthesis
	1 Introduction
	2 The framework
	3 Composition via simulation
	4 On behavior failures
	4.1 Reactive adaptability
	4.2 Parsimonious reﬁnement

	5 Simulation and safety games
	5.1 Safety-game structures
	5.2 From composition to safety games

	6 Implementing behavior composition in tlv
	7 Related work
	8 Conclusions
	Acknowledgements
	Appendix A tlv implementation for the painting block example
	References

